diff --git a/.DS_Store b/.DS_Store index 27d1b54..793372d 100644 Binary files a/.DS_Store and b/.DS_Store differ diff --git a/._index_xref.json b/._index_xref.json index 78be7e5..0dcd757 100644 --- a/._index_xref.json +++ b/._index_xref.json @@ -1 +1 @@ -[{"title":"","refnum":"1.1","reftag":"1.1","neu":true,"label":"Definition","autoid":"Definition-1.1","cls":"Definition","reflabel":"Definition","id":"Definition-1.1","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Question","autoid":"Question*-1.1","cls":"Question","reflabel":"Question","id":"Question*-1.1","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Question","autoid":"Question*-1.2","cls":"Question","reflabel":"Question","id":"Question*-1.2","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Question","autoid":"Question*-1.3","cls":"Question","reflabel":"Question","id":"Question*-1.3","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Question","autoid":"Question*-1.4","cls":"Question","reflabel":"Question","id":"Question*-1.4","file":"index.tex"},{"title":"","refnum":"1.5","reftag":"1.5","file":"index.tex","label":"Conjecture","autoid":"Conjecture-id-conj-line","neu":true,"id":"conj-line","reflabel":"Conjecture","cls":"Conjecture"},{"title":"","refnum":"1.6","reftag":"1.6","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-root-2","neu":true,"id":"theorem-root-2","reflabel":"Theorem","cls":"Theorem"},{"title":"Proof of Theorem 1.2","refnum":"??","reftag":"","neu":true,"label":"Proof","autoid":"Proof*-1.5","cls":"Proof","reflabel":"Proof","id":"proof-of-theorem","file":"index.tex"},{"title":"To keep in mind for the next lessons","refnum":"1.3","reftag":"1.3","neu":true,"label":"Theorem","autoid":"Theorem-1.3","cls":"Theorem","reflabel":"Theorem","id":"to-keep-in-mind-for-the-next-lessons","file":"index.tex"},{"title":"","refnum":"1.1","reftag":"1.1","file":"index.tex","label":"Question","autoid":"Question-id-Question-1","neu":true,"id":"Question-1","reflabel":"Question","cls":"Question"},{"title":"","refnum":"1.2","reftag":"1.2","file":"index.tex","label":"Question","autoid":"Question-id-Question-2","neu":true,"id":"Question-2","reflabel":"Question","cls":"Question"},{"title":"","refnum":"1.3","reftag":"1.3","file":"index.tex","label":"Question","autoid":"Question-1.3","neu":true,"id":"Question-1.3","reflabel":"Question","cls":"Question"},{"title":"","refnum":"1.4","reftag":"1.4","file":"index.tex","label":"Question","autoid":"Question-1.4","neu":true,"id":"Question-1.4","reflabel":"Question","cls":"Question"},{"title":"Proof of Theorem 1.6","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-1.1","neu":true,"id":"proof-of-theorem","reflabel":"Proof","cls":"Proof"},{"title":"To keep in mind for the next lessons","refnum":"1.7","reftag":"1.7","neu":true,"label":"Theorem","autoid":"Theorem-1.7","cls":"Theorem","reflabel":"Theorem","id":"to-keep-in-mind-for-the-next-lessons","file":"index.tex"},{"title":"","refnum":"1.7","reftag":"1.7","file":"index.tex","label":"Remark","autoid":"Remark-1.7","neu":true,"id":"Remark-1.7","reflabel":"Remark","cls":"Remark"},{"title":"We will prove this in the future","refnum":"1.8","reftag":"1.8","file":"index.tex","label":"Theorem","autoid":"Theorem-1.8","neu":true,"id":"we-will-prove-this-in-the-future","reflabel":"Theorem","cls":"Theorem"},{"title":"We will prove this in the future","refnum":"1.9","reftag":"1.9","file":"index.tex","label":"Theorem","autoid":"Theorem-1.9","neu":true,"id":"we-will-prove-this-in-the-future-1","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"2.1","reftag":"2.1","file":"index.tex","label":"Remark","autoid":"Remark-2.1","neu":true,"id":"Remark-2.1","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"2.2","reftag":"2.2","file":"index.tex","label":"Example","autoid":"Example-2.2","neu":true,"id":"Example-2.2","reflabel":"Example","cls":"Example"},{"title":"","refnum":"2.3","reftag":"2.3","file":"index.tex","label":"Example","autoid":"Example-2.3","neu":true,"id":"Example-2.3","reflabel":"Example","cls":"Example"},{"title":"","refnum":"2.4","reftag":"2.4","file":"index.tex","label":"Example","autoid":"Example-2.4","neu":true,"id":"Example-2.4","reflabel":"Example","cls":"Example"},{"title":"","refnum":"2.7","reftag":"2.7","file":"index.tex","label":"Proposition","autoid":"Proposition-id-Proposition-Equality-Sets","neu":true,"id":"Proposition-Equality-Sets","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-2.1","neu":true,"id":"Proof*-2.1","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"2.6","reftag":"2.6","file":"index.tex","label":"Example","autoid":"Example-2.6","neu":true,"id":"Example-2.6","reflabel":"Example","cls":"Example"},{"title":"","refnum":"2.7","reftag":"2.7","neu":true,"label":"Remark","autoid":"Remark-2.7","cls":"Remark","reflabel":"Remark","id":"Remark-2.7","file":"index.tex"},{"title":"","refnum":"2.8","reftag":"2.8","file":"index.tex","label":"Example","autoid":"Example-2.8","neu":true,"id":"Example-2.8","reflabel":"Example","cls":"Example"},{"title":"De Morgan’s Laws","refnum":"2.9","reftag":"2.9","neu":true,"label":"Proposition","autoid":"Proposition-2.9","cls":"Proposition","reflabel":"Proposition","id":"de-morgans-laws","file":"index.tex"},{"title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"2.10","reftag":"2.10","neu":true,"label":"Definition","autoid":"Definition-2.10","cls":"Definition","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","file":"index.tex"},{"title":"Equivalence classes","refnum":"2.11","reftag":"2.11","neu":true,"label":"Definition","autoid":"Definition-2.11","cls":"Definition","reflabel":"Definition","id":"equivalence-classes","file":"index.tex"},{"title":"Equality is an equivalence relation","refnum":"2.12","reftag":"2.12","neu":true,"label":"Example","autoid":"Example-2.12","cls":"Example","reflabel":"Example","id":"equality-is-an-equivalence-relation","file":"index.tex"},{"title":"Equivalence classes","refnum":"2.13","reftag":"2.13","neu":true,"label":"Definition","autoid":"Definition-2.13","cls":"Definition","reflabel":"Definition","id":"equivalence-classes","file":"index.tex"},{"title":"Equality is an equivalence relation","refnum":"2.14","reftag":"2.14","neu":true,"label":"Example","autoid":"Example-2.14","cls":"Example","reflabel":"Example","id":"equality-is-an-equivalence-relation","file":"index.tex"},{"title":"Equivalence classes","refnum":"2.15","reftag":"2.15","file":"index.tex","label":"Definition","autoid":"Definition-2.15","neu":true,"id":"equivalence-classes","reflabel":"Definition","cls":"Definition"},{"title":"Equality is an equivalence relation","refnum":"2.16","reftag":"2.16","file":"index.tex","label":"Example","autoid":"Example-2.16","neu":true,"id":"equality-is-an-equivalence-relation","reflabel":"Example","cls":"Example"},{"title":"","refnum":"2.17","reftag":"2.17","neu":true,"label":"Remark","autoid":"Remark-2.17","cls":"Remark","reflabel":"Remark","id":"Remark-2.17","file":"index.tex"},{"title":"","refnum":"2.18","reftag":"2.18","neu":true,"label":"Remark","autoid":"Remark-id-Remark-Absolute-Value-Sym","cls":"Remark","reflabel":"Remark","id":"Remark-Absolute-Value-Sym","file":"index.tex"},{"title":"Geometric interpretation of \\(|x|\\)","refnum":"2.19","reftag":"2.19","neu":true,"label":"Remark","autoid":"Remark-2.19","cls":"Remark","reflabel":"Remark","id":"geometric-interpretation-of-x","file":"index.tex"},{"title":"","refnum":"2.18","reftag":"2.18","neu":true,"label":"Remark","autoid":"Remark-id-remark-absolute-value-sym","cls":"Remark","reflabel":"Remark","id":"remark-absolute-value-sym","file":"index.tex"},{"title":"","refnum":"2.30","reftag":"2.30","file":"index.tex","label":"Remark","autoid":"Remark-id-rmk-absolute-value-sym","neu":true,"id":"rmk-absolute-value-sym","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"2.20","reftag":"2.20","neu":true,"label":"Remark","autoid":"Remark-2.20","cls":"Remark","reflabel":"Remark","id":"Remark-2.20","file":"index.tex"},{"title":"","refnum":"2.21","reftag":"2.21","neu":true,"label":"Lemma","autoid":"Lemma-2.21","cls":"Lemma","reflabel":"Lemma","id":"Lemma-2.21","file":"index.tex"},{"title":"","refnum":"2.5","reftag":"2.5","file":"index.tex","label":"Example","autoid":"Example-2.5","neu":true,"id":"Example-2.5","reflabel":"Example","cls":"Example"},{"title":"","refnum":"2.9","reftag":"2.9","file":"index.tex","label":"Remark","autoid":"Remark-2.9","neu":true,"id":"Remark-2.9","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"2.10","reftag":"2.10","file":"index.tex","label":"Example","autoid":"Example-2.10","neu":true,"id":"Example-2.10","reflabel":"Example","cls":"Example"},{"title":"De Morgan’s Laws","refnum":"2.11","reftag":"2.11","file":"index.tex","label":"Proposition","autoid":"Proposition-2.11","neu":true,"id":"de-morgans-laws","reflabel":"Proposition","cls":"Proposition"},{"title":"Equivalence relation","refnum":"2.12","reftag":"2.12","neu":true,"label":"Definition","autoid":"Definition-2.12","cls":"Definition","reflabel":"Definition","id":"equivalence-relation-1","file":"index.tex"},{"title":"","refnum":"2.17","reftag":"2.17","neu":true,"label":"Definition","autoid":"Definition-2.17","cls":"Definition","reflabel":"Definition","id":"Definition-2.17","file":"index.tex"},{"title":"Partial order","refnum":"2.18","reftag":"2.18","file":"index.tex","label":"Definition","autoid":"Definition-2.18","neu":true,"id":"partial-order","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"2.19","reftag":"2.19","neu":true,"label":"Example","autoid":"Example-2.19","cls":"Example","reflabel":"Example","id":"Example-2.19","file":"index.tex"},{"title":"Geometric interpretation of \\(|x|\\)","refnum":"2.22","reftag":"2.22","neu":true,"label":"Remark","autoid":"Remark-2.22","cls":"Remark","reflabel":"Remark","id":"geometric-interpretation-of-x","file":"index.tex"},{"title":"Geometric interpretation of \\(|x|\\)","refnum":"2.23","reftag":"2.23","neu":true,"label":"Remark","autoid":"Remark-2.23","cls":"Remark","reflabel":"Remark","id":"geometric-interpretation-of-x","file":"index.tex"},{"title":"","refnum":"2.33","reftag":"2.33","file":"index.tex","label":"Lemma","autoid":"Lemma-id-lemma-absolute-value","neu":true,"id":"lemma-absolute-value","reflabel":"Lemma","cls":"Lemma"},{"title":"Proof of Lemma 2.30","refnum":"??","reftag":"","neu":true,"label":"Proof","autoid":"Proof*-2.2","cls":"Proof","reflabel":"Proof","id":"proof-of-lemma","file":"index.tex"},{"title":"","refnum":"2.25","reftag":"2.25","neu":true,"label":"Lemma","autoid":"Lemma-2.25","cls":"Lemma","reflabel":"Lemma","id":"Lemma-2.25","file":"index.tex"},{"title":"Triangle inequality","refnum":"2.26","reftag":"2.26","neu":true,"label":"Theorem","autoid":"Theorem-2.26","cls":"Theorem","reflabel":"Theorem","id":"theorem-triangle-inequality","file":"index.tex"},{"title":"Proof of Lemma 2.33","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-2.3","neu":true,"id":"proof-of-lemma","reflabel":"Proof","cls":"Proof"},{"title":"Geometric meaning of triangle inequality","refnum":"2.27","reftag":"2.27","neu":true,"label":"Remark","autoid":"Remark-2.27","cls":"Remark","reflabel":"Remark","id":"geometric-meaning-of-triangle-inequality","file":"index.tex"},{"title":"Geometric interpretation of \\(|x|\\)","refnum":"2.28","reftag":"2.28","neu":true,"label":"Remark","autoid":"Remark-2.28","cls":"Remark","reflabel":"Remark","id":"geometric-interpretation-of-x","file":"index.tex"},{"title":"","refnum":"2.15","reftag":"2.15","neu":true,"label":"Example","autoid":"Example-2.15","cls":"Example","reflabel":"Example","id":"Example-2.15","file":"index.tex"},{"title":"Order relation","refnum":"2.16","reftag":"2.16","neu":true,"label":"Definition","autoid":"Definition-2.16","cls":"Definition","reflabel":"Definition","id":"order-relation-1","file":"index.tex"},{"title":"","refnum":"2.17","reftag":"2.17","file":"index.tex","label":"Example","autoid":"Example-2.17","neu":true,"id":"Example-2.17","reflabel":"Example","cls":"Example"},{"title":"Total order","refnum":"2.19","reftag":"2.19","file":"index.tex","label":"Definition","autoid":"Definition-2.19","neu":true,"id":"total-order","reflabel":"Definition","cls":"Definition"},{"title":"Set inclusion is a partial order","refnum":"2.20","reftag":"2.20","file":"index.tex","label":"Example","autoid":"Example-2.20","neu":true,"id":"set-inclusion-is-a-partial-order","reflabel":"Example","cls":"Example"},{"title":"","refnum":"2.21","reftag":"2.21","neu":true,"label":"Remark","autoid":"Remark-2.21","cls":"Remark","reflabel":"Remark","id":"Remark-2.21","file":"index.tex"},{"title":"Geometric interpretation of \\(|x-y|\\)","refnum":"2.24","reftag":"2.24","neu":true,"label":"Remark","autoid":"Remark-2.24","cls":"Remark","reflabel":"Remark","id":"geometric-interpretation-of-x-y","file":"index.tex"},{"title":"","refnum":"2.26","reftag":"2.26","neu":true,"label":"Lemma","autoid":"Lemma-2.26","cls":"Lemma","reflabel":"Lemma","id":"Lemma-2.26","file":"index.tex"},{"title":"Triangle inequality","refnum":"2.27","reftag":"2.27","neu":true,"label":"Theorem","autoid":"Theorem-2.27","cls":"Theorem","reflabel":"Theorem","id":"theorem-triangle-inequality","file":"index.tex"},{"title":"","refnum":"2.29","reftag":"2.29","file":"index.tex","label":"Remark","autoid":"Remark-2.29","neu":true,"id":"Remark-2.29","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"2.38","reftag":"2.38","file":"index.tex","label":"Proposition","autoid":"Proposition-id-proposition-easy","neu":true,"id":"proposition-easy","reflabel":"Proposition","cls":"Proposition"},{"title":"Proof of Theorem 2.32","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-2.4","neu":true,"id":"proof-of-theorem-1","reflabel":"Proof","cls":"Proof"},{"title":"Principle of Induction","refnum":"2.31","reftag":"2.31","neu":true,"label":"Axiom","autoid":"Axiom-2.31","cls":"Axiom","reflabel":"Axiom","id":"principle-of-induction","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Important","autoid":"Important*-2.5","cls":"Important","reflabel":"Important","id":"Important*-2.5","file":"index.tex"},{"title":"Geometric interpretation of \\(|x-y|\\)","refnum":"2.32","reftag":"2.32","file":"index.tex","label":"Remark","autoid":"Remark-2.32","neu":true,"id":"geometric-interpretation-of-x-y","reflabel":"Remark","cls":"Remark"},{"title":"Principle of Inducion - Alternative formulation","refnum":"2.33","reftag":"2.33","neu":true,"label":"Corollary","autoid":"Corollary-2.33","cls":"Corollary","reflabel":"Corollary","id":"principle-of-inducion---alternative-formulation","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Proof","autoid":"Proof*-2.6","cls":"Proof","reflabel":"Proof","id":"Proof*-2.6","file":"index.tex"},{"title":"Formula for summing first \\(n\\) natural numbers","refnum":"2.34","reftag":"2.34","neu":true,"label":"Example","autoid":"Example-2.34","cls":"Example","reflabel":"Example","id":"formula-for-summing-first-n-natural-numbers","file":"index.tex"},{"title":"Statements about sequences of numbers","refnum":"2.35","reftag":"2.35","neu":true,"label":"Example","autoid":"Example-2.35","cls":"Example","reflabel":"Example","id":"statements-about-sequences-of-numbers","file":"index.tex"},{"title":"","refnum":"6.1","reftag":"6.1","neu":true,"label":"Proposition","autoid":"Proposition-id-proposition-heron","cls":"Proposition","reflabel":"Proposition","id":"proposition-heron","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.1","neu":true,"id":"Proof*-4.1","reflabel":"Proof","cls":"Proof"},{"title":"Error estimate","refnum":"4.2","reftag":"4.2","neu":true,"label":"Proposition","autoid":"Proposition-4.2","cls":"Proposition","reflabel":"Proposition","id":"proposition-heron-error","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.2","neu":true,"id":"Proof*-4.2","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.3","reftag":"6.3","neu":true,"label":"Proposition","autoid":"Proposition-id-proposition-heron-error-exp","cls":"Proposition","reflabel":"Proposition","id":"proposition-heron-error-exp","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.3","neu":true,"id":"Proof*-4.3","reflabel":"Proof","cls":"Proof"},{"title":"Convergence of Heron’s Algorithm","refnum":"4.4","reftag":"4.4","neu":true,"label":"Theorem","autoid":"Theorem-4.4","cls":"Theorem","reflabel":"Theorem","id":"convergence-of-herons-algorithm","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Proof","autoid":"Proof*-4.4","cls":"Proof","reflabel":"Proof","id":"Proof*-4.4","file":"index.tex"},{"title":"Binary operation","refnum":"3.1","reftag":"3.1","file":"index.tex","label":"Definition","autoid":"Definition-3.1","neu":true,"id":"binary-operation","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"2.12","reftag":"2.12","file":"index.tex","label":"Remark","autoid":"Remark-2.12","neu":true,"id":"Remark-2.12","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"2.13","reftag":"2.13","file":"index.tex","label":"Example","autoid":"Example-2.13","neu":true,"id":"Example-2.13","reflabel":"Example","cls":"Example"},{"title":"Equivalence relation","refnum":"2.14","reftag":"2.14","file":"index.tex","label":"Definition","autoid":"Definition-2.14","neu":true,"id":"equivalence-relation-1","reflabel":"Definition","cls":"Definition"},{"title":"Inequality is a total order","refnum":"2.21","reftag":"2.21","file":"index.tex","label":"Example","autoid":"Example-2.21","neu":true,"id":"inequality-is-a-total-order","reflabel":"Example","cls":"Example"},{"title":"","refnum":"2.22","reftag":"2.22","file":"index.tex","label":"Notation","autoid":"Notation-2.22","neu":true,"id":"Notation-2.22","reflabel":"Notation","cls":"Notation"},{"title":"","refnum":"2.23","reftag":"2.23","file":"index.tex","label":"Definition","autoid":"Definition-2.23","neu":true,"id":"Definition-2.23","reflabel":"Definition","cls":"Definition"},{"title":"Functions","refnum":"2.24","reftag":"2.24","file":"index.tex","label":"Definition","autoid":"Definition-2.24","neu":true,"id":"definition-function","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-2.2","neu":true,"id":"Warning*-2.2","reflabel":"Warning","cls":"Warning"},{"title":"","refnum":"2.25","reftag":"2.25","file":"index.tex","label":"Example","autoid":"Example-2.25","neu":true,"id":"Example-2.25","reflabel":"Example","cls":"Example"},{"title":"","refnum":"2.26","reftag":"2.26","file":"index.tex","label":"Example","autoid":"Example-2.26","neu":true,"id":"Example-2.26","reflabel":"Example","cls":"Example"},{"title":"Absolute value","refnum":"2.27","reftag":"2.27","file":"index.tex","label":"Definition","autoid":"Definition-2.27","neu":true,"id":"absolute-value","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"2.28","reftag":"2.28","file":"index.tex","label":"Example","autoid":"Example-2.28","neu":true,"id":"Example-2.28","reflabel":"Example","cls":"Example"},{"title":"Geometric interpretation of \\(|x|\\)","refnum":"2.31","reftag":"2.31","file":"index.tex","label":"Remark","autoid":"Remark-2.31","neu":true,"id":"geometric-interpretation-of-x","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"2.34","reftag":"2.34","file":"index.tex","label":"Lemma","autoid":"Lemma-2.34","neu":true,"id":"Lemma-2.34","reflabel":"Lemma","cls":"Lemma"},{"title":"Triangle inequality","refnum":"2.35","reftag":"2.35","file":"index.tex","label":"Theorem","autoid":"Theorem-2.35","neu":true,"id":"theorem-triangle-inequality","reflabel":"Theorem","cls":"Theorem"},{"title":"Geometric meaning of triangle inequality","refnum":"2.36","reftag":"2.36","file":"index.tex","label":"Remark","autoid":"Remark-2.36","neu":true,"id":"geometric-meaning-of-triangle-inequality","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"2.37","reftag":"2.37","file":"index.tex","label":"Remark","autoid":"Remark-2.37","neu":true,"id":"Remark-2.37","reflabel":"Remark","cls":"Remark"},{"title":"of Proposition 2.38","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-2.5","neu":true,"id":"of-proposition","reflabel":"Proof","cls":"Proof"},{"title":"Principle of Induction","refnum":"2.39","reftag":"2.39","file":"index.tex","label":"Axiom","autoid":"Axiom-2.39","neu":true,"id":"principle-of-induction","reflabel":"Axiom","cls":"Axiom"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Important","autoid":"Important*-2.6","neu":true,"id":"Important*-2.6","reflabel":"Important","cls":"Important"},{"title":"","refnum":"2.40","reftag":"2.40","file":"index.tex","label":"Remark","autoid":"Remark-2.40","neu":true,"id":"Remark-2.40","reflabel":"Remark","cls":"Remark"},{"title":"Principle of Inducion - Alternative formulation","refnum":"2.41","reftag":"2.41","file":"index.tex","label":"Corollary","autoid":"Corollary-2.41","neu":true,"id":"principle-of-inducion---alternative-formulation","reflabel":"Corollary","cls":"Corollary"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-2.7","neu":true,"id":"Proof*-2.7","reflabel":"Proof","cls":"Proof"},{"title":"Formula for summing first \\(n\\) natural numbers","refnum":"2.42","reftag":"2.42","file":"index.tex","label":"Example","autoid":"Example-2.42","neu":true,"id":"formula-for-summing-first-n-natural-numbers","reflabel":"Example","cls":"Example"},{"title":"Statements about sequences of numbers","refnum":"2.43","reftag":"2.43","file":"index.tex","label":"Example","autoid":"Example-2.43","neu":true,"id":"statements-about-sequences-of-numbers","reflabel":"Example","cls":"Example"},{"title":"","refnum":"3.2","reftag":"3.2","neu":true,"label":"Definition","autoid":"Definition-3.2","cls":"Definition","reflabel":"Definition","id":"Definition-3.2","file":"index.tex"},{"title":"","refnum":"3.3","reftag":"3.3","neu":true,"label":"Definition","autoid":"Definition-3.3","cls":"Definition","reflabel":"Definition","id":"Definition-3.3","file":"index.tex"},{"title":"","refnum":"3.4","reftag":"3.4","neu":true,"label":"Example","autoid":"Example-3.4","cls":"Example","reflabel":"Example","id":"Example-3.4","file":"index.tex"},{"title":"","refnum":"3.5","reftag":"3.5","neu":true,"label":"Question","autoid":"Question-3.5","cls":"Question","reflabel":"Question","id":"Question-3.5","file":"index.tex"},{"title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.6","reftag":"3.6","neu":true,"label":"Theorem","autoid":"Theorem-3.6","cls":"Theorem","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.1","neu":true,"id":"Proof*-3.1","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"3.7","reftag":"3.7","neu":true,"label":"Remark","autoid":"Remark-3.7","cls":"Remark","reflabel":"Remark","id":"Remark-3.7","file":"index.tex"},{"title":"Subtraction and division","refnum":"3.8","reftag":"3.8","neu":true,"label":"Definition","autoid":"Definition-3.8","cls":"Definition","reflabel":"Definition","id":"subtraction-and-division","file":"index.tex"},{"title":"Subtraction and division","refnum":"3.9","reftag":"3.9","file":"index.tex","label":"Definition","autoid":"Definition-3.9","neu":true,"id":"subtraction-and-division","reflabel":"Definition","cls":"Definition"},{"title":"Partition of a set","refnum":"3.10","reftag":"3.10","neu":true,"label":"Definition","autoid":"Definition-3.10","cls":"Definition","reflabel":"Definition","id":"partition-of-a-set","file":"index.tex"},{"title":"","refnum":"3.11","reftag":"3.11","neu":true,"label":"Remark","autoid":"Remark-3.11","cls":"Remark","reflabel":"Remark","id":"Remark-3.11","file":"index.tex"},{"title":"","refnum":"2.26","reftag":"2.26","neu":true,"label":"Remark","autoid":"Remark-2.26","cls":"Remark","reflabel":"Remark","id":"Remark-2.26","file":"index.tex"},{"title":"","refnum":"2.31","reftag":"2.31","neu":true,"label":"Lemma","autoid":"Lemma-2.31","cls":"Lemma","reflabel":"Lemma","id":"Lemma-2.31","file":"index.tex"},{"title":"Triangle inequality","refnum":"2.32","reftag":"2.32","neu":true,"label":"Theorem","autoid":"Theorem-2.32","cls":"Theorem","reflabel":"Theorem","id":"theorem-triangle-inequality","file":"index.tex"},{"title":"Geometric meaning of triangle inequality","refnum":"2.33","reftag":"2.33","neu":true,"label":"Remark","autoid":"Remark-2.33","cls":"Remark","reflabel":"Remark","id":"geometric-meaning-of-triangle-inequality","file":"index.tex"},{"title":"","refnum":"2.34","reftag":"2.34","neu":true,"label":"Remark","autoid":"Remark-2.34","cls":"Remark","reflabel":"Remark","id":"Remark-2.34","file":"index.tex"},{"title":"Principle of Induction","refnum":"2.36","reftag":"2.36","neu":true,"label":"Axiom","autoid":"Axiom-2.36","cls":"Axiom","reflabel":"Axiom","id":"principle-of-induction","file":"index.tex"},{"title":"Principle of Inducion - Alternative formulation","refnum":"2.38","reftag":"2.38","neu":true,"label":"Corollary","autoid":"Corollary-2.38","cls":"Corollary","reflabel":"Corollary","id":"principle-of-inducion---alternative-formulation","file":"index.tex"},{"title":"Formula for summing first \\(n\\) natural numbers","refnum":"2.39","reftag":"2.39","neu":true,"label":"Example","autoid":"Example-2.39","cls":"Example","reflabel":"Example","id":"formula-for-summing-first-n-natural-numbers","file":"index.tex"},{"title":"Statements about sequences of numbers","refnum":"2.40","reftag":"2.40","neu":true,"label":"Example","autoid":"Example-2.40","cls":"Example","reflabel":"Example","id":"statements-about-sequences-of-numbers","file":"index.tex"},{"title":"Partition of a set","refnum":"2.1","reftag":"2.1","neu":true,"label":"Definition","autoid":"Definition-2.1","cls":"Definition","reflabel":"Definition","id":"partition-of-a-set","file":"index.tex"},{"title":"Cut of a