-
Notifications
You must be signed in to change notification settings - Fork 9
/
elman.hpp
131 lines (120 loc) · 5.29 KB
/
elman.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
//| This file is a part of the sferes2 framework.
//| Copyright 2009, ISIR / Universite Pierre et Marie Curie (UPMC)
//| Main contributor(s): Jean-Baptiste Mouret, [email protected]
//|
//| This software is a computer program whose purpose is to facilitate
//| experiments in evolutionary computation and evolutionary robotics.
//|
//| This software is governed by the CeCILL license under French law
//| and abiding by the rules of distribution of free software. You
//| can use, modify and/ or redistribute the software under the terms
//| of the CeCILL license as circulated by CEA, CNRS and INRIA at the
//| following URL "http://www.cecill.info".
//|
//| As a counterpart to the access to the source code and rights to
//| copy, modify and redistribute granted by the license, users are
//| provided only with a limited warranty and the software's author,
//| the holder of the economic rights, and the successive licensors
//| have only limited liability.
//|
//| In this respect, the user's attention is drawn to the risks
//| associated with loading, using, modifying and/or developing or
//| reproducing the software by the user in light of its specific
//| status of free software, that may mean that it is complicated to
//| manipulate, and that also therefore means that it is reserved for
//| developers and experienced professionals having in-depth computer
//| knowledge. Users are therefore encouraged to load and test the
//| software's suitability as regards their requirements in conditions
//| enabling the security of their systems and/or data to be ensured
//| and, more generally, to use and operate it in the same conditions
//| as regards security.
//|
//| The fact that you are presently reading this means that you have
//| had knowledge of the CeCILL license and that you accept its terms.
#ifndef _NN_ELMAN_HPP_
#define _NN_ELMAN_HPP_
#include "nn.hpp"
namespace nn {
// a "modified" Elman network with self-recurrent context units
// E.g. : Training Elman and Jordan networks for system
// identification using genetic algorithms
// Artificial Intelligence in Engineering
// Volume 13, Issue 2, April 1999, Pages 107-117
// first input is a BIAS input (it should be set to 1)
template<typename N, typename C>
class Elman : public NN<N, C> {
public:
typedef nn::NN<N, C> nn_t;
typedef typename nn_t::io_t io_t;
typedef typename nn_t::vertex_desc_t vertex_desc_t;
typedef typename nn_t::edge_desc_t edge_desc_t;
typedef typename nn_t::adj_it_t adj_it_t;
typedef typename nn_t::graph_t graph_t;
typedef N neuron_t;
typedef C conn_t;
Elman(size_t nb_inputs,
size_t nb_hidden,
size_t nb_outputs) {
// neurons
this->set_nb_inputs(nb_inputs + 1);
this->set_nb_outputs(nb_outputs);
for (size_t i = 0; i < nb_hidden; ++i)
_hidden_neurons.
push_back(this->add_neuron(std::string("h")
+ boost::lexical_cast<std::string>(i)));
for (size_t i = 0; i < nb_hidden; ++i)
_context_neurons.
push_back(this->add_neuron(std::string("c")
+ boost::lexical_cast<std::string>(i)));
// connections
this->full_connect(this->_inputs, this->_hidden_neurons,
trait<typename N::weight_t>::zero());
this->full_connect(this->_hidden_neurons, this->_outputs,
trait<typename N::weight_t>::zero());
this->connect(this->_hidden_neurons, this->_context_neurons,
trait<typename N::weight_t>::zero());
this->connect(this->_context_neurons, this->_context_neurons,
trait<typename N::weight_t>::zero());
this->full_connect(this->_context_neurons, this->_hidden_neurons,
trait<typename N::weight_t>::zero());
// bias
// (hidden layer is already connect to input(0))
size_t last = this->get_nb_inputs();
for (size_t i = 0; i < _context_neurons.size(); ++i)
this->add_connection(this->get_input(last), _context_neurons[i],
trait<typename N::weight_t>::zero());
for (size_t i = 0; i < this->get_nb_outputs(); ++i)
this->add_connection(this->get_input(last), this->get_output(i),
trait<typename N::weight_t>::zero());
}
unsigned get_nb_inputs() const {
return this->_inputs.size() - 1;
}
void step(const std::vector<io_t>& in) {
assert(in.size() == this->get_nb_inputs());
std::vector<io_t> inf = in;
inf.push_back(1.0f);
nn_t::_step(inf);
}
protected:
std::vector<vertex_desc_t> _hidden_neurons;
std::vector<vertex_desc_t> _context_neurons;
};
namespace elman {
template<int NbInputs, int NbHidden, int NbOutputs>
struct Count {
SFERES_CONST int nb_inputs = NbInputs + 1; // bias is an input
SFERES_CONST int nb_outputs = NbOutputs;
SFERES_CONST int nb_hidden = NbHidden;
SFERES_CONST int nb_params =
nb_inputs * nb_hidden // input to hidden (full)
+ nb_hidden * nb_outputs // hidden to output (full)
+ nb_hidden // hidden to context (1-1)
+ nb_hidden // context to itself (1-1)
+ nb_hidden * nb_hidden // context to hidden (full)
+ nb_hidden // bias context
+ nb_outputs; // bias outputs
};
}
}
#endif