set","refnum":"2.2","reftag":"2.2","neu":true,"label":"Definition","autoid":"Definition-2.2","cls":"Definition","reflabel":"Definition","id":"cut-of-a-set","file":"index.tex"},{"title":"Cut property","refnum":"2.3","reftag":"2.3","neu":true,"label":"Definition","autoid":"Definition-2.3","cls":"Definition","reflabel":"Definition","id":"cut-property-1","file":"index.tex"},{"title":"","refnum":"2.5","reftag":"2.5","neu":true,"label":"Question","autoid":"Question-2.5","cls":"Question","reflabel":"Question","id":"Question-2.5","file":"index.tex"},{"title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"2.6","reftag":"2.6","neu":true,"label":"Theorem","autoid":"Theorem-2.6","cls":"Theorem","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","file":"index.tex"},{"title":"Binary operation","refnum":"2.8","reftag":"2.8","neu":true,"label":"Definition","autoid":"Definition-2.8","cls":"Definition","reflabel":"Definition","id":"binary-operation","file":"index.tex"},{"title":"Field","refnum":"2.9","reftag":"2.9","neu":true,"label":"Definition","autoid":"Definition-2.9","cls":"Definition","reflabel":"Definition","id":"field","file":"index.tex"},{"title":"","refnum":"2.11","reftag":"2.11","neu":true,"label":"Remark","autoid":"Remark-2.11","cls":"Remark","reflabel":"Remark","id":"Remark-2.11","file":"index.tex"},{"title":"Error estimate","refnum":"3.2","reftag":"3.2","neu":true,"label":"Proposition","autoid":"Proposition-3.2","cls":"Proposition","reflabel":"Proposition","id":"proposition-heron-error","file":"index.tex"},{"title":"Proof of Theorem 3.20","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.2","neu":true,"id":"proof-of-theorem-2","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.3","neu":true,"id":"Proof*-3.3","reflabel":"Proof","cls":"Proof"},{"title":"Convergence of Heron’s Algorithm","refnum":"3.4","reftag":"3.4","neu":true,"label":"Theorem","autoid":"Theorem-3.4","cls":"Theorem","reflabel":"Theorem","id":"convergence-of-herons-algorithm","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Proof","autoid":"Proof*-3.4","cls":"Proof","reflabel":"Proof","id":"Proof*-3.4","file":"index.tex"},{"title":"of binary operation","refnum":"3.2","reftag":"3.2","neu":true,"label":"Example","autoid":"Example-3.2","cls":"Example","reflabel":"Example","id":"example-binary-operation","file":"index.tex"},{"title":"","refnum":"3.5","reftag":"3.5","file":"index.tex","label":"Example","autoid":"Example-id-example-binary-operation-2","neu":true,"id":"example-binary-operation-2","reflabel":"Example","cls":"Example"},{"title":"","refnum":"3.5","reftag":"3.5","neu":true,"label":"Example","autoid":"Example-3.5","cls":"Example","reflabel":"Example","id":"Example-3.5","file":"index.tex"},{"title":"Subtraction and division","refnum":"3.6","reftag":"3.6","neu":true,"label":"Definition","autoid":"Definition-3.6","cls":"Definition","reflabel":"Definition","id":"subtraction-and-division","file":"index.tex"},{"title":"","refnum":"3.7","reftag":"3.7","neu":true,"label":"Example","autoid":"Example-3.7","cls":"Example","reflabel":"Example","id":"Example-3.7","file":"index.tex"},{"title":"Properties of field operations","refnum":"3.9","reftag":"3.9","neu":true,"label":"Proposition","autoid":"Proposition-3.9","cls":"Proposition","reflabel":"Proposition","id":"properties-of-field-operations","file":"index.tex"},{"title":"Uniqueness of neutral elements and inverses","refnum":"3.10","reftag":"3.10","file":"index.tex","label":"Proposition","autoid":"Proposition-3.10","neu":true,"id":"uniqueness-of-neutral-elements-and-inverses","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"3.11","reftag":"3.11","neu":true,"label":"Theorem","autoid":"Theorem-3.11","cls":"Theorem","reflabel":"Theorem","id":"Theorem-3.11","file":"index.tex"},{"title":"Cut of a set","refnum":"3.12","reftag":"3.12","neu":true,"label":"Definition","autoid":"Definition-3.12","cls":"Definition","reflabel":"Definition","id":"cut-of-a-set","file":"index.tex"},{"title":"","refnum":"3.13","reftag":"3.13","file":"index.tex","label":"Definition","autoid":"Definition-3.13","neu":true,"id":"Definition-3.13","reflabel":"Definition","cls":"Definition"},{"title":"Cut of a set","refnum":"3.14","reftag":"3.14","neu":true,"label":"Definition","autoid":"Definition-3.14","cls":"Definition","reflabel":"Definition","id":"cut-of-a-set","file":"index.tex"},{"title":"","refnum":"3.15","reftag":"3.15","neu":true,"label":"Example","autoid":"Example-3.15","cls":"Example","reflabel":"Example","id":"Example-3.15","file":"index.tex"},{"title":"","refnum":"3.16","reftag":"3.16","neu":true,"label":"Question","autoid":"Question-3.16","cls":"Question","reflabel":"Question","id":"Question-3.16","file":"index.tex"},{"title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.17","reftag":"3.17","neu":true,"label":"Theorem","autoid":"Theorem-3.17","cls":"Theorem","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","file":"index.tex"},{"title":"","refnum":"3.18","reftag":"3.18","neu":true,"label":"Remark","autoid":"Remark-3.18","cls":"Remark","reflabel":"Remark","id":"Remark-3.18","file":"index.tex"},{"title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.19","reftag":"3.19","neu":true,"label":"Definition","autoid":"Definition-3.19","cls":"Definition","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","file":"index.tex"},{"title":"Partition of a set","refnum":"3.11","reftag":"3.11","neu":true,"label":"Definition","autoid":"Definition-3.11","cls":"Definition","reflabel":"Definition","id":"partition-of-a-set","file":"index.tex"},{"title":"","refnum":"3.14","reftag":"3.14","file":"index.tex","label":"Example","autoid":"Example-3.14","neu":true,"id":"Example-3.14","reflabel":"Example","cls":"Example"},{"title":"","refnum":"3.15","reftag":"3.15","neu":true,"label":"Question","autoid":"Question-3.15","cls":"Question","reflabel":"Question","id":"Question-3.15","file":"index.tex"},{"title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.16","reftag":"3.16","neu":true,"label":"Theorem","autoid":"Theorem-3.16","cls":"Theorem","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","file":"index.tex"},{"title":"","refnum":"3.17","reftag":"3.17","neu":true,"label":"Remark","autoid":"Remark-3.17","cls":"Remark","reflabel":"Remark","id":"Remark-3.17","file":"index.tex"},{"title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.18","reftag":"3.18","neu":true,"label":"Definition","autoid":"Definition-3.18","cls":"Definition","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","file":"index.tex"},{"title":"","refnum":"3.9","reftag":"3.9","neu":true,"label":"Theorem","autoid":"Theorem-3.9","cls":"Theorem","reflabel":"Theorem","id":"Theorem-3.9","file":"index.tex"},{"title":"","refnum":"3.13","reftag":"3.13","neu":true,"label":"Example","autoid":"Example-3.13","cls":"Example","reflabel":"Example","id":"Example-3.13","file":"index.tex"},{"title":"","refnum":"3.14","reftag":"3.14","neu":true,"label":"Question","autoid":"Question-3.14","cls":"Question","reflabel":"Question","id":"Question-3.14","file":"index.tex"},{"title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.15","reftag":"3.15","neu":true,"label":"Theorem","autoid":"Theorem-3.15","cls":"Theorem","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","file":"index.tex"},{"title":"","refnum":"3.16","reftag":"3.16","neu":true,"label":"Remark","autoid":"Remark-3.16","cls":"Remark","reflabel":"Remark","id":"Remark-3.16","file":"index.tex"},{"title":"Cut property","refnum":"3.17","reftag":"3.17","file":"index.tex","label":"Definition","autoid":"Definition-3.17","neu":true,"id":"cut-property-1","reflabel":"Definition","cls":"Definition"},{"title":"Uniqueness of neutral elements and inverses","refnum":"3.7","reftag":"3.7","neu":true,"label":"Proposition","autoid":"Proposition-3.7","cls":"Proposition","reflabel":"Proposition","id":"uniqueness-of-neutral-elements-and-inverses","file":"index.tex"},{"title":"Uniqueness of neutral elements and inverses","refnum":"3.8","reftag":"3.8","neu":true,"label":"Proposition","autoid":"Proposition-3.8","cls":"Proposition","reflabel":"Proposition","id":"uniqueness-of-neutral-elements-and-inverses","file":"index.tex"},{"title":"Field","refnum":"3.5","reftag":"3.5","neu":true,"label":"Definition","autoid":"Definition-3.5","cls":"Definition","reflabel":"Definition","id":"field","file":"index.tex"},{"title":"","refnum":"3.6","reftag":"3.6","file":"index.tex","label":"Example","autoid":"Example-3.6","neu":true,"id":"Example-3.6","reflabel":"Example","cls":"Example"},{"title":"Field","refnum":"3.7","reftag":"3.7","file":"index.tex","label":"Definition","autoid":"Definition-3.7","neu":true,"id":"field","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.10","reftag":"3.10","neu":true,"label":"Theorem","autoid":"Theorem-3.10","cls":"Theorem","reflabel":"Theorem","id":"Theorem-3.10","file":"index.tex"},{"title":"of binary operation","refnum":"3.3","reftag":"3.3","file":"index.tex","label":"Example","autoid":"Example-3.3","neu":true,"id":"example-binary-operation","reflabel":"Example","cls":"Example"},{"title":"","refnum":"3.4","reftag":"3.4","file":"index.tex","label":"Definition","autoid":"Definition-3.4","neu":true,"id":"Definition-3.4","reflabel":"Definition","cls":"Definition"},{"title":"of binary operation","refnum":"3.1","reftag":"3.1","neu":true,"label":"Example","autoid":"Example-3.1","cls":"Example","reflabel":"Example","id":"example-binary-operation","file":"index.tex"},{"title":"","refnum":"3.2","reftag":"3.2","file":"index.tex","label":"Notation","autoid":"Notation-3.2","neu":true,"id":"Notation-3.2","reflabel":"Notation","cls":"Notation"},{"title":"","refnum":"3.8","reftag":"3.8","file":"index.tex","label":"Example","autoid":"Example-3.8","neu":true,"id":"Example-3.8","reflabel":"Example","cls":"Example"},{"title":"Properties of field operations","refnum":"3.11","reftag":"3.11","file":"index.tex","label":"Proposition","autoid":"Proposition-3.11","neu":true,"id":"properties-of-field-operations","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"3.12","reftag":"3.12","file":"index.tex","label":"Theorem","autoid":"Theorem-3.12","neu":true,"id":"Theorem-3.12","reflabel":"Theorem","cls":"Theorem"},{"title":"Partition of a set","refnum":"3.15","reftag":"3.15","file":"index.tex","label":"Definition","autoid":"Definition-3.15","neu":true,"id":"partition-of-a-set","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.16","reftag":"3.16","neu":true,"label":"Example","autoid":"Example-3.16","cls":"Example","reflabel":"Example","id":"Example-3.16","file":"index.tex"},{"title":"","refnum":"3.17","reftag":"3.17","neu":true,"label":"Question","autoid":"Question-3.17","cls":"Question","reflabel":"Question","id":"Question-3.17","file":"index.tex"},{"title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.18","reftag":"3.18","neu":true,"label":"Theorem","autoid":"Theorem-3.18","cls":"Theorem","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","file":"index.tex"},{"title":"","refnum":"3.19","reftag":"3.19","neu":true,"label":"Remark","autoid":"Remark-3.19","cls":"Remark","reflabel":"Remark","id":"Remark-3.19","file":"index.tex"},{"title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.20","reftag":"3.20","neu":true,"label":"Definition","autoid":"Definition-3.20","cls":"Definition","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","file":"index.tex"},{"title":"Cut of a set","refnum":"3.16","reftag":"3.16","file":"index.tex","label":"Definition","autoid":"Definition-3.16","neu":true,"id":"cut-of-a-set","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.18","reftag":"3.18","file":"index.tex","label":"Example","autoid":"Example-3.18","neu":true,"id":"Example-3.18","reflabel":"Example","cls":"Example"},{"title":"","refnum":"3.19","reftag":"3.19","file":"index.tex","label":"Question","autoid":"Question-3.19","neu":true,"id":"Question-3.19","reflabel":"Question","cls":"Question"},{"title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.20","reftag":"3.20","file":"index.tex","label":"Theorem","autoid":"Theorem-3.20","neu":true,"id":"theorem-Q-cut","reflabel":"Theorem","cls":"Theorem"},{"title":"Ideas for the proof of Theorem 3.20","refnum":"3.21","reftag":"3.21","file":"index.tex","label":"Remark","autoid":"Remark-3.21","neu":true,"id":"remark-idea-proof-cut","reflabel":"Remark","cls":"Remark"},{"title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.22","reftag":"3.22","neu":true,"label":"Definition","autoid":"Definition-3.22","cls":"Definition","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","file":"index.tex"},{"title":"","refnum":"3.23","reftag":"3.23","neu":true,"label":"Notation","autoid":"Notation-3.23","cls":"Notation","reflabel":"Notation","id":"Notation-3.23","file":"index.tex"},{"title":"","refnum":"3.24","reftag":"3.24","neu":true,"label":"Remark","autoid":"Remark-3.24","cls":"Remark","reflabel":"Remark","id":"Remark-3.24","file":"index.tex"},{"title":"","refnum":"3.25","reftag":"3.25","neu":true,"label":"Remark","autoid":"Remark-3.25","cls":"Remark","reflabel":"Remark","id":"Remark-3.25","file":"index.tex"},{"title":"Intuition about supremum and infimum","refnum":"3.22","reftag":"3.22","neu":true,"label":"Example","autoid":"Example-3.22","cls":"Example","reflabel":"Example","id":"intuition-about-supremum-and-infimum","file":"index.tex"},{"title":"Upper bound and bounded above","refnum":"3.23","reftag":"3.23","neu":true,"label":"Definition","autoid":"Definition-3.23","cls":"Definition","reflabel":"Definition","id":"upper-bound-and-bounded-above","file":"index.tex"},{"title":"Upper bound and bounded above","refnum":"3.24","reftag":"3.24","file":"index.tex","label":"Definition","autoid":"Definition-3.24","neu":true,"id":"upper-bound-and-bounded-above","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.25","reftag":"3.25","neu":true,"label":"Notation","autoid":"Notation-3.25","cls":"Notation","reflabel":"Notation","id":"Notation-3.25","file":"index.tex"},{"title":"","refnum":"3.26","reftag":"3.26","neu":true,"label":"Proposition","autoid":"Proposition-3.26","cls":"Proposition","reflabel":"Proposition","id":"Proposition-3.26","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-3.4","neu":true,"id":"Warning*-3.4","reflabel":"Warning","cls":"Warning"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-3.5","neu":true,"id":"Warning*-3.5","reflabel":"Warning","cls":"Warning"},{"title":"Maximum","refnum":"3.27","reftag":"3.27","neu":true,"label":"Definition","autoid":"Definition-3.27","cls":"Definition","reflabel":"Definition","id":"maximum","file":"index.tex"},{"title":"","refnum":"3.28","reftag":"3.28","file":"index.tex","label":"Proposition","autoid":"Proposition-3.28","neu":true,"id":"Proposition-3.28","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.6","neu":true,"id":"Proof*-3.6","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-3.7","neu":true,"id":"Warning*-3.7","reflabel":"Warning","cls":"Warning"},{"title":"Maximum","refnum":"3.29","reftag":"3.29","file":"index.tex","label":"Definition","autoid":"Definition-3.29","neu":true,"id":"maximum","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.30","reftag":"3.30","file":"index.tex","label":"Proposition","autoid":"Proposition-3.30","neu":true,"id":"Proposition-3.30","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-3.8","neu":true,"id":"Warning*-3.8","reflabel":"Warning","cls":"Warning"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-3.9","neu":true,"id":"Warning*-3.9","reflabel":"Warning","cls":"Warning"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-3.10","neu":true,"id":"Warning*-3.10","reflabel":"Warning","cls":"Warning"},{"title":"","refnum":"3.31","reftag":"3.31","neu":true,"label":"Proposition","autoid":"Proposition-3.31","cls":"Proposition","reflabel":"Proposition","id":"Proposition-3.31","file":"index.tex"},{"title":"","refnum":"3.32","reftag":"3.32","file":"index.tex","label":"Proposition","autoid":"Proposition-3.32","neu":true,"id":"Proposition-3.32","reflabel":"Proposition","cls":"Proposition"},{"title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.33","reftag":"3.33","neu":true,"label":"Definition","autoid":"Definition-3.33","cls":"Definition","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","file":"index.tex"},{"title":"","refnum":"3.34","reftag":"3.34","neu":true,"label":"Notation","autoid":"Notation-3.34","cls":"Notation","reflabel":"Notation","id":"Notation-3.34","file":"index.tex"},{"title":"","refnum":"3.35","reftag":"3.35","neu":true,"label":"Remark","autoid":"Remark-3.35","cls":"Remark","reflabel":"Remark","id":"Remark-3.35","file":"index.tex"},{"title":"","refnum":"3.36","reftag":"3.36","neu":true,"label":"Remark","autoid":"Remark-3.36","cls":"Remark","reflabel":"Remark","id":"Remark-3.36","file":"index.tex"},{"title":"","refnum":"3.26","reftag":"3.26","neu":true,"label":"Remark","autoid":"Remark-3.26","cls":"Remark","reflabel":"Remark","id":"Remark-3.26","file":"index.tex"},{"title":"","refnum":"3.27","reftag":"3.27","neu":true,"label":"Proposition","autoid":"Proposition-3.27","cls":"Proposition","reflabel":"Proposition","id":"Proposition-3.27","file":"index.tex"},{"title":"Maximum","refnum":"3.28","reftag":"3.28","neu":true,"label":"Definition","autoid":"Definition-3.28","cls":"Definition","reflabel":"Definition","id":"maximum","file":"index.tex"},{"title":"","refnum":"3.29","reftag":"3.29","neu":true,"label":"Proposition","autoid":"Proposition-3.29","cls":"Proposition","reflabel":"Proposition","id":"Proposition-3.29","file":"index.tex"},{"title":"Upper bound, bounded below, infimum, minimum","refnum":"3.30","reftag":"3.30","neu":true,"label":"Definition","autoid":"Definition-3.30","cls":"Definition","reflabel":"Definition","id":"upper-bound-bounded-below-infimum-minimum","file":"index.tex"},{"title":"","refnum":"3.33","reftag":"3.33","file":"index.tex","label":"Proposition","autoid":"Proposition-3.33","neu":true,"id":"Proposition-3.33","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"3.34","reftag":"3.34","neu":true,"label":"Question","autoid":"Question-3.34","cls":"Question","reflabel":"Question","id":"Question-3.34","file":"index.tex"},{"title":"","refnum":"3.36","reftag":"3.36","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-Q-not-complete","neu":true,"id":"theorem-Q-not-complete","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.11","neu":true,"id":"Proof*-3.11","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"3.36","reftag":"3.36","neu":true,"label":"Question","autoid":"Question-3.36","cls":"Question","reflabel":"Question","id":"Question-3.36","file":"index.tex"},{"title":"Completeness","refnum":"3.37","reftag":"3.37","neu":true,"label":"Definition","autoid":"Definition-3.37","cls":"Definition","reflabel":"Definition","id":"completeness-1","file":"index.tex"},{"title":"","refnum":"3.38","reftag":"3.38","neu":true,"label":"Notation","autoid":"Notation-3.38","cls":"Notation","reflabel":"Notation","id":"Notation-3.38","file":"index.tex"},{"title":"","refnum":"3.39","reftag":"3.39","neu":true,"label":"Proposition","autoid":"Proposition-3.39","cls":"Proposition","reflabel":"Proposition","id":"Proposition-3.39","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.12","neu":true,"id":"Proof*-3.12","reflabel":"Proof","cls":"Proof"},{"title":"Equivalence of Cut Property and Completeness","refnum":"3.40","reftag":"3.40","neu":true,"label":"Theorem","autoid":"Theorem-3.40","cls":"Theorem","reflabel":"Theorem","id":"theorem-cut-complete","file":"index.tex"},{"title":"Proof of Theorem 3.41","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.13","neu":true,"id":"proof-of-theorem-3","reflabel":"Proof","cls":"Proof"},{"title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.41","reftag":"3.41","neu":true,"label":"Definition","autoid":"Definition-3.41","cls":"Definition","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","file":"index.tex"},{"title":"Ideas for proving Theorem 3.41","refnum":"3.42","reftag":"3.42","file":"index.tex","label":"Remark","autoid":"Remark-3.42","neu":true,"id":"ideas-for-proving-theorem","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"3.43","reftag":"3.43","neu":true,"label":"Notation","autoid":"Notation-3.43","cls":"Notation","reflabel":"Notation","id":"Notation-3.43","file":"index.tex"},{"title":"","refnum":"3.44","reftag":"3.44","file":"index.tex","label":"Remark","autoid":"Remark-3.44","neu":true,"id":"Remark-3.44","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Important","autoid":"Important*-3.14","neu":true,"id":"Important*-3.14","reflabel":"Important","cls":"Important"},{"title":"","refnum":"3.45","reftag":"3.45","neu":true,"label":"Question","autoid":"Question-3.45","cls":"Question","reflabel":"Question","id":"Question-3.45","file":"index.tex"},{"title":"","refnum":"3.22","reftag":"3.22","file":"index.tex","label":"Remark","autoid":"Remark-3.22","neu":true,"id":"Remark-3.22","reflabel":"Remark","cls":"Remark"},{"title":"Intuition about supremum and infimum","refnum":"3.23","reftag":"3.23","file":"index.tex","label":"Example","autoid":"Example-3.23","neu":true,"id":"intuition-about-supremum-and-infimum","reflabel":"Example","cls":"Example"},{"title":"Supremum","refnum":"3.25","reftag":"3.25","file":"index.tex","label":"Definition","autoid":"Definition-3.25","neu":true,"id":"supremum","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.26","reftag":"3.26","file":"index.tex","label":"Notation","autoid":"Notation-3.26","neu":true,"id":"Notation-3.26","reflabel":"Notation","cls":"Notation"},{"title":"","refnum":"3.27","reftag":"3.27","file":"index.tex","label":"Remark","autoid":"Remark-3.27","neu":true,"id":"Remark-3.27","reflabel":"Remark","cls":"Remark"},{"title":"Upper bound, bounded below, infimum, minimum","refnum":"3.31","reftag":"3.31","file":"index.tex","label":"Definition","autoid":"Definition-3.31","neu":true,"id":"upper-bound-bounded-below-infimum-minimum","reflabel":"Definition","cls":"Definition"},{"title":"Relationship between sup and inf","refnum":"3.34","reftag":"3.34","file":"index.tex","label":"Proposition","autoid":"Proposition-3.34","neu":true,"id":"proposition-inf-sup","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"3.35","reftag":"3.35","file":"index.tex","label":"Question","autoid":"Question-3.35","neu":true,"id":"Question-3.35","reflabel":"Question","cls":"Question"},{"title":"","refnum":"3.37","reftag":"3.37","file":"index.tex","label":"Question","autoid":"Question-3.37","neu":true,"id":"Question-3.37","reflabel":"Question","cls":"Question"},{"title":"Completeness","refnum":"3.38","reftag":"3.38","file":"index.tex","label":"Definition","autoid":"Definition-3.38","neu":true,"id":"completeness-1","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.39","reftag":"3.39","file":"index.tex","label":"Notation","autoid":"Notation-3.39","neu":true,"id":"Notation-3.39","reflabel":"Notation","cls":"Notation"},{"title":"","refnum":"3.40","reftag":"3.40","file":"index.tex","label":"Proposition","autoid":"Proposition-3.40","neu":true,"id":"Proposition-3.40","reflabel":"Proposition","cls":"Proposition"},{"title":"Equivalence of Cut Property and Completeness","refnum":"3.41","reftag":"3.41","file":"index.tex","label":"Theorem","autoid":"Theorem-3.41","neu":true,"id":"theorem-cut-complete","reflabel":"Theorem","cls":"Theorem"},{"title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.42","reftag":"3.42","neu":true,"label":"Definition","autoid":"Definition-3.42","cls":"Definition","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","file":"index.tex"},{"title":"","refnum":"3.43","reftag":"3.43","neu":true,"label":"Remark","autoid":"Remark-3.43","cls":"Remark","reflabel":"Remark","id":"Remark-3.43","file":"index.tex"},{"title":"","refnum":"3.44","reftag":"3.44","neu":true,"label":"Notation","autoid":"Notation-3.44","cls":"Notation","reflabel":"Notation","id":"Notation-3.44","file":"index.tex"},{"title":"","refnum":"3.45","reftag":"3.45","neu":true,"label":"Remark","autoid":"Remark-3.45","cls":"Remark","reflabel":"Remark","id":"Remark-3.45","file":"index.tex"},{"title":"","refnum":"3.46","reftag":"3.46","neu":true,"label":"Question","autoid":"Question-3.46","cls":"Question","reflabel":"Question","id":"Question-3.46","file":"index.tex"},{"title":"Proof of Theorem 6.8 (Long version)","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.1","neu":true,"id":"proof-of-theorem-long-version","reflabel":"Proof","cls":"Proof"},{"title":"Error estimate","refnum":"6.2","reftag":"6.2","neu":true,"label":"Proposition","autoid":"Proposition-6.2","cls":"Proposition","reflabel":"Proposition","id":"proposition-heron-error","file":"index.tex"},{"title":"Proof of Theorem 6.8 (Short version)","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.2","neu":true,"id":"proof-of-theorem-short-version","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.3","neu":true,"id":"Proof*-6.3","reflabel":"Proof","cls":"Proof"},{"title":"Convergence of Heron’s Algorithm","refnum":"6.4","reftag":"6.4","neu":true,"label":"Theorem","autoid":"Theorem-6.4","cls":"Theorem","reflabel":"Theorem","id":"convergence-of-herons-algorithm","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Proof","autoid":"Proof*-6.4","cls":"Proof","reflabel":"Proof","id":"Proof*-6.4","file":"index.tex"},{"title":"","refnum":"4.1","reftag":"4.1","file":"index.tex","label":"Remark","autoid":"Remark-4.1","neu":true,"id":"Remark-4.1","reflabel":"Remark","cls":"Remark"},{"title":"Archimedean Property","refnum":"4.2","reftag":"4.2","file":"index.tex","label":"Theorem","autoid":"Theorem-4.2","neu":true,"id":"theorem-archimedean","reflabel":"Theorem","cls":"Theorem"},{"title":"Archimedean Property (Alternative formulation)","refnum":"4.3","reftag":"4.3","file":"index.tex","label":"Theorem","autoid":"Theorem-4.3","neu":true,"id":"theorem-archimedean-alternative","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"4.4","reftag":"4.4","file":"index.tex","label":"Question","autoid":"Question-4.4","neu":true,"id":"Question-4.4","reflabel":"Question","cls":"Question"},{"title":"Nested Interval Property","refnum":"4.5","reftag":"4.5","file":"index.tex","label":"Theorem","autoid":"Theorem-4.5","neu":true,"id":"theorem-nested","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Important","autoid":"Important*-4.4","neu":true,"id":"Important*-4.4","reflabel":"Important","cls":"Important"},{"title":"","refnum":"4.6","reftag":"4.6","file":"index.tex","label":"Example","autoid":"Example-id-example-nested-open","neu":true,"id":"example-nested-open","reflabel":"Example","cls":"Example"},{"title":"Characterization of Supremum","refnum":"4.7","reftag":"4.7","file":"index.tex","label":"Proposition","autoid":"Proposition-4.7","neu":true,"id":"proposition-supremum-characterization","reflabel":"Proposition","cls":"Proposition"},{"title":"Proof of Proposition 4.16","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.5","neu":true,"id":"proof-of-proposition","reflabel":"Proof","cls":"Proof"},{"title":"Characterization of Infimum","refnum":"4.8","reftag":"4.8","file":"index.tex","label":"Proposition","autoid":"Proposition-4.8","neu":true,"id":"prop-supremum-infimum","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"4.9","reftag":"4.9","neu":true,"label":"Proposition","autoid":"Proposition-4.9","cls":"Proposition","reflabel":"Proposition","id":"Proposition-4.9","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.6","neu":true,"id":"Proof*-4.6","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"4.10","reftag":"4.10","neu":true,"label":"Proposition","autoid":"Proposition-4.10","cls":"Proposition","reflabel":"Proposition","id":"Proposition-4.10","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.7","neu":true,"id":"Proof*-4.7","reflabel":"Proof","cls":"Proof"},{"title":"Archimedean Property","refnum":"4.11","reftag":"4.11","neu":true,"label":"Theorem","autoid":"Theorem-4.11","cls":"Theorem","reflabel":"Theorem","id":"theorem-archimedean","file":"index.tex"},{"title":"","refnum":"4.12","reftag":"4.12","neu":true,"label":"Question","autoid":"Question-4.12","cls":"Question","reflabel":"Question","id":"Question-4.12","file":"index.tex"},{"title":"","refnum":"4.13","reftag":"4.13","neu":true,"label":"Corollary","autoid":"Corollary-4.13","cls":"Corollary","reflabel":"Corollary","id":"Corollary-4.13","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.8","neu":true,"id":"Proof*-4.8","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"4.9","reftag":"4.9","file":"index.tex","label":"Proposition","autoid":"Proposition-id-proposition-interval-inf-sup","neu":true,"id":"proposition-interval-inf-sup","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"4.10","reftag":"4.10","file":"index.tex","label":"Corollary","autoid":"Corollary-4.10","neu":true,"id":"Corollary-4.10","reflabel":"Corollary","cls":"Corollary"},{"title":"","refnum":"4.11","reftag":"4.11","file":"index.tex","label":"Corollary","autoid":"Corollary-4.11","neu":true,"id":"Corollary-4.11","reflabel":"Corollary","cls":"Corollary"},{"title":"","refnum":"4.12","reftag":"4.12","file":"index.tex","label":"Proposition","autoid":"Proposition-4.12","neu":true,"id":"Proposition-4.12","reflabel":"Proposition","cls":"Proposition"},{"title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)","refnum":"4.13","reftag":"4.13","neu":true,"label":"Theorem","autoid":"Theorem-4.13","cls":"Theorem","reflabel":"Theorem","id":"theorem-density","file":"index.tex"},{"title":"","refnum":"4.14","reftag":"4.14","neu":true,"label":"Question","autoid":"Question-4.14","cls":"Question","reflabel":"Question","id":"Question-4.14","file":"index.tex"},{"title":"","refnum":"4.15","reftag":"4.15","neu":true,"label":"Corollary","autoid":"Corollary-4.15","cls":"Corollary","reflabel":"Corollary","id":"Corollary-4.15","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.9","neu":true,"id":"Proof*-4.9","reflabel":"Proof","cls":"Proof"},{"title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.43","reftag":"3.43","file":"index.tex","label":"Definition","autoid":"Definition-3.43","neu":true,"id":"definition-R","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.45","reftag":"3.45","file":"index.tex","label":"Notation","autoid":"Notation-3.45","neu":true,"id":"Notation-3.45","reflabel":"Notation","cls":"Notation"},{"title":"","refnum":"3.46","reftag":"3.46","file":"index.tex","label":"Remark","autoid":"Remark-3.46","neu":true,"id":"Remark-3.46","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"3.47","reftag":"3.47","file":"index.tex","label":"Question","autoid":"Question-3.47","neu":true,"id":"Question-3.47","reflabel":"Question","cls":"Question"},{"title":"Inductive set","refnum":"4.1","reftag":"4.1","neu":true,"label":"Definition","autoid":"Definition-4.1","cls":"Definition","reflabel":"Definition","id":"inductive-set","file":"index.tex"},{"title":"","refnum":"4.2","reftag":"4.2","neu":true,"label":"Example","autoid":"Example-4.2","cls":"Example","reflabel":"Example","id":"Example-4.2","file":"index.tex"},{"title":"","refnum":"4.3","reftag":"4.3","neu":true,"label":"Proposition","autoid":"Proposition-4.3","cls":"Proposition","reflabel":"Proposition","id":"Proposition-4.3","file":"index.tex"},{"title":"Set of Natural Numbers","refnum":"4.4","reftag":"4.4","neu":true,"label":"Definition","autoid":"Definition-4.4","cls":"Definition","reflabel":"Definition","id":"set-of-natural-numbers","file":"index.tex"},{"title":"","refnum":"4.6","reftag":"4.6","neu":true,"label":"Theorem","autoid":"Theorem-4.6","cls":"Theorem","reflabel":"Theorem","id":"Theorem-4.6","file":"index.tex"},{"title":"","refnum":"4.7","reftag":"4.7","neu":true,"label":"Notation","autoid":"Notation-4.7","cls":"Notation","reflabel":"Notation","id":"Notation-4.7","file":"index.tex"},{"title":"Principle of Induction","refnum":"4.8","reftag":"4.8","neu":true,"label":"Theorem","autoid":"Theorem-4.8","cls":"Theorem","reflabel":"Theorem","id":"principle-of-induction-1","file":"index.tex"},{"title":"","refnum":"4.9","reftag":"4.9","neu":true,"label":"Notation","autoid":"Notation-4.9","cls":"Notation","reflabel":"Notation","id":"Notation-4.9","file":"index.tex"},{"title":"","refnum":"4.10","reftag":"4.10","neu":true,"label":"Remark","autoid":"Remark-4.10","cls":"Remark","reflabel":"Remark","id":"Remark-4.10","file":"index.tex"},{"title":"Archimedean Property (Alternative formulation)","refnum":"4.12","reftag":"4.12","neu":true,"label":"Theorem","autoid":"Theorem-4.12","cls":"Theorem","reflabel":"Theorem","id":"theorem-archimedean-alternative","file":"index.tex"},{"title":"","refnum":"4.13","reftag":"4.13","neu":true,"label":"Question","autoid":"Question-4.13","cls":"Question","reflabel":"Question","id":"Question-4.13","file":"index.tex"},{"title":"Nested Interval Property","refnum":"4.14","reftag":"4.14","neu":true,"label":"Theorem","autoid":"Theorem-4.14","cls":"Theorem","reflabel":"Theorem","id":"theorem-nested","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Important","autoid":"Important*-4.8","cls":"Important","reflabel":"Important","id":"Important*-4.8","file":"index.tex"},{"title":"Characterization of Supremum","refnum":"4.16","reftag":"4.16","neu":true,"label":"Proposition","autoid":"Proposition-4.16","cls":"Proposition","reflabel":"Proposition","id":"proposition-supremum-characterization","file":"index.tex"},{"title":"Characterization of Infimum","refnum":"4.17","reftag":"4.17","neu":true,"label":"Proposition","autoid":"Proposition-4.17","cls":"Proposition","reflabel":"Proposition","id":"prop-supremum-infimum","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.10","neu":true,"id":"Proof*-4.10","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"4.19","reftag":"4.19","neu":true,"label":"Corollary","autoid":"Corollary-4.19","cls":"Corollary","reflabel":"Corollary","id":"Corollary-4.19","file":"index.tex"},{"title":"Proof of Theorem 4.19","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.11","neu":true,"id":"proof-of-theorem-4","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"4.20","reftag":"4.20","neu":true,"label":"Corollary","autoid":"Corollary-4.20","cls":"Corollary","reflabel":"Corollary","id":"Corollary-4.20","file":"index.tex"},{"title":"","refnum":"4.21","reftag":"4.21","neu":true,"label":"Proposition","autoid":"Proposition-4.21","cls":"Proposition","reflabel":"Proposition","id":"Proposition-4.21","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.12","neu":true,"id":"Proof*-4.12","reflabel":"Proof","cls":"Proof"},{"title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)","refnum":"4.22","reftag":"4.22","neu":true,"label":"Theorem","autoid":"Theorem-4.22","cls":"Theorem","reflabel":"Theorem","id":"theorem-density","file":"index.tex"},{"title":"","refnum":"4.23","reftag":"4.23","neu":true,"label":"Question","autoid":"Question-4.23","cls":"Question","reflabel":"Question","id":"Question-4.23","file":"index.tex"},{"title":"","refnum":"4.24","reftag":"4.24","neu":true,"label":"Corollary","autoid":"Corollary-4.24","cls":"Corollary","reflabel":"Corollary","id":"Corollary-4.24","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.13","neu":true,"id":"Proof*-4.13","reflabel":"Proof","cls":"Proof"},{"title":"Inductive set","refnum":"3.48","reftag":"3.48","file":"index.tex","label":"Definition","autoid":"Definition-3.48","neu":true,"id":"inductive-set","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.49","reftag":"3.49","file":"index.tex","label":"Example","autoid":"Example-3.49","neu":true,"id":"Example-3.49","reflabel":"Example","cls":"Example"},{"title":"","refnum":"3.50","reftag":"3.50","file":"index.tex","label":"Proposition","autoid":"Proposition-3.50","neu":true,"id":"Proposition-3.50","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.15","neu":true,"id":"Proof*-3.15","reflabel":"Proof","cls":"Proof"},{"title":"Set of Natural Numbers","refnum":"3.51","reftag":"3.51","file":"index.tex","label":"Definition","autoid":"Definition-3.51","neu":true,"id":"definition-natural-numbers","reflabel":"Definition","cls":"Definition"},{"title":"\\({\\mathbb{N}}_{\\mathbb{R}}\\) is the smallest inductive subset of \\(\\mathbb{R}\\)","refnum":"3.52","reftag":"3.52","neu":true,"label":"Theorem","autoid":"Theorem-3.52","cls":"Theorem","reflabel":"Theorem","id":"theorem-smallest-inductive","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.16","neu":true,"id":"Proof*-3.16","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"3.53","reftag":"3.53","neu":true,"label":"Theorem","autoid":"Theorem-3.53","cls":"Theorem","reflabel":"Theorem","id":"Theorem-3.53","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.17","neu":true,"id":"Proof*-3.17","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"3.54","reftag":"3.54","file":"index.tex","label":"Notation","autoid":"Notation-3.54","neu":true,"id":"Notation-3.54","reflabel":"Notation","cls":"Notation"},{"title":"Principle of Induction","refnum":"3.55","reftag":"3.55","file":"index.tex","label":"Theorem","autoid":"Theorem-3.55","neu":true,"id":"theorem-induction-new","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.18","neu":true,"id":"Proof*-3.18","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"3.56","reftag":"3.56","neu":true,"label":"Theorem","autoid":"Theorem-3.56","cls":"Theorem","reflabel":"Theorem","id":"Theorem-3.56","file":"index.tex"},{"title":"","refnum":"3.57","reftag":"3.57","file":"index.tex","label":"Theorem","autoid":"Theorem-3.57","neu":true,"id":"Theorem-3.57","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"3.58","reftag":"3.58","neu":true,"label":"Notation","autoid":"Notation-3.58","cls":"Notation","reflabel":"Notation","id":"Notation-3.58","file":"index.tex"},{"title":"","refnum":"3.56","reftag":"3.56","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-N-closed","neu":true,"id":"theorem-N-closed","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.19","neu":true,"id":"Proof*-3.19","reflabel":"Proof","cls":"Proof"},{"title":"Set of Integers","refnum":"3.58","reftag":"3.58","file":"index.tex","label":"Definition","autoid":"Definition-3.58","neu":true,"id":"set-of-integers","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.59","reftag":"3.59","neu":true,"label":"Theorem","autoid":"Theorem-3.59","cls":"Theorem","reflabel":"Theorem","id":"Theorem-3.59","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.20","neu":true,"id":"Proof*-3.20","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"3.60","reftag":"3.60","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-Z-closed","neu":true,"id":"theorem-Z-closed","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"3.61","reftag":"3.61","neu":true,"label":"Theorem","autoid":"Theorem-3.61","cls":"Theorem","reflabel":"Theorem","id":"Theorem-3.61","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.21","neu":true,"id":"Proof*-3.21","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"3.62","reftag":"3.62","neu":true,"label":"Notation","autoid":"Notation-3.62","cls":"Notation","reflabel":"Notation","id":"Notation-3.62","file":"index.tex"},{"title":"","refnum":"3.53","reftag":"3.53","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-n-1","neu":true,"id":"theorem-n-1","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"3.59","reftag":"3.59","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-equivalent-Z","neu":true,"id":"theorem-equivalent-Z","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"3.61","reftag":"3.61","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-Z-axioms","neu":true,"id":"theorem-Z-axioms","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"3.62","reftag":"3.62","file":"index.tex","label":"Remark","autoid":"Remark-id-remark-Z-axioms","neu":true,"id":"remark-Z-axioms","reflabel":"Remark","cls":"Remark"},{"title":"Set of Rational Numbers","refnum":"3.63","reftag":"3.63","file":"index.tex","label":"Definition","autoid":"Definition-3.63","neu":true,"id":"set-of-rational-numbers","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"3.64","reftag":"3.64","file":"index.tex","label":"Theorem","autoid":"Theorem-3.64","neu":true,"id":"Theorem-3.64","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-3.22","neu":true,"id":"Proof*-3.22","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"3.65","reftag":"3.65","file":"index.tex","label":"Theorem","autoid":"Theorem-3.65","neu":true,"id":"Theorem-3.65","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"3.66","reftag":"3.66","file":"index.tex","label":"Notation","autoid":"Notation-3.66","neu":true,"id":"Notation-3.66","reflabel":"Notation","cls":"Notation"},{"title":"Dense set","refnum":"4.13","reftag":"4.13","file":"index.tex","label":"Definition","autoid":"Definition-4.13","neu":true,"id":"dense-set","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"4.14","reftag":"4.14","file":"index.tex","label":"Remark","autoid":"Remark-4.14","neu":true,"id":"Remark-4.14","reflabel":"Remark","cls":"Remark"},{"title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)","refnum":"4.15","reftag":"4.15","file":"index.tex","label":"Theorem","autoid":"Theorem-4.15","neu":true,"id":"theorem-density","reflabel":"Theorem","cls":"Theorem"},{"title":"Irrational numbers","refnum":"4.16","reftag":"4.16","file":"index.tex","label":"Definition","autoid":"Definition-4.16","neu":true,"id":"irrational-numbers","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"4.17","reftag":"4.17","file":"index.tex","label":"Question","autoid":"Question-4.17","neu":true,"id":"Question-4.17","reflabel":"Question","cls":"Question"},{"title":"","refnum":"4.18","reftag":"4.18","file":"index.tex","label":"Corollary","autoid":"Corollary-4.18","neu":true,"id":"Corollary-4.18","reflabel":"Corollary","cls":"Corollary"},{"title":"Existence of \\(k\\)-th roots","refnum":"4.19","reftag":"4.19","file":"index.tex","label":"Theorem","autoid":"Theorem-4.19","neu":true,"id":"theorem_existence_root","reflabel":"Theorem","cls":"Theorem"},{"title":"\\(k\\)-th root of a number","refnum":"4.20","reftag":"4.20","file":"index.tex","label":"Definition","autoid":"Definition-4.20","neu":true,"id":"k-th-root-of-a-number","reflabel":"Definition","cls":"Definition"},{"title":"Bijective function","refnum":"4.21","reftag":"4.21","file":"index.tex","label":"Definition","autoid":"Definition-4.21","neu":true,"id":"bijective-function","reflabel":"Definition","cls":"Definition"},{"title":"Injectivity","refnum":"4.22","reftag":"4.22","file":"index.tex","label":"Example","autoid":"Example-4.22","neu":true,"id":"injectivity","reflabel":"Example","cls":"Example"},{"title":"Surjectivity","refnum":"4.23","reftag":"4.23","file":"index.tex","label":"Example","autoid":"Example-4.23","neu":true,"id":"surjectivity","reflabel":"Example","cls":"Example"},{"title":"Bijectivity","refnum":"4.24","reftag":"4.24","file":"index.tex","label":"Example","autoid":"Example-4.24","neu":true,"id":"bijectivity","reflabel":"Example","cls":"Example"},{"title":"Cardinality, finite, countable, uncountable","refnum":"4.25","reftag":"4.25","file":"index.tex","label":"Definition","autoid":"Definition-4.25","neu":true,"id":"cardinality-finite-countable-uncountable","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"4.26","reftag":"4.26","neu":true,"label":"Example","autoid":"Example-4.26","cls":"Example","reflabel":"Example","id":"Example-4.26","file":"index.tex"},{"title":"","refnum":"4.26","reftag":"4.26","file":"index.tex","label":"Question","autoid":"Question-4.26","neu":true,"id":"Question-4.26","reflabel":"Question","cls":"Question"},{"title":"","refnum":"4.27","reftag":"4.27","file":"index.tex","label":"Proposition","autoid":"Proposition-id-proposition-countable-subset","neu":true,"id":"proposition-countable-subset","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"4.28","reftag":"4.28","file":"index.tex","label":"Example","autoid":"Example-4.28","neu":true,"id":"Example-4.28","reflabel":"Example","cls":"Example"},{"title":"\\(\\mathbb{R}\\) is uncountable","refnum":"4.29","reftag":"4.29","neu":true,"label":"Theorem","autoid":"Theorem-4.29","cls":"Theorem","reflabel":"Theorem","id":"mathbbr-is-uncountable","file":"index.tex"},{"title":"","refnum":"4.29","reftag":"4.29","file":"index.tex","label":"Proposition","autoid":"Proposition-id-proposition-countable-union","neu":true,"id":"proposition-countable-union","reflabel":"Proposition","cls":"Proposition"},{"title":"\\(\\mathbb{Q}\\) is countable","refnum":"4.30","reftag":"4.30","file":"index.tex","label":"Theorem","autoid":"Theorem-4.30","neu":true,"id":"theorem-Q-countable","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.14","neu":true,"id":"Proof*-4.14","reflabel":"Proof","cls":"Proof"},{"title":"\\(\\mathbb{R}\\) is uncountable","refnum":"4.31","reftag":"4.31","file":"index.tex","label":"Theorem","autoid":"Theorem-4.31","neu":true,"id":"theorem-R-uncountable","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.15","neu":true,"id":"Proof*-4.15","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"4.32","reftag":"4.32","file":"index.tex","label":"Theorem","autoid":"Theorem-4.32","neu":true,"id":"Theorem-4.32","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-4.16","neu":true,"id":"Proof*-4.16","reflabel":"Proof","cls":"Proof"},{"title":"\\({\\mathbb{N}}_{\\mathbb{R}}\\) is the smallest inductive subset of \\(\\mathbb{R}\\)","refnum":"3.52","reftag":"3.52","file":"index.tex","label":"Proposition","autoid":"Proposition-3.52","neu":true,"id":"proposition-smallest-inductive","reflabel":"Proposition","cls":"Proposition"},{"title":"Complex Numbers","refnum":"5.1","reftag":"5.1","neu":true,"label":"Definition","autoid":"Definition-5.1","cls":"Definition","reflabel":"Definition","id":"complex-numbers-1","file":"index.tex"},{"title":"Complex Numbers","refnum":"5.2","reftag":"5.2","file":"index.tex","label":"Definition","autoid":"Definition-5.2","neu":true,"id":"complex-numbers-1","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"5.3","reftag":"5.3","file":"index.tex","label":"Definition","autoid":"Definition-5.3","neu":true,"id":"Definition-5.3","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"5.4","reftag":"5.4","neu":true,"label":"Notation","autoid":"Notation-5.4","cls":"Notation","reflabel":"Notation","id":"Notation-5.4","file":"index.tex"},{"title":"Multiplication in \\(\\mathbb{C}\\)","refnum":"5.5","reftag":"5.5","neu":true,"label":"Definition","autoid":"Definition-5.5","cls":"Definition","reflabel":"Definition","id":"multiplication-in-mathbbc","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Important","autoid":"Important*-5.1","neu":true,"id":"Important*-5.1","reflabel":"Important","cls":"Important"},{"title":"","refnum":"5.8","reftag":"5.8","file":"index.tex","label":"Remark","autoid":"Remark-id-remark-complex-i","neu":true,"id":"remark-complex-i","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"5.7","reftag":"5.7","neu":true,"label":"Example","autoid":"Example-5.7","cls":"Example","reflabel":"Example","id":"Example-5.7","file":"index.tex"},{"title":"Additive inverse in \\(\\mathbb{C}\\)","refnum":"5.8","reftag":"5.8","neu":true,"label":"Proposition","autoid":"Proposition-5.8","cls":"Proposition","reflabel":"Proposition","id":"additive-inverse-in-mathbbc","file":"index.tex"},{"title":"Additive inverse in \\(\\mathbb{C}\\)","refnum":"5.9","reftag":"5.9","neu":true,"label":"Proposition","autoid":"Proposition-5.9","cls":"Proposition","reflabel":"Proposition","id":"proposition-C-additive-inverse","file":"index.tex"},{"title":"Formal calculation for multiplication in \\(\\mathbb{C}\\)","refnum":"5.5","reftag":"5.5","neu":true,"label":"Remark","autoid":"Remark-5.5","cls":"Remark","reflabel":"Remark","id":"remark-formal-multiplication","file":"index.tex"},{"title":"Multiplication in \\(\\mathbb{C}\\)","refnum":"5.6","reftag":"5.6","neu":true,"label":"Definition","autoid":"Definition-5.6","cls":"Definition","reflabel":"Definition","id":"definition-multiplication-C","file":"index.tex"},{"title":"","refnum":"5.8","reftag":"5.8","neu":true,"label":"Example","autoid":"Example-5.8","cls":"Example","reflabel":"Example","id":"Example-5.8","file":"index.tex"},{"title":"Formal calculation for multiplicative inverse","refnum":"5.10","reftag":"5.10","neu":true,"label":"Remark","autoid":"Remark-5.10","cls":"Remark","reflabel":"Remark","id":"remark-formal-inverse","file":"index.tex"},{"title":"Multiplicative inverse in \\(\\mathbb{C}\\)","refnum":"5.11","reftag":"5.11","neu":true,"label":"Proposition","autoid":"Proposition-5.11","cls":"Proposition","reflabel":"Proposition","id":"proposition-C-multiplicative-inverse","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.2","neu":true,"id":"Proof*-5.2","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Important","autoid":"Important*-5.3","neu":true,"id":"Important*-5.3","reflabel":"Important","cls":"Important"},{"title":"","refnum":"5.12","reftag":"5.12","neu":true,"label":"Example","autoid":"Example-5.12","cls":"Example","reflabel":"Example","id":"Example-5.12","file":"index.tex"},{"title":"","refnum":"5.13","reftag":"5.13","neu":true,"label":"Theorem","autoid":"Theorem-5.13","cls":"Theorem","reflabel":"Theorem","id":"Theorem-5.13","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.4","neu":true,"id":"Proof*-5.4","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"5.14","reftag":"5.14","neu":true,"label":"Example","autoid":"Example-5.14","cls":"Example","reflabel":"Example","id":"Example-5.14","file":"index.tex"},{"title":"","refnum":"5.16","reftag":"5.16","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-C-order","neu":true,"id":"theorem-C-order","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.5","neu":true,"id":"Proof*-5.5","reflabel":"Proof","cls":"Proof"},{"title":"Complex conjugate","refnum":"5.16","reftag":"5.16","neu":true,"label":"Definition","autoid":"Definition-5.16","cls":"Definition","reflabel":"Definition","id":"complex-conjugate","file":"index.tex"},{"title":"","refnum":"5.17","reftag":"5.17","neu":true,"label":"Example","autoid":"Example-5.17","cls":"Example","reflabel":"Example","id":"Example-5.17","file":"index.tex"},{"title":"","refnum":"5.18","reftag":"5.18","neu":true,"label":"Theorem","autoid":"Theorem-5.18","cls":"Theorem","reflabel":"Theorem","id":"Theorem-5.18","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.6","neu":true,"id":"Proof*-5.6","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"5.19","reftag":"5.19","neu":true,"label":"Example","autoid":"Example-5.19","cls":"Example","reflabel":"Example","id":"Example-5.19","file":"index.tex"},{"title":"Modulus","refnum":"5.20","reftag":"5.20","neu":true,"label":"Definition","autoid":"Definition-5.20","cls":"Definition","reflabel":"Definition","id":"modulus","file":"index.tex"},{"title":"Modulus of Real numbers","refnum":"5.21","reftag":"5.21","neu":true,"label":"Remark","autoid":"Remark-5.21","cls":"Remark","reflabel":"Remark","id":"modulus-of-real-numbers","file":"index.tex"},{"title":"Distance in \\(\\mathbb{C}\\)","refnum":"5.22","reftag":"5.22","neu":true,"label":"Definition","autoid":"Definition-5.22","cls":"Definition","reflabel":"Definition","id":"distance-in-mathbbc","file":"index.tex"},{"title":"","refnum":"5.23","reftag":"5.23","neu":true,"label":"Theorem","autoid":"Theorem-5.23","cls":"Theorem","reflabel":"Theorem","id":"Theorem-5.23","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.7","neu":true,"id":"Proof*-5.7","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"5.24","reftag":"5.24","neu":true,"label":"Example","autoid":"Example-5.24","cls":"Example","reflabel":"Example","id":"Example-5.24","file":"index.tex"},{"title":"","refnum":"5.25","reftag":"5.25","neu":true,"label":"Theorem","autoid":"Theorem-5.25","cls":"Theorem","reflabel":"Theorem","id":"Theorem-5.25","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.8","neu":true,"id":"Proof*-5.8","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"5.26","reftag":"5.26","file":"index.tex","label":"Theorem","autoid":"Theorem-5.26","neu":true,"id":"Theorem-5.26","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.9","neu":true,"id":"Proof*-5.9","reflabel":"Proof","cls":"Proof"},{"title":"Geometric interpretation of triangle inequality","refnum":"5.27","reftag":"5.27","neu":true,"label":"Remark","autoid":"Remark-5.27","cls":"Remark","reflabel":"Remark","id":"geometric-interpretation-of-triangle-inequality","file":"index.tex"},{"title":"Argument","refnum":"5.28","reftag":"5.28","neu":true,"label":"Definition","autoid":"Definition-5.28","cls":"Definition","reflabel":"Definition","id":"argument","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-5.10","neu":true,"id":"Warning*-5.10","reflabel":"Warning","cls":"Warning"},{"title":"Principal Value","refnum":"5.29","reftag":"5.29","neu":true,"label":"Remark","autoid":"Remark-5.29","cls":"Remark","reflabel":"Remark","id":"principal-value","file":"index.tex"},{"title":"","refnum":"5.30","reftag":"5.30","neu":true,"label":"Example","autoid":"Example-5.30","cls":"Example","reflabel":"Example","id":"Example-5.30","file":"index.tex"},{"title":"Polar coordinates","refnum":"5.31","reftag":"5.31","neu":true,"label":"Theorem","autoid":"Theorem-5.31","cls":"Theorem","reflabel":"Theorem","id":"theorem-polar-coordinates","file":"index.tex"},{"title":"Trigonometric form","refnum":"5.32","reftag":"5.32","neu":true,"label":"Definition","autoid":"Definition-5.32","cls":"Definition","reflabel":"Definition","id":"trigonometric-form","file":"index.tex"},{"title":"","refnum":"5.33","reftag":"5.33","neu":true,"label":"Example","autoid":"Example-5.33","cls":"Example","reflabel":"Example","id":"Example-5.33","file":"index.tex"},{"title":"Computing \\(\\arg(z)\\)","refnum":"5.34","reftag":"5.34","neu":true,"label":"Corollary","autoid":"Corollary-5.34","cls":"Corollary","reflabel":"Corollary","id":"corollary-arg","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.11","neu":true,"id":"Proof*-5.11","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"5.35","reftag":"5.35","neu":true,"label":"Example","autoid":"Example-5.35","cls":"Example","reflabel":"Example","id":"Example-5.35","file":"index.tex"},{"title":"","refnum":"5.34","reftag":"5.34","file":"index.tex","label":"Example","autoid":"Example-id-example-trigonometric-form","neu":true,"id":"example-trigonometric-form","reflabel":"Example","cls":"Example"},{"title":"Euler’s identity","refnum":"5.36","reftag":"5.36","neu":true,"label":"Theorem","autoid":"Theorem-5.36","cls":"Theorem","reflabel":"Theorem","id":"theorem-euler-identity","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.12","neu":true,"id":"Proof*-5.12","reflabel":"Proof","cls":"Proof"},{"title":"Euler’s identity","refnum":"5.37","reftag":"5.37","file":"index.tex","label":"Theorem","autoid":"Theorem-5.37","neu":true,"id":"theorem-euler-identity","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.13","neu":true,"id":"Proof*-5.13","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"5.38","reftag":"5.38","file":"index.tex","label":"Theorem","autoid":"Theorem-5.38","neu":true,"id":"Theorem-5.38","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.14","neu":true,"id":"Proof*-5.14","reflabel":"Proof","cls":"Proof"},{"title":"Exponential form","refnum":"5.39","reftag":"5.39","neu":true,"label":"Definition","autoid":"Definition-5.39","cls":"Definition","reflabel":"Definition","id":"exponential-form-1","file":"index.tex"},{"title":"","refnum":"5.41","reftag":"5.41","file":"index.tex","label":"Example","autoid":"Example-id-example-exponential-form","neu":true,"id":"example-exponential-form","reflabel":"Example","cls":"Example"},{"title":"Periodicity of exponential","refnum":"5.41","reftag":"5.41","neu":true,"label":"Remark","autoid":"Remark-5.41","cls":"Remark","reflabel":"Remark","id":"periodicity-of-exponential","file":"index.tex"},{"title":"","refnum":"5.42","reftag":"5.42","neu":true,"label":"Example","autoid":"Example-5.42","cls":"Example","reflabel":"Example","id":"Example-5.42","file":"index.tex"},{"title":"","refnum":"5.43","reftag":"5.43","neu":true,"label":"Example","autoid":"Example-5.43","cls":"Example","reflabel":"Example","id":"Example-5.43","file":"index.tex"},{"title":"","refnum":"5.1","reftag":"5.1","file":"index.tex","label":"Question","autoid":"Question-5.1","neu":true,"id":"Question-5.1","reflabel":"Question","cls":"Question"},{"title":"Addition in \\(\\mathbb{C}\\)","refnum":"5.4","reftag":"5.4","file":"index.tex","label":"Definition","autoid":"Definition-5.4","neu":true,"id":"definition-addition-C","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"5.5","reftag":"5.5","file":"index.tex","label":"Notation","autoid":"Notation-5.5","neu":true,"id":"Notation-5.5","reflabel":"Notation","cls":"Notation"},{"title":"Formal calculation for multiplication in \\(\\mathbb{C}\\)","refnum":"5.6","reftag":"5.6","file":"index.tex","label":"Remark","autoid":"Remark-5.6","neu":true,"id":"remark-formal-multiplication","reflabel":"Remark","cls":"Remark"},{"title":"Multiplication in \\(\\mathbb{C}\\)","refnum":"5.7","reftag":"5.7","file":"index.tex","label":"Definition","autoid":"Definition-5.7","neu":true,"id":"definition-multiplication-C","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"5.9","reftag":"5.9","file":"index.tex","label":"Example","autoid":"Example-5.9","neu":true,"id":"Example-5.9","reflabel":"Example","cls":"Example"},{"title":"Additive inverse in \\(\\mathbb{C}\\)","refnum":"5.10","reftag":"5.10","file":"index.tex","label":"Proposition","autoid":"Proposition-5.10","neu":true,"id":"proposition-C-additive-inverse","reflabel":"Proposition","cls":"Proposition"},{"title":"Formal calculation for multiplicative inverse","refnum":"5.11","reftag":"5.11","file":"index.tex","label":"Remark","autoid":"Remark-5.11","neu":true,"id":"remark-formal-inverse","reflabel":"Remark","cls":"Remark"},{"title":"Multiplicative inverse in \\(\\mathbb{C}\\)","refnum":"5.12","reftag":"5.12","file":"index.tex","label":"Proposition","autoid":"Proposition-5.12","neu":true,"id":"proposition-C-multiplicative-inverse","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"5.13","reftag":"5.13","file":"index.tex","label":"Example","autoid":"Example-5.13","neu":true,"id":"Example-5.13","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.14","reftag":"5.14","file":"index.tex","label":"Theorem","autoid":"Theorem-5.14","neu":true,"id":"Theorem-5.14","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"5.15","reftag":"5.15","file":"index.tex","label":"Example","autoid":"Example-5.15","neu":true,"id":"Example-5.15","reflabel":"Example","cls":"Example"},{"title":"Complex conjugate","refnum":"5.17","reftag":"5.17","file":"index.tex","label":"Definition","autoid":"Definition-5.17","neu":true,"id":"complex-conjugate","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"5.18","reftag":"5.18","file":"index.tex","label":"Example","autoid":"Example-5.18","neu":true,"id":"Example-5.18","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.19","reftag":"5.19","file":"index.tex","label":"Theorem","autoid":"Theorem-5.19","neu":true,"id":"Theorem-5.19","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"5.20","reftag":"5.20","file":"index.tex","label":"Example","autoid":"Example-5.20","neu":true,"id":"Example-5.20","reflabel":"Example","cls":"Example"},{"title":"Modulus","refnum":"5.21","reftag":"5.21","file":"index.tex","label":"Definition","autoid":"Definition-5.21","neu":true,"id":"modulus","reflabel":"Definition","cls":"Definition"},{"title":"Modulus of Real numbers","refnum":"5.22","reftag":"5.22","file":"index.tex","label":"Remark","autoid":"Remark-5.22","neu":true,"id":"modulus-of-real-numbers","reflabel":"Remark","cls":"Remark"},{"title":"Distance in \\(\\mathbb{C}\\)","refnum":"5.23","reftag":"5.23","file":"index.tex","label":"Definition","autoid":"Definition-5.23","neu":true,"id":"distance-in-mathbbc","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"5.24","reftag":"5.24","file":"index.tex","label":"Theorem","autoid":"Theorem-5.24","neu":true,"id":"Theorem-5.24","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"5.25","reftag":"5.25","file":"index.tex","label":"Example","autoid":"Example-5.25","neu":true,"id":"Example-5.25","reflabel":"Example","cls":"Example"},{"title":"Triangle inequality in \\(\\mathbb{C}\\)","refnum":"5.27","reftag":"5.27","file":"index.tex","label":"Theorem","autoid":"Theorem-5.27","neu":true,"id":"triangle-inequality-in-mathbbc","reflabel":"Theorem","cls":"Theorem"},{"title":"Geometric interpretation of triangle inequality","refnum":"5.28","reftag":"5.28","file":"index.tex","label":"Remark","autoid":"Remark-5.28","neu":true,"id":"geometric-interpretation-of-triangle-inequality","reflabel":"Remark","cls":"Remark"},{"title":"Argument","refnum":"5.29","reftag":"5.29","file":"index.tex","label":"Definition","autoid":"Definition-5.29","neu":true,"id":"argument","reflabel":"Definition","cls":"Definition"},{"title":"Principal Value","refnum":"5.30","reftag":"5.30","file":"index.tex","label":"Remark","autoid":"Remark-5.30","neu":true,"id":"principal-value","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"5.31","reftag":"5.31","file":"index.tex","label":"Example","autoid":"Example-5.31","neu":true,"id":"Example-5.31","reflabel":"Example","cls":"Example"},{"title":"Polar coordinates","refnum":"5.32","reftag":"5.32","file":"index.tex","label":"Theorem","autoid":"Theorem-5.32","neu":true,"id":"theorem-polar-coordinates","reflabel":"Theorem","cls":"Theorem"},{"title":"Trigonometric form","refnum":"5.33","reftag":"5.33","file":"index.tex","label":"Definition","autoid":"Definition-5.33","neu":true,"id":"trigonometric-form","reflabel":"Definition","cls":"Definition"},{"title":"Computing \\(\\arg(z)\\)","refnum":"5.35","reftag":"5.35","file":"index.tex","label":"Corollary","autoid":"Corollary-5.35","neu":true,"id":"corollary-arg","reflabel":"Corollary","cls":"Corollary"},{"title":"","refnum":"5.36","reftag":"5.36","file":"index.tex","label":"Example","autoid":"Example-5.36","neu":true,"id":"Example-5.36","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.39","reftag":"5.39","file":"index.tex","label":"Theorem","autoid":"Theorem-5.39","neu":true,"id":"Theorem-5.39","reflabel":"Theorem","cls":"Theorem"},{"title":"Exponential form","refnum":"5.40","reftag":"5.40","file":"index.tex","label":"Definition","autoid":"Definition-5.40","neu":true,"id":"exponential-form-1","reflabel":"Definition","cls":"Definition"},{"title":"Periodicity of exponential","refnum":"5.42","reftag":"5.42","file":"index.tex","label":"Remark","autoid":"Remark-5.42","neu":true,"id":"periodicity-of-exponential","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"5.43","reftag":"5.43","file":"index.tex","label":"Proposition","autoid":"Proposition-id-proposition-complex-exponential","neu":true,"id":"proposition-complex-exponential","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"5.44","reftag":"5.44","file":"index.tex","label":"Example","autoid":"Example-5.44","neu":true,"id":"Example-5.44","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.45","reftag":"5.45","file":"index.tex","label":"Example","autoid":"Example-5.45","neu":true,"id":"Example-5.45","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.46","reftag":"5.46","file":"index.tex","label":"Question","autoid":"Question-5.46","neu":true,"id":"Question-5.46","reflabel":"Question","cls":"Question"},{"title":"Fundamental theorem of algebra","refnum":"5.47","reftag":"5.47","file":"index.tex","label":"Theorem","autoid":"Theorem-5.47","neu":true,"id":"theorem-fta","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"5.48","reftag":"5.48","file":"index.tex","label":"Example","autoid":"Example-5.48","neu":true,"id":"Example-5.48","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.49","reftag":"5.49","file":"index.tex","label":"Example","autoid":"Example-id-example-degree-4","neu":true,"id":"example-degree-4","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.50","reftag":"5.50","file":"index.tex","label":"Definition","autoid":"Definition-5.50","neu":true,"id":"Definition-5.50","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"5.51","reftag":"5.51","file":"index.tex","label":"Example","autoid":"Example-id-example-multiplicity","neu":true,"id":"example-multiplicity","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.52","reftag":"5.52","file":"index.tex","label":"Question","autoid":"Question-5.52","neu":true,"id":"Question-5.52","reflabel":"Question","cls":"Question"},{"title":"Abel-Ruffini","refnum":"5.53","reftag":"5.53","file":"index.tex","label":"Theorem","autoid":"Theorem-5.53","neu":true,"id":"theorem-abel-ruffini","reflabel":"Theorem","cls":"Theorem"},{"title":"Quadratic formula","refnum":"5.54","reftag":"5.54","file":"index.tex","label":"Proposition","autoid":"Proposition-5.54","neu":true,"id":"proposition-quadratic-formula","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"5.55","reftag":"5.55","file":"index.tex","label":"Example","autoid":"Example-5.55","neu":true,"id":"Example-5.55","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.56","reftag":"5.56","file":"index.tex","label":"Example","autoid":"Example-5.56","neu":true,"id":"Example-5.56","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.57","reftag":"5.57","file":"index.tex","label":"Example","autoid":"Example-5.57","neu":true,"id":"Example-5.57","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.58","reftag":"5.58","file":"index.tex","label":"Question","autoid":"Question-5.58","neu":true,"id":"Question-5.58","reflabel":"Question","cls":"Question"},{"title":"Generalization of quadratci formula","refnum":"5.59","reftag":"5.59","file":"index.tex","label":"Proposition","autoid":"Proposition-5.59","neu":true,"id":"proposition-quadratic-formula-C","reflabel":"Proposition","cls":"Proposition"},{"title":"","refnum":"5.60","reftag":"5.60","file":"index.tex","label":"Remark","autoid":"Remark-5.60","neu":true,"id":"Remark-5.60","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"5.61","reftag":"5.61","file":"index.tex","label":"Example","autoid":"Example-5.61","neu":true,"id":"Example-5.61","reflabel":"Example","cls":"Example"},{"title":"Polynomial equations of order \\(n=3,4\\)","refnum":"5.62","reftag":"5.62","file":"index.tex","label":"Remark","autoid":"Remark-5.62","neu":true,"id":"polynomial-equations-of-order-n34","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"5.63","reftag":"5.63","file":"index.tex","label":"Example","autoid":"Example-5.63","neu":true,"id":"Example-5.63","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.64","reftag":"5.64","file":"index.tex","label":"Example","autoid":"Example-5.64","neu":true,"id":"Example-5.64","reflabel":"Example","cls":"Example"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Problem","autoid":"Problem*-5.15","neu":true,"id":"Problem*-5.15","reflabel":"Problem","cls":"Problem"},{"title":"","refnum":"5.65","reftag":"5.65","file":"index.tex","label":"Question","autoid":"Question-5.65","neu":true,"id":"Question-5.65","reflabel":"Question","cls":"Question"},{"title":"","refnum":"5.66","reftag":"5.66","file":"index.tex","label":"Example","autoid":"Example-5.66","neu":true,"id":"Example-5.66","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.67","reftag":"5.67","file":"index.tex","label":"Theorem","autoid":"Theorem-5.67","neu":true,"id":"Theorem-5.67","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.16","neu":true,"id":"Proof*-5.16","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"5.68","reftag":"5.68","file":"index.tex","label":"Definition","autoid":"Definition-5.68","neu":true,"id":"Definition-5.68","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"5.69","reftag":"5.69","file":"index.tex","label":"Example","autoid":"Example-5.69","neu":true,"id":"Example-5.69","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.70","reftag":"5.70","file":"index.tex","label":"Example","autoid":"Example-5.70","neu":true,"id":"Example-5.70","reflabel":"Example","cls":"Example"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Problem","autoid":"Problem*-5.17","neu":true,"id":"Problem*-5.17","reflabel":"Problem","cls":"Problem"},{"title":"","refnum":"5.71","reftag":"5.71","file":"index.tex","label":"Theorem","autoid":"Theorem-5.71","neu":true,"id":"Theorem-5.71","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-5.18","neu":true,"id":"Proof*-5.18","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"5.72","reftag":"5.72","file":"index.tex","label":"Example","autoid":"Example-5.72","neu":true,"id":"Example-5.72","reflabel":"Example","cls":"Example"},{"title":"","refnum":"5.73","reftag":"5.73","file":"index.tex","label":"Example","autoid":"Example-5.73","neu":true,"id":"Example-5.73","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.1","reftag":"6.1","file":"index.tex","label":"Remark","autoid":"Remark-6.1","neu":true,"id":"Remark-6.1","reflabel":"Remark","cls":"Remark"},{"title":"Sequence of Real numbers","refnum":"6.2","reftag":"6.2","file":"index.tex","label":"Definition","autoid":"Definition-6.2","neu":true,"id":"sequence-of-real-numbers","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"6.3","reftag":"6.3","file":"index.tex","label":"Notation","autoid":"Notation-6.3","neu":true,"id":"Notation-6.3","reflabel":"Notation","cls":"Notation"},{"title":"","refnum":"6.4","reftag":"6.4","file":"index.tex","label":"Example","autoid":"Example-6.4","neu":true,"id":"Example-6.4","reflabel":"Example","cls":"Example"},{"title":"Convergent sequence","refnum":"6.5","reftag":"6.5","file":"index.tex","label":"Definition","autoid":"Definition-6.5","neu":true,"id":"definition-convergent-sequence","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"6.6","reftag":"6.6","neu":true,"label":"Remark","autoid":"Remark-6.6","cls":"Remark","reflabel":"Remark","id":"Remark-6.6","file":"index.tex"},{"title":"","refnum":"6.8","reftag":"6.8","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-one-over-n","neu":true,"id":"theorem-one-over-n","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"6.8","reftag":"6.8","neu":true,"label":"Theorem","autoid":"Theorem-6.8","cls":"Theorem","reflabel":"Theorem","id":"Theorem-6.8","file":"index.tex"},{"title":"","refnum":"6.9","reftag":"6.9","neu":true,"label":"Question","autoid":"Question-6.9","cls":"Question","reflabel":"Question","id":"Question-6.9","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Important","autoid":"Important*-6.4","neu":true,"id":"Important*-6.4","reflabel":"Important","cls":"Important"},{"title":"","refnum":"6.10","reftag":"6.10","neu":true,"label":"Example","autoid":"Example-6.10","cls":"Example","reflabel":"Example","id":"Example-6.10","file":"index.tex"},{"title":"Divergent sequence","refnum":"6.11","reftag":"6.11","neu":true,"label":"Definition","autoid":"Definition-6.11","cls":"Definition","reflabel":"Definition","id":"divergent-sequence","file":"index.tex"},{"title":"","refnum":"6.12","reftag":"6.12","neu":true,"label":"Remark","autoid":"Remark-6.12","cls":"Remark","reflabel":"Remark","id":"Remark-6.12","file":"index.tex"},{"title":"","refnum":"6.13","reftag":"6.13","neu":true,"label":"Theorem","autoid":"Theorem-6.13","cls":"Theorem","reflabel":"Theorem","id":"Theorem-6.13","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.5","neu":true,"id":"Proof*-6.5","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.14","reftag":"6.14","neu":true,"label":"Theorem","autoid":"Theorem-6.14","cls":"Theorem","reflabel":"Theorem","id":"Theorem-6.14","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.6","neu":true,"id":"Proof*-6.6","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.15","reftag":"6.15","neu":true,"label":"Example","autoid":"Example-6.15","cls":"Example","reflabel":"Example","id":"Example-6.15","file":"index.tex"},{"title":"Bounded sequence","refnum":"6.16","reftag":"6.16","neu":true,"label":"Definition","autoid":"Definition-6.16","cls":"Definition","reflabel":"Definition","id":"definition-bounded-sequence","file":"index.tex"},{"title":"","refnum":"6.17","reftag":"6.17","neu":true,"label":"Theorem","autoid":"Theorem-6.17","cls":"Theorem","reflabel":"Theorem","id":"Theorem-6.17","file":"index.tex"},{"title":"","refnum":"6.19","reftag":"6.19","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-convergent-bounded","neu":true,"id":"theorem-convergent-bounded","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.7","neu":true,"id":"Proof*-6.7","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.18","reftag":"6.18","neu":true,"label":"Example","autoid":"Example-6.18","cls":"Example","reflabel":"Example","id":"Example-6.18","file":"index.tex"},{"title":"","refnum":"6.22","reftag":"6.22","file":"index.tex","label":"Corollary","autoid":"Corollary-id-corollary-convergent-bounded","neu":true,"id":"corollary-convergent-bounded","reflabel":"Corollary","cls":"Corollary"},{"title":"","refnum":"6.20","reftag":"6.20","neu":true,"label":"Remark","autoid":"Remark-6.20","cls":"Remark","reflabel":"Remark","id":"Remark-6.20","file":"index.tex"},{"title":"","refnum":"6.21","reftag":"6.21","neu":true,"label":"Theorem","autoid":"Theorem-6.21","cls":"Theorem","reflabel":"Theorem","id":"Theorem-6.21","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.8","neu":true,"id":"Proof*-6.8","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.22","reftag":"6.22","neu":true,"label":"Theorem","autoid":"Theorem-6.22","cls":"Theorem","reflabel":"Theorem","id":"Theorem-6.22","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Proof","autoid":"Proof*-6.9","cls":"Proof","reflabel":"Proof","id":"Proof*-6.9","file":"index.tex"},{"title":"","refnum":"6.12","reftag":"6.12","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-constant-sequence","neu":true,"id":"theorem-constant-sequence","reflabel":"Theorem","cls":"Theorem"},{"title":"Divergent sequence","refnum":"6.12","reftag":"6.12","neu":true,"label":"Definition","autoid":"Definition-6.12","cls":"Definition","reflabel":"Definition","id":"divergent-sequence","file":"index.tex"},{"title":"","refnum":"6.13","reftag":"6.13","neu":true,"label":"Remark","autoid":"Remark-6.13","cls":"Remark","reflabel":"Remark","id":"Remark-6.13","file":"index.tex"},{"title":"Uniqueness of limit","refnum":"6.15","reftag":"6.15","neu":true,"label":"Theorem","autoid":"Theorem-6.15","cls":"Theorem","reflabel":"Theorem","id":"theorem-uniqueness-limit","file":"index.tex"},{"title":"","refnum":"6.16","reftag":"6.16","neu":true,"label":"Example","autoid":"Example-6.16","cls":"Example","reflabel":"Example","id":"Example-6.16","file":"index.tex"},{"title":"Bounded sequence","refnum":"6.17","reftag":"6.17","neu":true,"label":"Definition","autoid":"Definition-6.17","cls":"Definition","reflabel":"Definition","id":"definition-bounded-sequence","file":"index.tex"},{"title":"","refnum":"6.19","reftag":"6.19","neu":true,"label":"Example","autoid":"Example-6.19","cls":"Example","reflabel":"Example","id":"Example-6.19","file":"index.tex"},{"title":"","refnum":"6.21","reftag":"6.21","neu":true,"label":"Remark","autoid":"Remark-6.21","cls":"Remark","reflabel":"Remark","id":"Remark-6.21","file":"index.tex"},{"title":"","refnum":"6.23","reftag":"6.23","neu":true,"label":"Theorem","autoid":"Theorem-6.23","cls":"Theorem","reflabel":"Theorem","id":"Theorem-6.23","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.10","neu":true,"id":"Proof*-6.10","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.24","reftag":"6.24","file":"index.tex","label":"Theorem","autoid":"Theorem-6.24","neu":true,"id":"Theorem-6.24","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"6.27","reftag":"6.27","file":"index.tex","label":"Example","autoid":"Example-id-example-limit-ploynomial","neu":true,"id":"example-limit-ploynomial","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.26","reftag":"6.26","neu":true,"label":"Example","autoid":"Example-6.26","cls":"Example","reflabel":"Example","id":"Example-6.26","file":"index.tex"},{"title":"","refnum":"6.9","reftag":"6.9","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-one-over-np","neu":true,"id":"theorem-one-over-np","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Important","autoid":"Important*-6.11","cls":"Important","reflabel":"Important","id":"Important*-6.11","file":"index.tex"},{"title":"","refnum":"6.15","reftag":"6.15","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-1-minus-n","neu":true,"id":"theorem-1-minus-n","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-6.9","neu":true,"id":"Warning*-6.9","reflabel":"Warning","cls":"Warning"},{"title":"","refnum":"6.20","reftag":"6.20","file":"index.tex","label":"Example","autoid":"Example-6.20","neu":true,"id":"Example-6.20","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.22","reftag":"6.22","neu":true,"label":"Remark","autoid":"Remark-6.22","cls":"Remark","reflabel":"Remark","id":"Remark-6.22","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.11","neu":true,"id":"Proof*-6.11","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.25","reftag":"6.25","file":"index.tex","label":"Theorem","autoid":"Theorem-6.25","neu":true,"id":"Theorem-6.25","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Important","autoid":"Important*-6.12","cls":"Important","reflabel":"Important","id":"Important*-6.12","file":"index.tex"},{"title":"","refnum":"6.28","reftag":"6.28","file":"index.tex","label":"Example","autoid":"Example-id-example-algebra-of-limits-2","neu":true,"id":"example-algebra-of-limits-2","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.28","reftag":"6.28","neu":true,"label":"Example","autoid":"Example-6.28","cls":"Example","reflabel":"Example","id":"Example-6.28","file":"index.tex"},{"title":"","refnum":"??","reftag":"","neu":true,"label":"Warning","autoid":"Warning*-6.13","cls":"Warning","reflabel":"Warning","id":"Warning*-6.13","file":"index.tex"},{"title":"Proof of Theorem 6.25","refnum":"??","reftag":"","neu":true,"label":"Proof","autoid":"Proof*-6.14","cls":"Proof","reflabel":"Proof","id":"proof-of-theorem-5","file":"index.tex"},{"title":"","refnum":"6.29","reftag":"6.29","file":"index.tex","label":"Example","autoid":"Example-6.29","neu":true,"id":"Example-6.29","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.30","reftag":"6.30","file":"index.tex","label":"Example","autoid":"Example-6.30","neu":true,"id":"Example-6.30","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.31","reftag":"6.31","neu":true,"label":"Theorem","autoid":"Theorem-6.31","cls":"Theorem","reflabel":"Theorem","id":"Theorem-6.31","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.15","neu":true,"id":"Proof*-6.15","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.32","reftag":"6.32","neu":true,"label":"Example","autoid":"Example-6.32","cls":"Example","reflabel":"Example","id":"Example-6.32","file":"index.tex"},{"title":"","refnum":"6.33","reftag":"6.33","file":"index.tex","label":"Example","autoid":"Example-6.33","neu":true,"id":"Example-6.33","reflabel":"Example","cls":"Example"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.12","neu":true,"id":"Proof*-6.12","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Important","autoid":"Important*-6.13","neu":true,"id":"Important*-6.13","reflabel":"Important","cls":"Important"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-6.14","neu":true,"id":"Warning*-6.14","reflabel":"Warning","cls":"Warning"},{"title":"","refnum":"6.32","reftag":"6.32","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-square-root-limit","neu":true,"id":"theorem-square-root-limit","reflabel":"Theorem","cls":"Theorem"},{"title":"Squeeze theorem","refnum":"6.34","reftag":"6.34","neu":true,"label":"Theorem","autoid":"Theorem-6.34","cls":"Theorem","reflabel":"Theorem","id":"theorem-squeeze","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.16","neu":true,"id":"Proof*-6.16","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.35","reftag":"6.35","neu":true,"label":"Example","autoid":"Example-6.35","cls":"Example","reflabel":"Example","id":"Example-6.35","file":"index.tex"},{"title":"","refnum":"6.37","reftag":"6.37","file":"index.tex","label":"Example","autoid":"Example-id-example-squeeze","neu":true,"id":"example-squeeze","reflabel":"Example","cls":"Example"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-6.17","neu":true,"id":"Warning*-6.17","reflabel":"Warning","cls":"Warning"},{"title":"","refnum":"6.37","reftag":"6.37","neu":true,"label":"Example","autoid":"Example-6.37","cls":"Example","reflabel":"Example","id":"Example-6.37","file":"index.tex"},{"title":"","refnum":"6.38","reftag":"6.38","neu":true,"label":"Definition","autoid":"Definition-6.38","cls":"Definition","reflabel":"Definition","id":"Definition-6.38","file":"index.tex"},{"title":"Geometric sequence test","refnum":"6.39","reftag":"6.39","neu":true,"label":"Theorem","autoid":"Theorem-6.39","cls":"Theorem","reflabel":"Theorem","id":"theorem-geometric-sequence","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-6.18","neu":true,"id":"Warning*-6.18","reflabel":"Warning","cls":"Warning"},{"title":"Bernoulli’s inequality","refnum":"6.40","reftag":"6.40","neu":true,"label":"Lemma","autoid":"Lemma-6.40","cls":"Lemma","reflabel":"Lemma","id":"lemma-bernoulli","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.19","neu":true,"id":"Proof*-6.19","reflabel":"Proof","cls":"Proof"},{"title":"Proof of Theorem 6.40","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.20","neu":true,"id":"proof-of-theorem-5","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.41","reftag":"6.41","neu":true,"label":"Example","autoid":"Example-6.41","cls":"Example","reflabel":"Example","id":"Example-6.41","file":"index.tex"},{"title":"Ratio test","refnum":"6.42","reftag":"6.42","neu":true,"label":"Theorem","autoid":"Theorem-6.42","cls":"Theorem","reflabel":"Theorem","id":"theorem-ratio-test","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.21","neu":true,"id":"Proof*-6.21","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"6.43","reftag":"6.43","neu":true,"label":"Example","autoid":"Example-6.43","cls":"Example","reflabel":"Example","id":"Example-6.43","file":"index.tex"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Warning","autoid":"Warning*-6.22","neu":true,"id":"Warning*-6.22","reflabel":"Warning","cls":"Warning"},{"title":"","refnum":"6.44","reftag":"6.44","file":"index.tex","label":"Example","autoid":"Example-6.44","neu":true,"id":"Example-6.44","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.45","reftag":"6.45","file":"index.tex","label":"Example","autoid":"Example-6.45","neu":true,"id":"Example-6.45","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.46","reftag":"6.46","neu":true,"label":"Remark","autoid":"Remark-6.46","cls":"Remark","reflabel":"Remark","id":"Remark-6.46","file":"index.tex"},{"title":"","refnum":"6.6","reftag":"6.6","file":"index.tex","label":"Notation","autoid":"Notation-6.6","neu":true,"id":"Notation-6.6","reflabel":"Notation","cls":"Notation"},{"title":"","refnum":"6.7","reftag":"6.7","file":"index.tex","label":"Remark","autoid":"Remark-6.7","neu":true,"id":"Remark-6.7","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"6.10","reftag":"6.10","file":"index.tex","label":"Question","autoid":"Question-6.10","neu":true,"id":"Question-6.10","reflabel":"Question","cls":"Question"},{"title":"","refnum":"6.11","reftag":"6.11","file":"index.tex","label":"Example","autoid":"Example-6.11","neu":true,"id":"Example-6.11","reflabel":"Example","cls":"Example"},{"title":"Divergent sequence","refnum":"6.13","reftag":"6.13","file":"index.tex","label":"Definition","autoid":"Definition-6.13","neu":true,"id":"divergent-sequence","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"6.14","reftag":"6.14","file":"index.tex","label":"Remark","autoid":"Remark-6.14","neu":true,"id":"Remark-6.14","reflabel":"Remark","cls":"Remark"},{"title":"Uniqueness of limit","refnum":"6.16","reftag":"6.16","file":"index.tex","label":"Theorem","autoid":"Theorem-6.16","neu":true,"id":"theorem-uniqueness-limit","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"6.17","reftag":"6.17","file":"index.tex","label":"Example","autoid":"Example-6.17","neu":true,"id":"Example-6.17","reflabel":"Example","cls":"Example"},{"title":"Bounded sequence","refnum":"6.18","reftag":"6.18","file":"index.tex","label":"Definition","autoid":"Definition-6.18","neu":true,"id":"definition-bounded-sequence","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"6.21","reftag":"6.21","file":"index.tex","label":"Example","autoid":"Example-6.21","neu":true,"id":"Example-6.21","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.23","reftag":"6.23","file":"index.tex","label":"Remark","autoid":"Remark-6.23","neu":true,"id":"Remark-6.23","reflabel":"Remark","cls":"Remark"},{"title":"Algebra of limits","refnum":"6.26","reftag":"6.26","file":"index.tex","label":"Theorem","autoid":"Theorem-6.26","neu":true,"id":"theorem-algebra-limits","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"6.31","reftag":"6.31","file":"index.tex","label":"Example","autoid":"Example-6.31","neu":true,"id":"Example-6.31","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.34","reftag":"6.34","file":"index.tex","label":"Example","autoid":"Example-6.34","neu":true,"id":"Example-6.34","reflabel":"Example","cls":"Example"},{"title":"Squeeze theorem","refnum":"6.35","reftag":"6.35","file":"index.tex","label":"Theorem","autoid":"Theorem-6.35","neu":true,"id":"theorem-squeeze","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"6.36","reftag":"6.36","file":"index.tex","label":"Example","autoid":"Example-6.36","neu":true,"id":"Example-6.36","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.38","reftag":"6.38","file":"index.tex","label":"Example","autoid":"Example-6.38","neu":true,"id":"Example-6.38","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.39","reftag":"6.39","file":"index.tex","label":"Definition","autoid":"Definition-6.39","neu":true,"id":"Definition-6.39","reflabel":"Definition","cls":"Definition"},{"title":"Geometric Sequence Test","refnum":"6.40","reftag":"6.40","file":"index.tex","label":"Theorem","autoid":"Theorem-6.40","neu":true,"id":"theorem-geometric-sequence","reflabel":"Theorem","cls":"Theorem"},{"title":"Bernoulli’s inequality","refnum":"6.41","reftag":"6.41","file":"index.tex","label":"Lemma","autoid":"Lemma-6.41","neu":true,"id":"lemma-bernoulli","reflabel":"Lemma","cls":"Lemma"},{"title":"","refnum":"6.42","reftag":"6.42","file":"index.tex","label":"Example","autoid":"Example-6.42","neu":true,"id":"Example-6.42","reflabel":"Example","cls":"Example"},{"title":"Ratio Test","refnum":"6.43","reftag":"6.43","file":"index.tex","label":"Theorem","autoid":"Theorem-6.43","neu":true,"id":"theorem-ratio-test","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"6.46","reftag":"6.46","file":"index.tex","label":"Example","autoid":"Example-6.46","neu":true,"id":"Example-6.46","reflabel":"Example","cls":"Example"},{"title":"","refnum":"6.47","reftag":"6.47","file":"index.tex","label":"Remark","autoid":"Remark-6.47","neu":true,"id":"Remark-6.47","reflabel":"Remark","cls":"Remark"},{"title":"Sequence of Complex numbers","refnum":"7.1","reftag":"7.1","file":"index.tex","label":"Definition","autoid":"Definition-7.1","neu":true,"id":"sequence-of-complex-numbers","reflabel":"Definition","cls":"Definition"},{"title":"Convergent sequence in \\(\\mathbb{C}\\)","refnum":"7.2","reftag":"7.2","file":"index.tex","label":"Definition","autoid":"Definition-7.2","neu":true,"id":"definition-convergent-sequence-C","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Important","autoid":"Important*-7.1","neu":true,"id":"Important*-7.1","reflabel":"Important","cls":"Important"},{"title":"","refnum":"7.3","reftag":"7.3","file":"index.tex","label":"Example","autoid":"Example-7.3","neu":true,"id":"Example-7.3","reflabel":"Example","cls":"Example"},{"title":"Bounded sequence in \\(\\mathbb{C}\\)","refnum":"7.4","reftag":"7.4","file":"index.tex","label":"Definition","autoid":"Definition-7.4","neu":true,"id":"bounded-sequence-in-mathbbc","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"7.5","reftag":"7.5","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-convergent-bounded-C","neu":true,"id":"theorem-convergent-bounded-C","reflabel":"Theorem","cls":"Theorem"},{"title":"Divergent sequences in \\(\\mathbb{C}\\)","refnum":"7.6","reftag":"7.6","file":"index.tex","label":"Definition","autoid":"Definition-7.6","neu":true,"id":"divergent-sequences-in-mathbbc","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"7.7","reftag":"7.7","file":"index.tex","label":"Corollary","autoid":"Corollary-7.7","neu":true,"id":"Corollary-7.7","reflabel":"Corollary","cls":"Corollary"},{"title":"Algebra of limits in \\(\\mathbb{C}\\)","refnum":"7.8","reftag":"7.8","file":"index.tex","label":"Theorem","autoid":"Theorem-7.8","neu":true,"id":"theorem-algebra-limits-C","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"7.9","reftag":"7.9","file":"index.tex","label":"Example","autoid":"Example-7.9","neu":true,"id":"Example-7.9","reflabel":"Example","cls":"Example"},{"title":"","refnum":"7.10","reftag":"7.10","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-convergence-zero-C","neu":true,"id":"theorem-convergence-zero-C","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-7.2","neu":true,"id":"Proof*-7.2","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"7.11","reftag":"7.11","file":"index.tex","label":"Example","autoid":"Example-7.11","neu":true,"id":"Example-7.11","reflabel":"Example","cls":"Example"},{"title":"","refnum":"7.12","reftag":"7.12","file":"index.tex","label":"Example","autoid":"Example-7.12","neu":true,"id":"Example-7.12","reflabel":"Example","cls":"Example"},{"title":"Geometric sequence Test in \\(\\mathbb{C}\\)","refnum":"7.13","reftag":"7.13","file":"index.tex","label":"Theorem","autoid":"Theorem-7.13","neu":true,"id":"geometric-sequence-test-in-mathbbc","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"7.14","reftag":"7.14","file":"index.tex","label":"Example","autoid":"Example-7.14","neu":true,"id":"Example-7.14","reflabel":"Example","cls":"Example"},{"title":"Ratio Test in ","refnum":"7.15","reftag":"7.15","file":"index.tex","label":"Theorem","autoid":"Theorem-7.15","neu":true,"id":"theorem-ratop-test-C","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"7.16","reftag":"7.16","file":"index.tex","label":"Example","autoid":"Example-7.16","neu":true,"id":"Example-7.16","reflabel":"Example","cls":"Example"},{"title":"","refnum":"7.17","reftag":"7.17","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-convergence-real-imaginary","neu":true,"id":"theorem-convergence-real-imaginary","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-7.3","neu":true,"id":"Proof*-7.3","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"7.18","reftag":"7.18","file":"index.tex","label":"Example","autoid":"Example-7.18","neu":true,"id":"Example-7.18","reflabel":"Example","cls":"Example"},{"title":"Monotone sequence","refnum":"6.48","reftag":"6.48","file":"index.tex","label":"Definition","autoid":"Definition-6.48","neu":true,"id":"monotone-sequence","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"6.49","reftag":"6.49","file":"index.tex","label":"Example","autoid":"Example-6.49","neu":true,"id":"Example-6.49","reflabel":"Example","cls":"Example"},{"title":"Monotone Convergence Theorem","refnum":"6.50","reftag":"6.50","file":"index.tex","label":"Theorem","autoid":"Theorem-6.50","neu":true,"id":"theorem-monotone-convergence","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-6.23","neu":true,"id":"Proof*-6.23","reflabel":"Proof","cls":"Proof"},{"title":"Partial sums","refnum":"8.1","reftag":"8.1","file":"index.tex","label":"Definition","autoid":"Definition-8.1","neu":true,"id":"partial-sums","reflabel":"Definition","cls":"Definition"},{"title":"Convergent series","refnum":"8.2","reftag":"8.2","file":"index.tex","label":"Definition","autoid":"Definition-8.2","neu":true,"id":"convergent-series-1","reflabel":"Definition","cls":"Definition"},{"title":"Divergent series","refnum":"8.3","reftag":"8.3","file":"index.tex","label":"Definition","autoid":"Definition-8.3","neu":true,"id":"divergent-series","reflabel":"Definition","cls":"Definition"},{"title":"","refnum":"8.4","reftag":"8.4","file":"index.tex","label":"Example","autoid":"Example-8.4","neu":true,"id":"Example-8.4","reflabel":"Example","cls":"Example"},{"title":"","refnum":"8.5","reftag":"8.5","file":"index.tex","label":"Example","autoid":"Example-8.5","neu":true,"id":"Example-8.5","reflabel":"Example","cls":"Example"},{"title":"","refnum":"8.6","reftag":"8.6","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-series-necessary","neu":true,"id":"theorem-series-necessary","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Proof","autoid":"Proof*-8.1","neu":true,"id":"Proof*-8.1","reflabel":"Proof","cls":"Proof"},{"title":"","refnum":"8.7","reftag":"8.7","file":"index.tex","label":"Theorem","autoid":"Theorem-id-theorem-series-necessary-1","neu":true,"id":"theorem-series-necessary-1","reflabel":"Theorem","cls":"Theorem"},{"title":"","refnum":"8.8","reftag":"8.8","file":"index.tex","label":"Example","autoid":"Example-8.8","neu":true,"id":"Example-8.8","reflabel":"Example","cls":"Example"},{"title":"","refnum":"8.9","reftag":"8.9","file":"index.tex","label":"Example","autoid":"Example-8.9","neu":true,"id":"Example-8.9","reflabel":"Example","cls":"Example"},{"title":"","refnum":"??","reftag":"","file":"index.tex","label":"Important","autoid":"Important*-8.2","neu":true,"id":"Important*-8.2","reflabel":"Important","cls":"Important"},{"title":"","refnum":"8.10","reftag":"8.10","file":"index.tex","label":"Example","autoid":"Example-8.10","neu":true,"id":"Example-8.10","reflabel":"Example","cls":"Example"},{"title":"","refnum":"8.11","reftag":"8.11","file":"index.tex","label":"Remark","autoid":"Remark-8.11","neu":true,"id":"Remark-8.11","reflabel":"Remark","cls":"Remark"},{"title":"","refnum":"8.12","reftag":"8.12","file":"index.tex","label":"Example","autoid":"Example-8.12","neu":true,"id":"Example-8.12","reflabel":"Example","cls":"Example"}] \ No newline at end of file +[{"label":"Definition","id":"Definition-1.1","autoid":"Definition-1.1","title":"","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"1.1","refnum":"1.1","cls":"Definition"},{"label":"Question","id":"Question*-1.1","autoid":"Question*-1.1","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Question"},{"label":"Question","id":"Question*-1.2","autoid":"Question*-1.2","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Question"},{"label":"Question","id":"Question*-1.3","autoid":"Question*-1.3","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Question"},{"label":"Question","id":"Question*-1.4","autoid":"Question*-1.4","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Question"},{"label":"Conjecture","id":"conj-line","autoid":"Conjecture-id-conj-line","refnum":"1.5","reflabel":"Conjecture","title":"","neu":true,"file":"index.tex","reftag":"1.5","cls":"Conjecture"},{"label":"Theorem","id":"theorem-root-2","autoid":"Theorem-id-theorem-root-2","refnum":"1.6","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"1.6","cls":"Theorem"},{"label":"Proof","id":"proof-of-theorem","autoid":"Proof*-1.5","title":"Proof of Theorem 1.2","reflabel":"Proof","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Proof"},{"label":"Theorem","id":"to-keep-in-mind-for-the-next-lessons","autoid":"Theorem-1.3","title":"To keep in mind for the next lessons","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"1.3","refnum":"1.3","cls":"Theorem"},{"label":"Question","id":"Question-1","autoid":"Question-id-Question-1","refnum":"1.1","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"1.1","cls":"Question"},{"label":"Question","id":"Question-2","autoid":"Question-id-Question-2","refnum":"1.2","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"1.2","cls":"Question"},{"label":"Question","id":"Question-1.3","autoid":"Question-1.3","refnum":"1.3","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"1.3","cls":"Question"},{"label":"Question","id":"Question-1.4","autoid":"Question-1.4","refnum":"1.4","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"1.4","cls":"Question"},{"label":"Proof","id":"proof-of-theorem","autoid":"Proof*-1.1","refnum":"??","reflabel":"Proof","title":"Proof of Theorem 1.6","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"to-keep-in-mind-for-the-next-lessons","autoid":"Theorem-1.7","title":"To keep in mind for the next lessons","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"1.7","refnum":"1.7","cls":"Theorem"},{"label":"Remark","id":"Remark-1.7","autoid":"Remark-1.7","refnum":"1.7","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"1.7","cls":"Remark"},{"label":"Theorem","id":"we-will-prove-this-in-the-future","autoid":"Theorem-1.8","refnum":"1.8","reflabel":"Theorem","title":"We will prove this in the future","neu":true,"file":"index.tex","reftag":"1.8","cls":"Theorem"},{"label":"Theorem","id":"we-will-prove-this-in-the-future-1","autoid":"Theorem-1.9","refnum":"1.9","reflabel":"Theorem","title":"We will prove this in the future","neu":true,"file":"index.tex","reftag":"1.9","cls":"Theorem"},{"label":"Remark","id":"Remark-2.1","autoid":"Remark-2.1","refnum":"2.1","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"2.1","cls":"Remark"},{"label":"Example","id":"Example-2.2","autoid":"Example-2.2","refnum":"2.2","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.2","cls":"Example"},{"label":"Example","id":"Example-2.3","autoid":"Example-2.3","refnum":"2.3","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.3","cls":"Example"},{"label":"Example","id":"Example-2.4","autoid":"Example-2.4","refnum":"2.4","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.4","cls":"Example"},{"label":"Proposition","id":"Proposition-Equality-Sets","autoid":"Proposition-id-Proposition-Equality-Sets","refnum":"2.7","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"2.7","cls":"Proposition"},{"label":"Proof","id":"Proof*-2.1","autoid":"Proof*-2.1","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-2.6","autoid":"Example-2.6","refnum":"2.6","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.6","cls":"Example"},{"label":"Remark","id":"Remark-2.7","autoid":"Remark-2.7","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.7","refnum":"2.7","cls":"Remark"},{"label":"Example","id":"Example-2.8","autoid":"Example-2.8","refnum":"2.8","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.8","cls":"Example"},{"label":"Proposition","id":"de-morgans-laws","autoid":"Proposition-2.9","title":"De Morgan’s Laws","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"2.9","refnum":"2.9","cls":"Proposition"},{"label":"Definition","id":"system-of-real-numbers-mathbbr","autoid":"Definition-2.10","title":"System of Real Numbers \\(\\mathbb{R}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.10","refnum":"2.10","cls":"Definition"},{"label":"Definition","id":"equivalence-classes","autoid":"Definition-2.11","title":"Equivalence classes","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.11","refnum":"2.11","cls":"Definition"},{"label":"Example","id":"equality-is-an-equivalence-relation","autoid":"Example-2.12","title":"Equality is an equivalence relation","reflabel":"Example","file":"index.tex","neu":true,"reftag":"2.12","refnum":"2.12","cls":"Example"},{"label":"Definition","id":"equivalence-classes","autoid":"Definition-2.13","title":"Equivalence classes","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.13","refnum":"2.13","cls":"Definition"},{"label":"Example","id":"equality-is-an-equivalence-relation","autoid":"Example-2.14","title":"Equality is an equivalence relation","reflabel":"Example","file":"index.tex","neu":true,"reftag":"2.14","refnum":"2.14","cls":"Example"},{"label":"Definition","id":"equivalence-classes","autoid":"Definition-2.15","refnum":"2.15","reflabel":"Definition","title":"Equivalence classes","neu":true,"file":"index.tex","reftag":"2.15","cls":"Definition"},{"label":"Example","id":"equality-is-an-equivalence-relation","autoid":"Example-2.16","refnum":"2.16","reflabel":"Example","title":"Equality is an equivalence relation","neu":true,"file":"index.tex","reftag":"2.16","cls":"Example"},{"label":"Remark","id":"Remark-2.17","autoid":"Remark-2.17","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.17","refnum":"2.17","cls":"Remark"},{"label":"Remark","id":"Remark-Absolute-Value-Sym","autoid":"Remark-id-Remark-Absolute-Value-Sym","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.18","refnum":"2.18","cls":"Remark"},{"label":"Remark","id":"geometric-interpretation-of-x","autoid":"Remark-2.19","title":"Geometric interpretation of \\(|x|\\)","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.19","refnum":"2.19","cls":"Remark"},{"label":"Remark","id":"remark-absolute-value-sym","autoid":"Remark-id-remark-absolute-value-sym","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.18","refnum":"2.18","cls":"Remark"},{"label":"Remark","id":"rmk-absolute-value-sym","autoid":"Remark-id-rmk-absolute-value-sym","refnum":"2.30","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"2.30","cls":"Remark"},{"label":"Remark","id":"Remark-2.20","autoid":"Remark-2.20","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.20","refnum":"2.20","cls":"Remark"},{"label":"Lemma","id":"Lemma-2.21","autoid":"Lemma-2.21","title":"","reflabel":"Lemma","file":"index.tex","neu":true,"reftag":"2.21","refnum":"2.21","cls":"Lemma"},{"label":"Example","id":"Example-2.5","autoid":"Example-2.5","refnum":"2.5","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.5","cls":"Example"},{"label":"Remark","id":"Remark-2.9","autoid":"Remark-2.9","refnum":"2.9","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"2.9","cls":"Remark"},{"label":"Example","id":"Example-2.10","autoid":"Example-2.10","refnum":"2.10","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.10","cls":"Example"},{"label":"Proposition","id":"de-morgans-laws","autoid":"Proposition-2.11","refnum":"2.11","reflabel":"Proposition","title":"De Morgan’s Laws","neu":true,"file":"index.tex","reftag":"2.11","cls":"Proposition"},{"label":"Definition","id":"equivalence-relation-1","autoid":"Definition-2.12","title":"Equivalence relation","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.12","refnum":"2.12","cls":"Definition"},{"label":"Definition","id":"Definition-2.17","autoid":"Definition-2.17","title":"","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.17","refnum":"2.17","cls":"Definition"},{"label":"Definition","id":"partial-order","autoid":"Definition-2.18","refnum":"2.18","reflabel":"Definition","title":"Partial order","neu":true,"file":"index.tex","reftag":"2.18","cls":"Definition"},{"label":"Example","id":"Example-2.19","autoid":"Example-2.19","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"2.19","refnum":"2.19","cls":"Example"},{"label":"Remark","id":"geometric-interpretation-of-x","autoid":"Remark-2.22","title":"Geometric interpretation of \\(|x|\\)","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.22","refnum":"2.22","cls":"Remark"},{"label":"Remark","id":"geometric-interpretation-of-x","autoid":"Remark-2.23","title":"Geometric interpretation of \\(|x|\\)","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.23","refnum":"2.23","cls":"Remark"},{"label":"Lemma","id":"lemma-absolute-value","autoid":"Lemma-id-lemma-absolute-value","refnum":"2.33","reflabel":"Lemma","title":"","neu":true,"file":"index.tex","reftag":"2.33","cls":"Lemma"},{"label":"Proof","id":"proof-of-lemma","autoid":"Proof*-2.2","title":"Proof of Lemma 2.30","reflabel":"Proof","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Proof"},{"label":"Lemma","id":"Lemma-2.25","autoid":"Lemma-2.25","title":"","reflabel":"Lemma","file":"index.tex","neu":true,"reftag":"2.25","refnum":"2.25","cls":"Lemma"},{"label":"Theorem","id":"theorem-triangle-inequality","autoid":"Theorem-2.26","title":"Triangle inequality","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"2.26","refnum":"2.26","cls":"Theorem"},{"label":"Proof","id":"proof-of-lemma","autoid":"Proof*-2.3","refnum":"??","reflabel":"Proof","title":"Proof of Lemma 2.33","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Remark","id":"geometric-meaning-of-triangle-inequality","autoid":"Remark-2.27","title":"Geometric meaning of triangle inequality","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.27","refnum":"2.27","cls":"Remark"},{"label":"Remark","id":"geometric-interpretation-of-x","autoid":"Remark-2.28","title":"Geometric interpretation of \\(|x|\\)","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.28","refnum":"2.28","cls":"Remark"},{"label":"Example","id":"Example-2.15","autoid":"Example-2.15","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"2.15","refnum":"2.15","cls":"Example"},{"label":"Definition","id":"order-relation-1","autoid":"Definition-2.16","title":"Order relation","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.16","refnum":"2.16","cls":"Definition"},{"label":"Example","id":"Example-2.17","autoid":"Example-2.17","refnum":"2.17","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.17","cls":"Example"},{"label":"Definition","id":"total-order","autoid":"Definition-2.19","refnum":"2.19","reflabel":"Definition","title":"Total order","neu":true,"file":"index.tex","reftag":"2.19","cls":"Definition"},{"label":"Example","id":"set-inclusion-is-a-partial-order","autoid":"Example-2.20","refnum":"2.20","reflabel":"Example","title":"Set inclusion is a partial order","neu":true,"file":"index.tex","reftag":"2.20","cls":"Example"},{"label":"Remark","id":"Remark-2.21","autoid":"Remark-2.21","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.21","refnum":"2.21","cls":"Remark"},{"label":"Remark","id":"geometric-interpretation-of-x-y","autoid":"Remark-2.24","title":"Geometric interpretation of \\(|x-y|\\)","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.24","refnum":"2.24","cls":"Remark"},{"label":"Lemma","id":"Lemma-2.26","autoid":"Lemma-2.26","title":"","reflabel":"Lemma","file":"index.tex","neu":true,"reftag":"2.26","refnum":"2.26","cls":"Lemma"},{"label":"Theorem","id":"theorem-triangle-inequality","autoid":"Theorem-2.27","title":"Triangle inequality","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"2.27","refnum":"2.27","cls":"Theorem"},{"label":"Remark","id":"Remark-2.29","autoid":"Remark-2.29","refnum":"2.29","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"2.29","cls":"Remark"},{"label":"Proposition","id":"proposition-easy","autoid":"Proposition-id-proposition-easy","refnum":"2.38","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"2.38","cls":"Proposition"},{"label":"Proof","id":"proof-of-theorem-1","autoid":"Proof*-2.4","refnum":"??","reflabel":"Proof","title":"Proof of Theorem 2.32","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Axiom","id":"principle-of-induction","autoid":"Axiom-2.31","title":"Principle of Induction","reflabel":"Axiom","file":"index.tex","neu":true,"reftag":"2.31","refnum":"2.31","cls":"Axiom"},{"label":"Important","id":"Important*-2.5","autoid":"Important*-2.5","title":"","reflabel":"Important","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Important"},{"label":"Remark","id":"geometric-interpretation-of-x-y","autoid":"Remark-2.32","refnum":"2.32","reflabel":"Remark","title":"Geometric interpretation of \\(|x-y|\\)","neu":true,"file":"index.tex","reftag":"2.32","cls":"Remark"},{"label":"Corollary","id":"principle-of-inducion---alternative-formulation","autoid":"Corollary-2.33","title":"Principle of Inducion - Alternative formulation","reflabel":"Corollary","file":"index.tex","neu":true,"reftag":"2.33","refnum":"2.33","cls":"Corollary"},{"label":"Proof","id":"Proof*-2.6","autoid":"Proof*-2.6","title":"","reflabel":"Proof","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Proof"},{"label":"Example","id":"formula-for-summing-first-n-natural-numbers","autoid":"Example-2.34","title":"Formula for summing first \\(n\\) natural numbers","reflabel":"Example","file":"index.tex","neu":true,"reftag":"2.34","refnum":"2.34","cls":"Example"},{"label":"Example","id":"statements-about-sequences-of-numbers","autoid":"Example-2.35","title":"Statements about sequences of numbers","reflabel":"Example","file":"index.tex","neu":true,"reftag":"2.35","refnum":"2.35","cls":"Example"},{"label":"Proposition","id":"proposition-heron","autoid":"Proposition-id-proposition-heron","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"6.1","refnum":"6.1","cls":"Proposition"},{"label":"Proof","id":"Proof*-4.1","autoid":"Proof*-4.1","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Proposition","id":"proposition-heron-error","autoid":"Proposition-4.2","title":"Error estimate","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"4.2","refnum":"4.2","cls":"Proposition"},{"label":"Proof","id":"Proof*-4.2","autoid":"Proof*-4.2","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Proposition","id":"proposition-heron-error-exp","autoid":"Proposition-id-proposition-heron-error-exp","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"6.3","refnum":"6.3","cls":"Proposition"},{"label":"Proof","id":"Proof*-4.3","autoid":"Proof*-4.3","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"convergence-of-herons-algorithm","autoid":"Theorem-4.4","title":"Convergence of Heron’s Algorithm","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"4.4","refnum":"4.4","cls":"Theorem"},{"label":"Proof","id":"Proof*-4.4","autoid":"Proof*-4.4","title":"","reflabel":"Proof","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Proof"},{"label":"Definition","id":"binary-operation","autoid":"Definition-3.1","refnum":"3.1","reflabel":"Definition","title":"Binary operation","neu":true,"file":"index.tex","reftag":"3.1","cls":"Definition"},{"label":"Remark","id":"Remark-2.12","autoid":"Remark-2.12","refnum":"2.12","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"2.12","cls":"Remark"},{"label":"Example","id":"Example-2.13","autoid":"Example-2.13","refnum":"2.13","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.13","cls":"Example"},{"label":"Definition","id":"equivalence-relation-1","autoid":"Definition-2.14","refnum":"2.14","reflabel":"Definition","title":"Equivalence relation","neu":true,"file":"index.tex","reftag":"2.14","cls":"Definition"},{"label":"Example","id":"inequality-is-a-total-order","autoid":"Example-2.21","refnum":"2.21","reflabel":"Example","title":"Inequality is a total order","neu":true,"file":"index.tex","reftag":"2.21","cls":"Example"},{"label":"Notation","id":"Notation-2.22","autoid":"Notation-2.22","refnum":"2.22","reflabel":"Notation","title":"","neu":true,"file":"index.tex","reftag":"2.22","cls":"Notation"},{"label":"Definition","id":"Definition-2.23","autoid":"Definition-2.23","refnum":"2.23","reflabel":"Definition","title":"","neu":true,"file":"index.tex","reftag":"2.23","cls":"Definition"},{"label":"Definition","id":"definition-function","autoid":"Definition-2.24","refnum":"2.24","reflabel":"Definition","title":"Functions","neu":true,"file":"index.tex","reftag":"2.24","cls":"Definition"},{"label":"Warning","id":"Warning*-2.2","autoid":"Warning*-2.2","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Example","id":"Example-2.25","autoid":"Example-2.25","refnum":"2.25","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.25","cls":"Example"},{"label":"Example","id":"Example-2.26","autoid":"Example-2.26","refnum":"2.26","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.26","cls":"Example"},{"label":"Definition","id":"absolute-value","autoid":"Definition-2.27","refnum":"2.27","reflabel":"Definition","title":"Absolute value","neu":true,"file":"index.tex","reftag":"2.27","cls":"Definition"},{"label":"Example","id":"Example-2.28","autoid":"Example-2.28","refnum":"2.28","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"2.28","cls":"Example"},{"label":"Remark","id":"geometric-interpretation-of-x","autoid":"Remark-2.31","refnum":"2.31","reflabel":"Remark","title":"Geometric interpretation of \\(|x|\\)","neu":true,"file":"index.tex","reftag":"2.31","cls":"Remark"},{"label":"Lemma","id":"Lemma-2.34","autoid":"Lemma-2.34","refnum":"2.34","reflabel":"Lemma","title":"","neu":true,"file":"index.tex","reftag":"2.34","cls":"Lemma"},{"label":"Theorem","id":"theorem-triangle-inequality","autoid":"Theorem-2.35","refnum":"2.35","reflabel":"Theorem","title":"Triangle inequality","neu":true,"file":"index.tex","reftag":"2.35","cls":"Theorem"},{"label":"Remark","id":"geometric-meaning-of-triangle-inequality","autoid":"Remark-2.36","refnum":"2.36","reflabel":"Remark","title":"Geometric meaning of triangle inequality","neu":true,"file":"index.tex","reftag":"2.36","cls":"Remark"},{"label":"Remark","id":"Remark-2.37","autoid":"Remark-2.37","refnum":"2.37","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"2.37","cls":"Remark"},{"label":"Proof","id":"of-proposition","autoid":"Proof*-2.5","refnum":"??","reflabel":"Proof","title":"of Proposition 2.38","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Axiom","id":"principle-of-induction","autoid":"Axiom-2.39","refnum":"2.39","reflabel":"Axiom","title":"Principle of Induction","neu":true,"file":"index.tex","reftag":"2.39","cls":"Axiom"},{"label":"Important","id":"Important*-2.6","autoid":"Important*-2.6","refnum":"??","reflabel":"Important","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Important"},{"label":"Remark","id":"Remark-2.40","autoid":"Remark-2.40","refnum":"2.40","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"2.40","cls":"Remark"},{"label":"Corollary","id":"principle-of-inducion---alternative-formulation","autoid":"Corollary-2.41","refnum":"2.41","reflabel":"Corollary","title":"Principle of Inducion - Alternative formulation","neu":true,"file":"index.tex","reftag":"2.41","cls":"Corollary"},{"label":"Proof","id":"Proof*-2.7","autoid":"Proof*-2.7","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"formula-for-summing-first-n-natural-numbers","autoid":"Example-2.42","refnum":"2.42","reflabel":"Example","title":"Formula for summing first \\(n\\) natural numbers","neu":true,"file":"index.tex","reftag":"2.42","cls":"Example"},{"label":"Example","id":"statements-about-sequences-of-numbers","autoid":"Example-2.43","refnum":"2.43","reflabel":"Example","title":"Statements about sequences of numbers","neu":true,"file":"index.tex","reftag":"2.43","cls":"Example"},{"label":"Definition","id":"Definition-3.2","autoid":"Definition-3.2","title":"","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.2","refnum":"3.2","cls":"Definition"},{"label":"Definition","id":"Definition-3.3","autoid":"Definition-3.3","title":"","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.3","refnum":"3.3","cls":"Definition"},{"label":"Example","id":"Example-3.4","autoid":"Example-3.4","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"3.4","refnum":"3.4","cls":"Example"},{"label":"Question","id":"Question-3.5","autoid":"Question-3.5","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"3.5","refnum":"3.5","cls":"Question"},{"label":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","autoid":"Theorem-3.6","title":"\\(\\mathbb{Q}\\) does not have the cut property.","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.6","refnum":"3.6","cls":"Theorem"},{"label":"Proof","id":"Proof*-3.1","autoid":"Proof*-3.1","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Remark","id":"Remark-3.7","autoid":"Remark-3.7","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.7","refnum":"3.7","cls":"Remark"},{"label":"Definition","id":"subtraction-and-division","autoid":"Definition-3.8","title":"Subtraction and division","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.8","refnum":"3.8","cls":"Definition"},{"label":"Definition","id":"subtraction-and-division","autoid":"Definition-3.9","refnum":"3.9","reflabel":"Definition","title":"Subtraction and division","neu":true,"file":"index.tex","reftag":"3.9","cls":"Definition"},{"label":"Definition","id":"partition-of-a-set","autoid":"Definition-3.10","title":"Partition of a set","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.10","refnum":"3.10","cls":"Definition"},{"label":"Remark","id":"Remark-3.11","autoid":"Remark-3.11","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.11","refnum":"3.11","cls":"Remark"},{"label":"Remark","id":"Remark-2.26","autoid":"Remark-2.26","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.26","refnum":"2.26","cls":"Remark"},{"label":"Lemma","id":"Lemma-2.31","autoid":"Lemma-2.31","title":"","reflabel":"Lemma","file":"index.tex","neu":true,"reftag":"2.31","refnum":"2.31","cls":"Lemma"},{"label":"Theorem","id":"theorem-triangle-inequality","autoid":"Theorem-2.32","title":"Triangle inequality","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"2.32","refnum":"2.32","cls":"Theorem"},{"label":"Remark","id":"geometric-meaning-of-triangle-inequality","autoid":"Remark-2.33","title":"Geometric meaning of triangle inequality","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.33","refnum":"2.33","cls":"Remark"},{"label":"Remark","id":"Remark-2.34","autoid":"Remark-2.34","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.34","refnum":"2.34","cls":"Remark"},{"label":"Axiom","id":"principle-of-induction","autoid":"Axiom-2.36","title":"Principle of Induction","reflabel":"Axiom","file":"index.tex","neu":true,"reftag":"2.36","refnum":"2.36","cls":"Axiom"},{"label":"Corollary","id":"principle-of-inducion---alternative-formulation","autoid":"Corollary-2.38","title":"Principle of Inducion - Alternative formulation","reflabel":"Corollary","file":"index.tex","neu":true,"reftag":"2.38","refnum":"2.38","cls":"Corollary"},{"label":"Example","id":"formula-for-summing-first-n-natural-numbers","autoid":"Example-2.39","title":"Formula for summing first \\(n\\) natural numbers","reflabel":"Example","file":"index.tex","neu":true,"reftag":"2.39","refnum":"2.39","cls":"Example"},{"label":"Example","id":"statements-about-sequences-of-numbers","autoid":"Example-2.40","title":"Statements about sequences of numbers","reflabel":"Example","file":"index.tex","neu":true,"reftag":"2.40","refnum":"2.40","cls":"Example"},{"label":"Definition","id":"partition-of-a-set","autoid":"Definition-2.1","title":"Partition of a set","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.1","refnum":"2.1","cls":"Definition"},{"label":"Definition","id":"cut-of-a-set","autoid":"Definition-2.2","title":"Cut of a set","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.2","refnum":"2.2","cls":"Definition"},{"label":"Definition","id":"cut-property-1","autoid":"Definition-2.3","title":"Cut property","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.3","refnum":"2.3","cls":"Definition"},{"label":"Question","id":"Question-2.5","autoid":"Question-2.5","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"2.5","refnum":"2.5","cls":"Question"},{"label":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","autoid":"Theorem-2.6","title":"\\(\\mathbb{Q}\\) does not have the cut property.","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"2.6","refnum":"2.6","cls":"Theorem"},{"label":"Definition","id":"binary-operation","autoid":"Definition-2.8","title":"Binary operation","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.8","refnum":"2.8","cls":"Definition"},{"label":"Definition","id":"field","autoid":"Definition-2.9","title":"Field","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"2.9","refnum":"2.9","cls":"Definition"},{"label":"Remark","id":"Remark-2.11","autoid":"Remark-2.11","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"2.11","refnum":"2.11","cls":"Remark"},{"label":"Proposition","id":"proposition-heron-error","autoid":"Proposition-3.2","title":"Error estimate","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"3.2","refnum":"3.2","cls":"Proposition"},{"label":"Proof","id":"proof-of-theorem-2","autoid":"Proof*-3.2","refnum":"??","reflabel":"Proof","title":"Proof of Theorem 3.20","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Proof","id":"Proof*-3.3","autoid":"Proof*-3.3","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"convergence-of-herons-algorithm","autoid":"Theorem-3.4","title":"Convergence of Heron’s Algorithm","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.4","refnum":"3.4","cls":"Theorem"},{"label":"Proof","id":"Proof*-3.4","autoid":"Proof*-3.4","title":"","reflabel":"Proof","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Proof"},{"label":"Example","id":"example-binary-operation","autoid":"Example-3.2","title":"of binary operation","reflabel":"Example","file":"index.tex","neu":true,"reftag":"3.2","refnum":"3.2","cls":"Example"},{"label":"Example","id":"example-binary-operation-2","autoid":"Example-id-example-binary-operation-2","refnum":"3.5","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"3.5","cls":"Example"},{"label":"Example","id":"Example-3.5","autoid":"Example-3.5","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"3.5","refnum":"3.5","cls":"Example"},{"label":"Definition","id":"subtraction-and-division","autoid":"Definition-3.6","title":"Subtraction and division","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.6","refnum":"3.6","cls":"Definition"},{"label":"Example","id":"Example-3.7","autoid":"Example-3.7","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"3.7","refnum":"3.7","cls":"Example"},{"label":"Proposition","id":"properties-of-field-operations","autoid":"Proposition-3.9","title":"Properties of field operations","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"3.9","refnum":"3.9","cls":"Proposition"},{"label":"Proposition","id":"uniqueness-of-neutral-elements-and-inverses","autoid":"Proposition-3.10","refnum":"3.10","reflabel":"Proposition","title":"Uniqueness of neutral elements and inverses","neu":true,"file":"index.tex","reftag":"3.10","cls":"Proposition"},{"label":"Theorem","id":"Theorem-3.11","autoid":"Theorem-3.11","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.11","refnum":"3.11","cls":"Theorem"},{"label":"Definition","id":"cut-of-a-set","autoid":"Definition-3.12","title":"Cut of a set","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.12","refnum":"3.12","cls":"Definition"},{"label":"Definition","id":"Definition-3.13","autoid":"Definition-3.13","refnum":"3.13","reflabel":"Definition","title":"","neu":true,"file":"index.tex","reftag":"3.13","cls":"Definition"},{"label":"Definition","id":"cut-of-a-set","autoid":"Definition-3.14","title":"Cut of a set","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.14","refnum":"3.14","cls":"Definition"},{"label":"Example","id":"Example-3.15","autoid":"Example-3.15","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"3.15","refnum":"3.15","cls":"Example"},{"label":"Question","id":"Question-3.16","autoid":"Question-3.16","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"3.16","refnum":"3.16","cls":"Question"},{"label":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","autoid":"Theorem-3.17","title":"\\(\\mathbb{Q}\\) does not have the cut property.","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.17","refnum":"3.17","cls":"Theorem"},{"label":"Remark","id":"Remark-3.18","autoid":"Remark-3.18","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.18","refnum":"3.18","cls":"Remark"},{"label":"Definition","id":"system-of-real-numbers-mathbbr","autoid":"Definition-3.19","title":"System of Real Numbers \\(\\mathbb{R}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.19","refnum":"3.19","cls":"Definition"},{"label":"Definition","id":"partition-of-a-set","autoid":"Definition-3.11","title":"Partition of a set","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.11","refnum":"3.11","cls":"Definition"},{"label":"Example","id":"Example-3.14","autoid":"Example-3.14","refnum":"3.14","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"3.14","cls":"Example"},{"label":"Question","id":"Question-3.15","autoid":"Question-3.15","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"3.15","refnum":"3.15","cls":"Question"},{"label":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","autoid":"Theorem-3.16","title":"\\(\\mathbb{Q}\\) does not have the cut property.","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.16","refnum":"3.16","cls":"Theorem"},{"label":"Remark","id":"Remark-3.17","autoid":"Remark-3.17","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.17","refnum":"3.17","cls":"Remark"},{"label":"Definition","id":"system-of-real-numbers-mathbbr","autoid":"Definition-3.18","title":"System of Real Numbers \\(\\mathbb{R}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.18","refnum":"3.18","cls":"Definition"},{"label":"Theorem","id":"Theorem-3.9","autoid":"Theorem-3.9","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.9","refnum":"3.9","cls":"Theorem"},{"label":"Example","id":"Example-3.13","autoid":"Example-3.13","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"3.13","refnum":"3.13","cls":"Example"},{"label":"Question","id":"Question-3.14","autoid":"Question-3.14","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"3.14","refnum":"3.14","cls":"Question"},{"label":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","autoid":"Theorem-3.15","title":"\\(\\mathbb{Q}\\) does not have the cut property.","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.15","refnum":"3.15","cls":"Theorem"},{"label":"Remark","id":"Remark-3.16","autoid":"Remark-3.16","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.16","refnum":"3.16","cls":"Remark"},{"label":"Definition","id":"cut-property-1","autoid":"Definition-3.17","refnum":"3.17","reflabel":"Definition","title":"Cut property","neu":true,"file":"index.tex","reftag":"3.17","cls":"Definition"},{"label":"Proposition","id":"uniqueness-of-neutral-elements-and-inverses","autoid":"Proposition-3.7","title":"Uniqueness of neutral elements and inverses","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"3.7","refnum":"3.7","cls":"Proposition"},{"label":"Proposition","id":"uniqueness-of-neutral-elements-and-inverses","autoid":"Proposition-3.8","title":"Uniqueness of neutral elements and inverses","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"3.8","refnum":"3.8","cls":"Proposition"},{"label":"Definition","id":"field","autoid":"Definition-3.5","title":"Field","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.5","refnum":"3.5","cls":"Definition"},{"label":"Example","id":"Example-3.6","autoid":"Example-3.6","refnum":"3.6","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"3.6","cls":"Example"},{"label":"Definition","id":"field","autoid":"Definition-3.7","refnum":"3.7","reflabel":"Definition","title":"Field","neu":true,"file":"index.tex","reftag":"3.7","cls":"Definition"},{"label":"Theorem","id":"Theorem-3.10","autoid":"Theorem-3.10","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.10","refnum":"3.10","cls":"Theorem"},{"label":"Example","id":"example-binary-operation","autoid":"Example-3.3","refnum":"3.3","reflabel":"Example","title":"of binary operation","neu":true,"file":"index.tex","reftag":"3.3","cls":"Example"},{"label":"Definition","id":"Definition-3.4","autoid":"Definition-3.4","refnum":"3.4","reflabel":"Definition","title":"","neu":true,"file":"index.tex","reftag":"3.4","cls":"Definition"},{"label":"Example","id":"example-binary-operation","autoid":"Example-3.1","title":"of binary operation","reflabel":"Example","file":"index.tex","neu":true,"reftag":"3.1","refnum":"3.1","cls":"Example"},{"label":"Notation","id":"Notation-3.2","autoid":"Notation-3.2","refnum":"3.2","reflabel":"Notation","title":"","neu":true,"file":"index.tex","reftag":"3.2","cls":"Notation"},{"label":"Example","id":"Example-3.8","autoid":"Example-3.8","refnum":"3.8","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"3.8","cls":"Example"},{"label":"Proposition","id":"properties-of-field-operations","autoid":"Proposition-3.11","refnum":"3.11","reflabel":"Proposition","title":"Properties of field operations","neu":true,"file":"index.tex","reftag":"3.11","cls":"Proposition"},{"label":"Theorem","id":"Theorem-3.12","autoid":"Theorem-3.12","refnum":"3.12","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"3.12","cls":"Theorem"},{"label":"Definition","id":"partition-of-a-set","autoid":"Definition-3.15","refnum":"3.15","reflabel":"Definition","title":"Partition of a set","neu":true,"file":"index.tex","reftag":"3.15","cls":"Definition"},{"label":"Example","id":"Example-3.16","autoid":"Example-3.16","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"3.16","refnum":"3.16","cls":"Example"},{"label":"Question","id":"Question-3.17","autoid":"Question-3.17","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"3.17","refnum":"3.17","cls":"Question"},{"label":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","autoid":"Theorem-3.18","title":"\\(\\mathbb{Q}\\) does not have the cut property.","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.18","refnum":"3.18","cls":"Theorem"},{"label":"Remark","id":"Remark-3.19","autoid":"Remark-3.19","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.19","refnum":"3.19","cls":"Remark"},{"label":"Definition","id":"system-of-real-numbers-mathbbr","autoid":"Definition-3.20","title":"System of Real Numbers \\(\\mathbb{R}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.20","refnum":"3.20","cls":"Definition"},{"label":"Definition","id":"cut-of-a-set","autoid":"Definition-3.16","refnum":"3.16","reflabel":"Definition","title":"Cut of a set","neu":true,"file":"index.tex","reftag":"3.16","cls":"Definition"},{"label":"Example","id":"Example-3.18","autoid":"Example-3.18","refnum":"3.18","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"3.18","cls":"Example"},{"label":"Question","id":"Question-3.19","autoid":"Question-3.19","refnum":"3.19","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"3.19","cls":"Question"},{"label":"Theorem","id":"theorem-Q-cut","autoid":"Theorem-3.20","refnum":"3.20","reflabel":"Theorem","title":"\\(\\mathbb{Q}\\) does not have the cut property.","neu":true,"file":"index.tex","reftag":"3.20","cls":"Theorem"},{"label":"Remark","id":"remark-idea-proof-cut","autoid":"Remark-3.21","refnum":"3.21","reflabel":"Remark","title":"Ideas for the proof of Theorem 3.20","neu":true,"file":"index.tex","reftag":"3.21","cls":"Remark"},{"label":"Definition","id":"system-of-real-numbers-mathbbr","autoid":"Definition-3.22","title":"System of Real Numbers \\(\\mathbb{R}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.22","refnum":"3.22","cls":"Definition"},{"label":"Notation","id":"Notation-3.23","autoid":"Notation-3.23","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"3.23","refnum":"3.23","cls":"Notation"},{"label":"Remark","id":"Remark-3.24","autoid":"Remark-3.24","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.24","refnum":"3.24","cls":"Remark"},{"label":"Remark","id":"Remark-3.25","autoid":"Remark-3.25","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.25","refnum":"3.25","cls":"Remark"},{"label":"Example","id":"intuition-about-supremum-and-infimum","autoid":"Example-3.22","title":"Intuition about supremum and infimum","reflabel":"Example","file":"index.tex","neu":true,"reftag":"3.22","refnum":"3.22","cls":"Example"},{"label":"Definition","id":"upper-bound-and-bounded-above","autoid":"Definition-3.23","title":"Upper bound and bounded above","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.23","refnum":"3.23","cls":"Definition"},{"label":"Definition","id":"upper-bound-and-bounded-above","autoid":"Definition-3.24","refnum":"3.24","reflabel":"Definition","title":"Upper bound and bounded above","neu":true,"file":"index.tex","reftag":"3.24","cls":"Definition"},{"label":"Notation","id":"Notation-3.25","autoid":"Notation-3.25","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"3.25","refnum":"3.25","cls":"Notation"},{"label":"Proposition","id":"Proposition-3.26","autoid":"Proposition-3.26","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"3.26","refnum":"3.26","cls":"Proposition"},{"label":"Warning","id":"Warning*-3.4","autoid":"Warning*-3.4","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Warning","id":"Warning*-3.5","autoid":"Warning*-3.5","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Definition","id":"maximum","autoid":"Definition-3.27","title":"Maximum","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.27","refnum":"3.27","cls":"Definition"},{"label":"Proposition","id":"Proposition-3.28","autoid":"Proposition-3.28","refnum":"3.28","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"3.28","cls":"Proposition"},{"label":"Proof","id":"Proof*-3.6","autoid":"Proof*-3.6","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Warning","id":"Warning*-3.7","autoid":"Warning*-3.7","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Definition","id":"maximum","autoid":"Definition-3.29","refnum":"3.29","reflabel":"Definition","title":"Maximum","neu":true,"file":"index.tex","reftag":"3.29","cls":"Definition"},{"label":"Proposition","id":"Proposition-3.30","autoid":"Proposition-3.30","refnum":"3.30","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"3.30","cls":"Proposition"},{"label":"Warning","id":"Warning*-3.8","autoid":"Warning*-3.8","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Warning","id":"Warning*-3.9","autoid":"Warning*-3.9","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Warning","id":"Warning*-3.10","autoid":"Warning*-3.10","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Proposition","id":"Proposition-3.31","autoid":"Proposition-3.31","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"3.31","refnum":"3.31","cls":"Proposition"},{"label":"Proposition","id":"Proposition-3.32","autoid":"Proposition-3.32","refnum":"3.32","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"3.32","cls":"Proposition"},{"label":"Definition","id":"system-of-real-numbers-mathbbr","autoid":"Definition-3.33","title":"System of Real Numbers \\(\\mathbb{R}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.33","refnum":"3.33","cls":"Definition"},{"label":"Notation","id":"Notation-3.34","autoid":"Notation-3.34","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"3.34","refnum":"3.34","cls":"Notation"},{"label":"Remark","id":"Remark-3.35","autoid":"Remark-3.35","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.35","refnum":"3.35","cls":"Remark"},{"label":"Remark","id":"Remark-3.36","autoid":"Remark-3.36","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.36","refnum":"3.36","cls":"Remark"},{"label":"Remark","id":"Remark-3.26","autoid":"Remark-3.26","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.26","refnum":"3.26","cls":"Remark"},{"label":"Proposition","id":"Proposition-3.27","autoid":"Proposition-3.27","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"3.27","refnum":"3.27","cls":"Proposition"},{"label":"Definition","id":"maximum","autoid":"Definition-3.28","title":"Maximum","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.28","refnum":"3.28","cls":"Definition"},{"label":"Proposition","id":"Proposition-3.29","autoid":"Proposition-3.29","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"3.29","refnum":"3.29","cls":"Proposition"},{"label":"Definition","id":"upper-bound-bounded-below-infimum-minimum","autoid":"Definition-3.30","title":"Upper bound, bounded below, infimum, minimum","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.30","refnum":"3.30","cls":"Definition"},{"label":"Proposition","id":"Proposition-3.33","autoid":"Proposition-3.33","refnum":"3.33","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"3.33","cls":"Proposition"},{"label":"Question","id":"Question-3.34","autoid":"Question-3.34","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"3.34","refnum":"3.34","cls":"Question"},{"label":"Theorem","id":"theorem-Q-not-complete","autoid":"Theorem-id-theorem-Q-not-complete","refnum":"3.36","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"3.36","cls":"Theorem"},{"label":"Proof","id":"Proof*-3.11","autoid":"Proof*-3.11","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Question","id":"Question-3.36","autoid":"Question-3.36","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"3.36","refnum":"3.36","cls":"Question"},{"label":"Definition","id":"completeness-1","autoid":"Definition-3.37","title":"Completeness","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.37","refnum":"3.37","cls":"Definition"},{"label":"Notation","id":"Notation-3.38","autoid":"Notation-3.38","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"3.38","refnum":"3.38","cls":"Notation"},{"label":"Proposition","id":"Proposition-3.39","autoid":"Proposition-3.39","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"3.39","refnum":"3.39","cls":"Proposition"},{"label":"Proof","id":"Proof*-3.12","autoid":"Proof*-3.12","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"theorem-cut-complete","autoid":"Theorem-3.40","title":"Equivalence of Cut Property and Completeness","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.40","refnum":"3.40","cls":"Theorem"},{"label":"Proof","id":"proof-of-theorem-3","autoid":"Proof*-3.13","refnum":"??","reflabel":"Proof","title":"Proof of Theorem 3.41","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Definition","id":"system-of-real-numbers-mathbbr","autoid":"Definition-3.41","title":"System of Real Numbers \\(\\mathbb{R}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.41","refnum":"3.41","cls":"Definition"},{"label":"Remark","id":"ideas-for-proving-theorem","autoid":"Remark-3.42","refnum":"3.42","reflabel":"Remark","title":"Ideas for proving Theorem 3.41","neu":true,"file":"index.tex","reftag":"3.42","cls":"Remark"},{"label":"Notation","id":"Notation-3.43","autoid":"Notation-3.43","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"3.43","refnum":"3.43","cls":"Notation"},{"label":"Remark","id":"Remark-3.44","autoid":"Remark-3.44","refnum":"3.44","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"3.44","cls":"Remark"},{"label":"Important","id":"Important*-3.14","autoid":"Important*-3.14","refnum":"??","reflabel":"Important","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Important"},{"label":"Question","id":"Question-3.45","autoid":"Question-3.45","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"3.45","refnum":"3.45","cls":"Question"},{"label":"Remark","id":"Remark-3.22","autoid":"Remark-3.22","refnum":"3.22","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"3.22","cls":"Remark"},{"label":"Example","id":"intuition-about-supremum-and-infimum","autoid":"Example-3.23","refnum":"3.23","reflabel":"Example","title":"Intuition about supremum and infimum","neu":true,"file":"index.tex","reftag":"3.23","cls":"Example"},{"label":"Definition","id":"supremum","autoid":"Definition-3.25","refnum":"3.25","reflabel":"Definition","title":"Supremum","neu":true,"file":"index.tex","reftag":"3.25","cls":"Definition"},{"label":"Notation","id":"Notation-3.26","autoid":"Notation-3.26","refnum":"3.26","reflabel":"Notation","title":"","neu":true,"file":"index.tex","reftag":"3.26","cls":"Notation"},{"label":"Remark","id":"Remark-3.27","autoid":"Remark-3.27","refnum":"3.27","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"3.27","cls":"Remark"},{"label":"Definition","id":"upper-bound-bounded-below-infimum-minimum","autoid":"Definition-3.31","refnum":"3.31","reflabel":"Definition","title":"Upper bound, bounded below, infimum, minimum","neu":true,"file":"index.tex","reftag":"3.31","cls":"Definition"},{"label":"Proposition","id":"proposition-inf-sup","autoid":"Proposition-3.34","refnum":"3.34","reflabel":"Proposition","title":"Relationship between sup and inf","neu":true,"file":"index.tex","reftag":"3.34","cls":"Proposition"},{"label":"Question","id":"Question-3.35","autoid":"Question-3.35","refnum":"3.35","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"3.35","cls":"Question"},{"label":"Question","id":"Question-3.37","autoid":"Question-3.37","refnum":"3.37","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"3.37","cls":"Question"},{"label":"Definition","id":"completeness-1","autoid":"Definition-3.38","refnum":"3.38","reflabel":"Definition","title":"Completeness","neu":true,"file":"index.tex","reftag":"3.38","cls":"Definition"},{"label":"Notation","id":"Notation-3.39","autoid":"Notation-3.39","refnum":"3.39","reflabel":"Notation","title":"","neu":true,"file":"index.tex","reftag":"3.39","cls":"Notation"},{"label":"Proposition","id":"Proposition-3.40","autoid":"Proposition-3.40","refnum":"3.40","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"3.40","cls":"Proposition"},{"label":"Theorem","id":"theorem-cut-complete","autoid":"Theorem-3.41","refnum":"3.41","reflabel":"Theorem","title":"Equivalence of Cut Property and Completeness","neu":true,"file":"index.tex","reftag":"3.41","cls":"Theorem"},{"label":"Definition","id":"system-of-real-numbers-mathbbr","autoid":"Definition-3.42","title":"System of Real Numbers \\(\\mathbb{R}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"3.42","refnum":"3.42","cls":"Definition"},{"label":"Remark","id":"Remark-3.43","autoid":"Remark-3.43","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.43","refnum":"3.43","cls":"Remark"},{"label":"Notation","id":"Notation-3.44","autoid":"Notation-3.44","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"3.44","refnum":"3.44","cls":"Notation"},{"label":"Remark","id":"Remark-3.45","autoid":"Remark-3.45","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"3.45","refnum":"3.45","cls":"Remark"},{"label":"Question","id":"Question-3.46","autoid":"Question-3.46","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"3.46","refnum":"3.46","cls":"Question"},{"label":"Proof","id":"proof-of-theorem-long-version","autoid":"Proof*-6.1","refnum":"??","reflabel":"Proof","title":"Proof of Theorem 6.8 (Long version)","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Proposition","id":"proposition-heron-error","autoid":"Proposition-6.2","title":"Error estimate","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"6.2","refnum":"6.2","cls":"Proposition"},{"label":"Proof","id":"proof-of-theorem-short-version","autoid":"Proof*-6.2","refnum":"??","reflabel":"Proof","title":"Proof of Theorem 6.8 (Short version)","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Proof","id":"Proof*-6.3","autoid":"Proof*-6.3","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"convergence-of-herons-algorithm","autoid":"Theorem-6.4","title":"Convergence of Heron’s Algorithm","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.4","refnum":"6.4","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.4","autoid":"Proof*-6.4","title":"","reflabel":"Proof","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Proof"},{"label":"Remark","id":"Remark-4.1","autoid":"Remark-4.1","refnum":"4.1","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"4.1","cls":"Remark"},{"label":"Theorem","id":"theorem-archimedean","autoid":"Theorem-4.2","refnum":"4.2","reflabel":"Theorem","title":"Archimedean Property","neu":true,"file":"index.tex","reftag":"4.2","cls":"Theorem"},{"label":"Theorem","id":"theorem-archimedean-alternative","autoid":"Theorem-4.3","refnum":"4.3","reflabel":"Theorem","title":"Archimedean Property (Alternative formulation)","neu":true,"file":"index.tex","reftag":"4.3","cls":"Theorem"},{"label":"Question","id":"Question-4.4","autoid":"Question-4.4","refnum":"4.4","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"4.4","cls":"Question"},{"label":"Theorem","id":"theorem-nested","autoid":"Theorem-4.5","refnum":"4.5","reflabel":"Theorem","title":"Nested Interval Property","neu":true,"file":"index.tex","reftag":"4.5","cls":"Theorem"},{"label":"Important","id":"Important*-4.4","autoid":"Important*-4.4","refnum":"??","reflabel":"Important","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Important"},{"label":"Example","id":"example-nested-open","autoid":"Example-id-example-nested-open","refnum":"4.6","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"4.6","cls":"Example"},{"label":"Proposition","id":"proposition-supremum-characterization","autoid":"Proposition-4.7","refnum":"4.7","reflabel":"Proposition","title":"Characterization of Supremum","neu":true,"file":"index.tex","reftag":"4.7","cls":"Proposition"},{"label":"Proof","id":"proof-of-proposition","autoid":"Proof*-4.5","refnum":"??","reflabel":"Proof","title":"Proof of Proposition 4.16","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Proposition","id":"prop-supremum-infimum","autoid":"Proposition-4.8","refnum":"4.8","reflabel":"Proposition","title":"Characterization of Infimum","neu":true,"file":"index.tex","reftag":"4.8","cls":"Proposition"},{"label":"Proposition","id":"Proposition-4.9","autoid":"Proposition-4.9","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"4.9","refnum":"4.9","cls":"Proposition"},{"label":"Proof","id":"Proof*-4.6","autoid":"Proof*-4.6","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Proposition","id":"Proposition-4.10","autoid":"Proposition-4.10","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"4.10","refnum":"4.10","cls":"Proposition"},{"label":"Proof","id":"Proof*-4.7","autoid":"Proof*-4.7","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"theorem-archimedean","autoid":"Theorem-4.11","title":"Archimedean Property","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"4.11","refnum":"4.11","cls":"Theorem"},{"label":"Question","id":"Question-4.12","autoid":"Question-4.12","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"4.12","refnum":"4.12","cls":"Question"},{"label":"Corollary","id":"Corollary-4.13","autoid":"Corollary-4.13","title":"","reflabel":"Corollary","file":"index.tex","neu":true,"reftag":"4.13","refnum":"4.13","cls":"Corollary"},{"label":"Proof","id":"Proof*-4.8","autoid":"Proof*-4.8","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Proposition","id":"proposition-interval-inf-sup","autoid":"Proposition-id-proposition-interval-inf-sup","refnum":"4.9","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"4.9","cls":"Proposition"},{"label":"Corollary","id":"Corollary-4.10","autoid":"Corollary-4.10","refnum":"4.10","reflabel":"Corollary","title":"","neu":true,"file":"index.tex","reftag":"4.10","cls":"Corollary"},{"label":"Corollary","id":"Corollary-4.11","autoid":"Corollary-4.11","refnum":"4.11","reflabel":"Corollary","title":"","neu":true,"file":"index.tex","reftag":"4.11","cls":"Corollary"},{"label":"Proposition","id":"Proposition-4.12","autoid":"Proposition-4.12","refnum":"4.12","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"4.12","cls":"Proposition"},{"label":"Theorem","id":"theorem-density","autoid":"Theorem-4.13","title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"4.13","refnum":"4.13","cls":"Theorem"},{"label":"Question","id":"Question-4.14","autoid":"Question-4.14","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"4.14","refnum":"4.14","cls":"Question"},{"label":"Corollary","id":"Corollary-4.15","autoid":"Corollary-4.15","title":"","reflabel":"Corollary","file":"index.tex","neu":true,"reftag":"4.15","refnum":"4.15","cls":"Corollary"},{"label":"Proof","id":"Proof*-4.9","autoid":"Proof*-4.9","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Definition","id":"definition-R","autoid":"Definition-3.43","refnum":"3.43","reflabel":"Definition","title":"System of Real Numbers \\(\\mathbb{R}\\)","neu":true,"file":"index.tex","reftag":"3.43","cls":"Definition"},{"label":"Notation","id":"Notation-3.45","autoid":"Notation-3.45","refnum":"3.45","reflabel":"Notation","title":"","neu":true,"file":"index.tex","reftag":"3.45","cls":"Notation"},{"label":"Remark","id":"Remark-3.46","autoid":"Remark-3.46","refnum":"3.46","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"3.46","cls":"Remark"},{"label":"Question","id":"Question-3.47","autoid":"Question-3.47","refnum":"3.47","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"3.47","cls":"Question"},{"label":"Definition","id":"inductive-set","autoid":"Definition-4.1","title":"Inductive set","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"4.1","refnum":"4.1","cls":"Definition"},{"label":"Example","id":"Example-4.2","autoid":"Example-4.2","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"4.2","refnum":"4.2","cls":"Example"},{"label":"Proposition","id":"Proposition-4.3","autoid":"Proposition-4.3","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"4.3","refnum":"4.3","cls":"Proposition"},{"label":"Definition","id":"set-of-natural-numbers","autoid":"Definition-4.4","title":"Set of Natural Numbers","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"4.4","refnum":"4.4","cls":"Definition"},{"label":"Theorem","id":"Theorem-4.6","autoid":"Theorem-4.6","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"4.6","refnum":"4.6","cls":"Theorem"},{"label":"Notation","id":"Notation-4.7","autoid":"Notation-4.7","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"4.7","refnum":"4.7","cls":"Notation"},{"label":"Theorem","id":"principle-of-induction-1","autoid":"Theorem-4.8","title":"Principle of Induction","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"4.8","refnum":"4.8","cls":"Theorem"},{"label":"Notation","id":"Notation-4.9","autoid":"Notation-4.9","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"4.9","refnum":"4.9","cls":"Notation"},{"label":"Remark","id":"Remark-4.10","autoid":"Remark-4.10","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"4.10","refnum":"4.10","cls":"Remark"},{"label":"Theorem","id":"theorem-archimedean-alternative","autoid":"Theorem-4.12","title":"Archimedean Property (Alternative formulation)","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"4.12","refnum":"4.12","cls":"Theorem"},{"label":"Question","id":"Question-4.13","autoid":"Question-4.13","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"4.13","refnum":"4.13","cls":"Question"},{"label":"Theorem","id":"theorem-nested","autoid":"Theorem-4.14","title":"Nested Interval Property","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"4.14","refnum":"4.14","cls":"Theorem"},{"label":"Important","id":"Important*-4.8","autoid":"Important*-4.8","title":"","reflabel":"Important","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Important"},{"label":"Proposition","id":"proposition-supremum-characterization","autoid":"Proposition-4.16","title":"Characterization of Supremum","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"4.16","refnum":"4.16","cls":"Proposition"},{"label":"Proposition","id":"prop-supremum-infimum","autoid":"Proposition-4.17","title":"Characterization of Infimum","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"4.17","refnum":"4.17","cls":"Proposition"},{"label":"Proof","id":"Proof*-4.10","autoid":"Proof*-4.10","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Corollary","id":"Corollary-4.19","autoid":"Corollary-4.19","title":"","reflabel":"Corollary","file":"index.tex","neu":true,"reftag":"4.19","refnum":"4.19","cls":"Corollary"},{"label":"Proof","id":"proof-of-theorem-4","autoid":"Proof*-4.11","refnum":"??","reflabel":"Proof","title":"Proof of Theorem 4.19","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Corollary","id":"Corollary-4.20","autoid":"Corollary-4.20","title":"","reflabel":"Corollary","file":"index.tex","neu":true,"reftag":"4.20","refnum":"4.20","cls":"Corollary"},{"label":"Proposition","id":"Proposition-4.21","autoid":"Proposition-4.21","title":"","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"4.21","refnum":"4.21","cls":"Proposition"},{"label":"Proof","id":"Proof*-4.12","autoid":"Proof*-4.12","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"theorem-density","autoid":"Theorem-4.22","title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"4.22","refnum":"4.22","cls":"Theorem"},{"label":"Question","id":"Question-4.23","autoid":"Question-4.23","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"4.23","refnum":"4.23","cls":"Question"},{"label":"Corollary","id":"Corollary-4.24","autoid":"Corollary-4.24","title":"","reflabel":"Corollary","file":"index.tex","neu":true,"reftag":"4.24","refnum":"4.24","cls":"Corollary"},{"label":"Proof","id":"Proof*-4.13","autoid":"Proof*-4.13","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Definition","id":"inductive-set","autoid":"Definition-3.48","refnum":"3.48","reflabel":"Definition","title":"Inductive set","neu":true,"file":"index.tex","reftag":"3.48","cls":"Definition"},{"label":"Example","id":"Example-3.49","autoid":"Example-3.49","refnum":"3.49","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"3.49","cls":"Example"},{"label":"Proposition","id":"Proposition-3.50","autoid":"Proposition-3.50","refnum":"3.50","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"3.50","cls":"Proposition"},{"label":"Proof","id":"Proof*-3.15","autoid":"Proof*-3.15","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Definition","id":"definition-natural-numbers","autoid":"Definition-3.51","refnum":"3.51","reflabel":"Definition","title":"Set of Natural Numbers","neu":true,"file":"index.tex","reftag":"3.51","cls":"Definition"},{"label":"Theorem","id":"theorem-smallest-inductive","autoid":"Theorem-3.52","title":"\\({\\mathbb{N}}_{\\mathbb{R}}\\) is the smallest inductive subset of \\(\\mathbb{R}\\)","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.52","refnum":"3.52","cls":"Theorem"},{"label":"Proof","id":"Proof*-3.16","autoid":"Proof*-3.16","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"Theorem-3.53","autoid":"Theorem-3.53","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.53","refnum":"3.53","cls":"Theorem"},{"label":"Proof","id":"Proof*-3.17","autoid":"Proof*-3.17","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Notation","id":"Notation-3.54","autoid":"Notation-3.54","refnum":"3.54","reflabel":"Notation","title":"","neu":true,"file":"index.tex","reftag":"3.54","cls":"Notation"},{"label":"Theorem","id":"theorem-induction-new","autoid":"Theorem-3.55","refnum":"3.55","reflabel":"Theorem","title":"Principle of Induction","neu":true,"file":"index.tex","reftag":"3.55","cls":"Theorem"},{"label":"Proof","id":"Proof*-3.18","autoid":"Proof*-3.18","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"Theorem-3.56","autoid":"Theorem-3.56","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.56","refnum":"3.56","cls":"Theorem"},{"label":"Theorem","id":"Theorem-3.57","autoid":"Theorem-3.57","refnum":"3.57","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"3.57","cls":"Theorem"},{"label":"Notation","id":"Notation-3.58","autoid":"Notation-3.58","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"3.58","refnum":"3.58","cls":"Notation"},{"label":"Theorem","id":"theorem-N-closed","autoid":"Theorem-id-theorem-N-closed","refnum":"3.56","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"3.56","cls":"Theorem"},{"label":"Proof","id":"Proof*-3.19","autoid":"Proof*-3.19","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Definition","id":"set-of-integers","autoid":"Definition-3.58","refnum":"3.58","reflabel":"Definition","title":"Set of Integers","neu":true,"file":"index.tex","reftag":"3.58","cls":"Definition"},{"label":"Theorem","id":"Theorem-3.59","autoid":"Theorem-3.59","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.59","refnum":"3.59","cls":"Theorem"},{"label":"Proof","id":"Proof*-3.20","autoid":"Proof*-3.20","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"theorem-Z-closed","autoid":"Theorem-id-theorem-Z-closed","refnum":"3.60","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"3.60","cls":"Theorem"},{"label":"Theorem","id":"Theorem-3.61","autoid":"Theorem-3.61","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"3.61","refnum":"3.61","cls":"Theorem"},{"label":"Proof","id":"Proof*-3.21","autoid":"Proof*-3.21","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Notation","id":"Notation-3.62","autoid":"Notation-3.62","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"3.62","refnum":"3.62","cls":"Notation"},{"label":"Theorem","id":"theorem-n-1","autoid":"Theorem-id-theorem-n-1","refnum":"3.53","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"3.53","cls":"Theorem"},{"label":"Theorem","id":"theorem-equivalent-Z","autoid":"Theorem-id-theorem-equivalent-Z","refnum":"3.59","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"3.59","cls":"Theorem"},{"label":"Theorem","id":"theorem-Z-axioms","autoid":"Theorem-id-theorem-Z-axioms","refnum":"3.61","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"3.61","cls":"Theorem"},{"label":"Remark","id":"remark-Z-axioms","autoid":"Remark-id-remark-Z-axioms","refnum":"3.62","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"3.62","cls":"Remark"},{"label":"Definition","id":"set-of-rational-numbers","autoid":"Definition-3.63","refnum":"3.63","reflabel":"Definition","title":"Set of Rational Numbers","neu":true,"file":"index.tex","reftag":"3.63","cls":"Definition"},{"label":"Theorem","id":"Theorem-3.64","autoid":"Theorem-3.64","refnum":"3.64","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"3.64","cls":"Theorem"},{"label":"Proof","id":"Proof*-3.22","autoid":"Proof*-3.22","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"Theorem-3.65","autoid":"Theorem-3.65","refnum":"3.65","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"3.65","cls":"Theorem"},{"label":"Notation","id":"Notation-3.66","autoid":"Notation-3.66","refnum":"3.66","reflabel":"Notation","title":"","neu":true,"file":"index.tex","reftag":"3.66","cls":"Notation"},{"label":"Definition","id":"dense-set","autoid":"Definition-4.13","refnum":"4.13","reflabel":"Definition","title":"Dense set","neu":true,"file":"index.tex","reftag":"4.13","cls":"Definition"},{"label":"Remark","id":"Remark-4.14","autoid":"Remark-4.14","refnum":"4.14","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"4.14","cls":"Remark"},{"label":"Theorem","id":"theorem-density","autoid":"Theorem-4.15","refnum":"4.15","reflabel":"Theorem","title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)","neu":true,"file":"index.tex","reftag":"4.15","cls":"Theorem"},{"label":"Definition","id":"irrational-numbers","autoid":"Definition-4.16","refnum":"4.16","reflabel":"Definition","title":"Irrational numbers","neu":true,"file":"index.tex","reftag":"4.16","cls":"Definition"},{"label":"Question","id":"Question-4.17","autoid":"Question-4.17","refnum":"4.17","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"4.17","cls":"Question"},{"label":"Corollary","id":"Corollary-4.18","autoid":"Corollary-4.18","refnum":"4.18","reflabel":"Corollary","title":"","neu":true,"file":"index.tex","reftag":"4.18","cls":"Corollary"},{"label":"Theorem","id":"theorem_existence_root","autoid":"Theorem-4.19","refnum":"4.19","reflabel":"Theorem","title":"Existence of \\(k\\)-th roots","neu":true,"file":"index.tex","reftag":"4.19","cls":"Theorem"},{"label":"Definition","id":"k-th-root-of-a-number","autoid":"Definition-4.20","refnum":"4.20","reflabel":"Definition","title":"\\(k\\)-th root of a number","neu":true,"file":"index.tex","reftag":"4.20","cls":"Definition"},{"label":"Definition","id":"bijective-function","autoid":"Definition-4.21","refnum":"4.21","reflabel":"Definition","title":"Bijective function","neu":true,"file":"index.tex","reftag":"4.21","cls":"Definition"},{"label":"Example","id":"injectivity","autoid":"Example-4.22","refnum":"4.22","reflabel":"Example","title":"Injectivity","neu":true,"file":"index.tex","reftag":"4.22","cls":"Example"},{"label":"Example","id":"surjectivity","autoid":"Example-4.23","refnum":"4.23","reflabel":"Example","title":"Surjectivity","neu":true,"file":"index.tex","reftag":"4.23","cls":"Example"},{"label":"Example","id":"bijectivity","autoid":"Example-4.24","refnum":"4.24","reflabel":"Example","title":"Bijectivity","neu":true,"file":"index.tex","reftag":"4.24","cls":"Example"},{"label":"Definition","id":"cardinality-finite-countable-uncountable","autoid":"Definition-4.25","refnum":"4.25","reflabel":"Definition","title":"Cardinality, finite, countable, uncountable","neu":true,"file":"index.tex","reftag":"4.25","cls":"Definition"},{"label":"Example","id":"Example-4.26","autoid":"Example-4.26","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"4.26","refnum":"4.26","cls":"Example"},{"label":"Question","id":"Question-4.26","autoid":"Question-4.26","refnum":"4.26","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"4.26","cls":"Question"},{"label":"Proposition","id":"proposition-countable-subset","autoid":"Proposition-id-proposition-countable-subset","refnum":"4.27","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"4.27","cls":"Proposition"},{"label":"Example","id":"Example-4.28","autoid":"Example-4.28","refnum":"4.28","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"4.28","cls":"Example"},{"label":"Theorem","id":"mathbbr-is-uncountable","autoid":"Theorem-4.29","title":"\\(\\mathbb{R}\\) is uncountable","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"4.29","refnum":"4.29","cls":"Theorem"},{"label":"Proposition","id":"proposition-countable-union","autoid":"Proposition-id-proposition-countable-union","refnum":"4.29","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"4.29","cls":"Proposition"},{"label":"Theorem","id":"theorem-Q-countable","autoid":"Theorem-4.30","refnum":"4.30","reflabel":"Theorem","title":"\\(\\mathbb{Q}\\) is countable","neu":true,"file":"index.tex","reftag":"4.30","cls":"Theorem"},{"label":"Proof","id":"Proof*-4.14","autoid":"Proof*-4.14","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"theorem-R-uncountable","autoid":"Theorem-4.31","refnum":"4.31","reflabel":"Theorem","title":"\\(\\mathbb{R}\\) is uncountable","neu":true,"file":"index.tex","reftag":"4.31","cls":"Theorem"},{"label":"Proof","id":"Proof*-4.15","autoid":"Proof*-4.15","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"Theorem-4.32","autoid":"Theorem-4.32","refnum":"4.32","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"4.32","cls":"Theorem"},{"label":"Proof","id":"Proof*-4.16","autoid":"Proof*-4.16","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Proposition","id":"proposition-smallest-inductive","autoid":"Proposition-3.52","refnum":"3.52","reflabel":"Proposition","title":"\\({\\mathbb{N}}_{\\mathbb{R}}\\) is the smallest inductive subset of \\(\\mathbb{R}\\)","neu":true,"file":"index.tex","reftag":"3.52","cls":"Proposition"},{"label":"Definition","id":"complex-numbers-1","autoid":"Definition-5.1","title":"Complex Numbers","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"5.1","refnum":"5.1","cls":"Definition"},{"label":"Definition","id":"complex-numbers-1","autoid":"Definition-5.2","refnum":"5.2","reflabel":"Definition","title":"Complex Numbers","neu":true,"file":"index.tex","reftag":"5.2","cls":"Definition"},{"label":"Definition","id":"Definition-5.3","autoid":"Definition-5.3","refnum":"5.3","reflabel":"Definition","title":"","neu":true,"file":"index.tex","reftag":"5.3","cls":"Definition"},{"label":"Notation","id":"Notation-5.4","autoid":"Notation-5.4","title":"","reflabel":"Notation","file":"index.tex","neu":true,"reftag":"5.4","refnum":"5.4","cls":"Notation"},{"label":"Definition","id":"multiplication-in-mathbbc","autoid":"Definition-5.5","title":"Multiplication in \\(\\mathbb{C}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"5.5","refnum":"5.5","cls":"Definition"},{"label":"Important","id":"Important*-5.1","autoid":"Important*-5.1","refnum":"??","reflabel":"Important","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Important"},{"label":"Remark","id":"remark-complex-i","autoid":"Remark-id-remark-complex-i","refnum":"5.8","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"5.8","cls":"Remark"},{"label":"Example","id":"Example-5.7","autoid":"Example-5.7","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.7","refnum":"5.7","cls":"Example"},{"label":"Proposition","id":"additive-inverse-in-mathbbc","autoid":"Proposition-5.8","title":"Additive inverse in \\(\\mathbb{C}\\)","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"5.8","refnum":"5.8","cls":"Proposition"},{"label":"Proposition","id":"proposition-C-additive-inverse","autoid":"Proposition-5.9","title":"Additive inverse in \\(\\mathbb{C}\\)","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"5.9","refnum":"5.9","cls":"Proposition"},{"label":"Remark","id":"remark-formal-multiplication","autoid":"Remark-5.5","title":"Formal calculation for multiplication in \\(\\mathbb{C}\\)","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"5.5","refnum":"5.5","cls":"Remark"},{"label":"Definition","id":"definition-multiplication-C","autoid":"Definition-5.6","title":"Multiplication in \\(\\mathbb{C}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"5.6","refnum":"5.6","cls":"Definition"},{"label":"Example","id":"Example-5.8","autoid":"Example-5.8","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.8","refnum":"5.8","cls":"Example"},{"label":"Remark","id":"remark-formal-inverse","autoid":"Remark-5.10","title":"Formal calculation for multiplicative inverse","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"5.10","refnum":"5.10","cls":"Remark"},{"label":"Proposition","id":"proposition-C-multiplicative-inverse","autoid":"Proposition-5.11","title":"Multiplicative inverse in \\(\\mathbb{C}\\)","reflabel":"Proposition","file":"index.tex","neu":true,"reftag":"5.11","refnum":"5.11","cls":"Proposition"},{"label":"Proof","id":"Proof*-5.2","autoid":"Proof*-5.2","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Important","id":"Important*-5.3","autoid":"Important*-5.3","refnum":"??","reflabel":"Important","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Important"},{"label":"Example","id":"Example-5.12","autoid":"Example-5.12","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.12","refnum":"5.12","cls":"Example"},{"label":"Theorem","id":"Theorem-5.13","autoid":"Theorem-5.13","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"5.13","refnum":"5.13","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.4","autoid":"Proof*-5.4","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-5.14","autoid":"Example-5.14","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.14","refnum":"5.14","cls":"Example"},{"label":"Theorem","id":"theorem-C-order","autoid":"Theorem-id-theorem-C-order","refnum":"5.16","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"5.16","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.5","autoid":"Proof*-5.5","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Definition","id":"complex-conjugate","autoid":"Definition-5.16","title":"Complex conjugate","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"5.16","refnum":"5.16","cls":"Definition"},{"label":"Example","id":"Example-5.17","autoid":"Example-5.17","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.17","refnum":"5.17","cls":"Example"},{"label":"Theorem","id":"Theorem-5.18","autoid":"Theorem-5.18","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"5.18","refnum":"5.18","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.6","autoid":"Proof*-5.6","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-5.19","autoid":"Example-5.19","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.19","refnum":"5.19","cls":"Example"},{"label":"Definition","id":"modulus","autoid":"Definition-5.20","title":"Modulus","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"5.20","refnum":"5.20","cls":"Definition"},{"label":"Remark","id":"modulus-of-real-numbers","autoid":"Remark-5.21","title":"Modulus of Real numbers","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"5.21","refnum":"5.21","cls":"Remark"},{"label":"Definition","id":"distance-in-mathbbc","autoid":"Definition-5.22","title":"Distance in \\(\\mathbb{C}\\)","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"5.22","refnum":"5.22","cls":"Definition"},{"label":"Theorem","id":"Theorem-5.23","autoid":"Theorem-5.23","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"5.23","refnum":"5.23","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.7","autoid":"Proof*-5.7","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-5.24","autoid":"Example-5.24","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.24","refnum":"5.24","cls":"Example"},{"label":"Theorem","id":"Theorem-5.25","autoid":"Theorem-5.25","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"5.25","refnum":"5.25","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.8","autoid":"Proof*-5.8","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"Theorem-5.26","autoid":"Theorem-5.26","refnum":"5.26","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"5.26","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.9","autoid":"Proof*-5.9","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Remark","id":"geometric-interpretation-of-triangle-inequality","autoid":"Remark-5.27","title":"Geometric interpretation of triangle inequality","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"5.27","refnum":"5.27","cls":"Remark"},{"label":"Definition","id":"argument","autoid":"Definition-5.28","title":"Argument","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"5.28","refnum":"5.28","cls":"Definition"},{"label":"Warning","id":"Warning*-5.10","autoid":"Warning*-5.10","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Remark","id":"principal-value","autoid":"Remark-5.29","title":"Principal Value","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"5.29","refnum":"5.29","cls":"Remark"},{"label":"Example","id":"Example-5.30","autoid":"Example-5.30","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.30","refnum":"5.30","cls":"Example"},{"label":"Theorem","id":"theorem-polar-coordinates","autoid":"Theorem-5.31","title":"Polar coordinates","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"5.31","refnum":"5.31","cls":"Theorem"},{"label":"Definition","id":"trigonometric-form","autoid":"Definition-5.32","title":"Trigonometric form","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"5.32","refnum":"5.32","cls":"Definition"},{"label":"Example","id":"Example-5.33","autoid":"Example-5.33","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.33","refnum":"5.33","cls":"Example"},{"label":"Corollary","id":"corollary-arg","autoid":"Corollary-5.34","title":"Computing \\(\\arg(z)\\)","reflabel":"Corollary","file":"index.tex","neu":true,"reftag":"5.34","refnum":"5.34","cls":"Corollary"},{"label":"Proof","id":"Proof*-5.11","autoid":"Proof*-5.11","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-5.35","autoid":"Example-5.35","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.35","refnum":"5.35","cls":"Example"},{"label":"Example","id":"example-trigonometric-form","autoid":"Example-id-example-trigonometric-form","refnum":"5.34","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.34","cls":"Example"},{"label":"Theorem","id":"theorem-euler-identity","autoid":"Theorem-5.36","title":"Euler’s identity","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"5.36","refnum":"5.36","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.12","autoid":"Proof*-5.12","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"theorem-euler-identity","autoid":"Theorem-5.37","refnum":"5.37","reflabel":"Theorem","title":"Euler’s identity","neu":true,"file":"index.tex","reftag":"5.37","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.13","autoid":"Proof*-5.13","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"Theorem-5.38","autoid":"Theorem-5.38","refnum":"5.38","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"5.38","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.14","autoid":"Proof*-5.14","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Definition","id":"exponential-form-1","autoid":"Definition-5.39","title":"Exponential form","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"5.39","refnum":"5.39","cls":"Definition"},{"label":"Example","id":"example-exponential-form","autoid":"Example-id-example-exponential-form","refnum":"5.41","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.41","cls":"Example"},{"label":"Remark","id":"periodicity-of-exponential","autoid":"Remark-5.41","title":"Periodicity of exponential","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"5.41","refnum":"5.41","cls":"Remark"},{"label":"Example","id":"Example-5.42","autoid":"Example-5.42","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.42","refnum":"5.42","cls":"Example"},{"label":"Example","id":"Example-5.43","autoid":"Example-5.43","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"5.43","refnum":"5.43","cls":"Example"},{"label":"Question","id":"Question-5.1","autoid":"Question-5.1","refnum":"5.1","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"5.1","cls":"Question"},{"label":"Definition","id":"definition-addition-C","autoid":"Definition-5.4","refnum":"5.4","reflabel":"Definition","title":"Addition in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"5.4","cls":"Definition"},{"label":"Notation","id":"Notation-5.5","autoid":"Notation-5.5","refnum":"5.5","reflabel":"Notation","title":"","neu":true,"file":"index.tex","reftag":"5.5","cls":"Notation"},{"label":"Remark","id":"remark-formal-multiplication","autoid":"Remark-5.6","refnum":"5.6","reflabel":"Remark","title":"Formal calculation for multiplication in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"5.6","cls":"Remark"},{"label":"Definition","id":"definition-multiplication-C","autoid":"Definition-5.7","refnum":"5.7","reflabel":"Definition","title":"Multiplication in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"5.7","cls":"Definition"},{"label":"Example","id":"Example-5.9","autoid":"Example-5.9","refnum":"5.9","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.9","cls":"Example"},{"label":"Proposition","id":"proposition-C-additive-inverse","autoid":"Proposition-5.10","refnum":"5.10","reflabel":"Proposition","title":"Additive inverse in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"5.10","cls":"Proposition"},{"label":"Remark","id":"remark-formal-inverse","autoid":"Remark-5.11","refnum":"5.11","reflabel":"Remark","title":"Formal calculation for multiplicative inverse","neu":true,"file":"index.tex","reftag":"5.11","cls":"Remark"},{"label":"Proposition","id":"proposition-C-multiplicative-inverse","autoid":"Proposition-5.12","refnum":"5.12","reflabel":"Proposition","title":"Multiplicative inverse in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"5.12","cls":"Proposition"},{"label":"Example","id":"Example-5.13","autoid":"Example-5.13","refnum":"5.13","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.13","cls":"Example"},{"label":"Theorem","id":"Theorem-5.14","autoid":"Theorem-5.14","refnum":"5.14","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"5.14","cls":"Theorem"},{"label":"Example","id":"Example-5.15","autoid":"Example-5.15","refnum":"5.15","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.15","cls":"Example"},{"label":"Definition","id":"complex-conjugate","autoid":"Definition-5.17","refnum":"5.17","reflabel":"Definition","title":"Complex conjugate","neu":true,"file":"index.tex","reftag":"5.17","cls":"Definition"},{"label":"Example","id":"Example-5.18","autoid":"Example-5.18","refnum":"5.18","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.18","cls":"Example"},{"label":"Theorem","id":"Theorem-5.19","autoid":"Theorem-5.19","refnum":"5.19","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"5.19","cls":"Theorem"},{"label":"Example","id":"Example-5.20","autoid":"Example-5.20","refnum":"5.20","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.20","cls":"Example"},{"label":"Definition","id":"modulus","autoid":"Definition-5.21","refnum":"5.21","reflabel":"Definition","title":"Modulus","neu":true,"file":"index.tex","reftag":"5.21","cls":"Definition"},{"label":"Remark","id":"modulus-of-real-numbers","autoid":"Remark-5.22","refnum":"5.22","reflabel":"Remark","title":"Modulus of Real numbers","neu":true,"file":"index.tex","reftag":"5.22","cls":"Remark"},{"label":"Definition","id":"distance-in-mathbbc","autoid":"Definition-5.23","refnum":"5.23","reflabel":"Definition","title":"Distance in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"5.23","cls":"Definition"},{"label":"Theorem","id":"Theorem-5.24","autoid":"Theorem-5.24","refnum":"5.24","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"5.24","cls":"Theorem"},{"label":"Example","id":"Example-5.25","autoid":"Example-5.25","refnum":"5.25","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.25","cls":"Example"},{"label":"Theorem","id":"triangle-inequality-in-mathbbc","autoid":"Theorem-5.27","refnum":"5.27","reflabel":"Theorem","title":"Triangle inequality in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"5.27","cls":"Theorem"},{"label":"Remark","id":"geometric-interpretation-of-triangle-inequality","autoid":"Remark-5.28","refnum":"5.28","reflabel":"Remark","title":"Geometric interpretation of triangle inequality","neu":true,"file":"index.tex","reftag":"5.28","cls":"Remark"},{"label":"Definition","id":"argument","autoid":"Definition-5.29","refnum":"5.29","reflabel":"Definition","title":"Argument","neu":true,"file":"index.tex","reftag":"5.29","cls":"Definition"},{"label":"Remark","id":"principal-value","autoid":"Remark-5.30","refnum":"5.30","reflabel":"Remark","title":"Principal Value","neu":true,"file":"index.tex","reftag":"5.30","cls":"Remark"},{"label":"Example","id":"Example-5.31","autoid":"Example-5.31","refnum":"5.31","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.31","cls":"Example"},{"label":"Theorem","id":"theorem-polar-coordinates","autoid":"Theorem-5.32","refnum":"5.32","reflabel":"Theorem","title":"Polar coordinates","neu":true,"file":"index.tex","reftag":"5.32","cls":"Theorem"},{"label":"Definition","id":"trigonometric-form","autoid":"Definition-5.33","refnum":"5.33","reflabel":"Definition","title":"Trigonometric form","neu":true,"file":"index.tex","reftag":"5.33","cls":"Definition"},{"label":"Corollary","id":"corollary-arg","autoid":"Corollary-5.35","refnum":"5.35","reflabel":"Corollary","title":"Computing \\(\\arg(z)\\)","neu":true,"file":"index.tex","reftag":"5.35","cls":"Corollary"},{"label":"Example","id":"Example-5.36","autoid":"Example-5.36","refnum":"5.36","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.36","cls":"Example"},{"label":"Theorem","id":"Theorem-5.39","autoid":"Theorem-5.39","refnum":"5.39","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"5.39","cls":"Theorem"},{"label":"Definition","id":"exponential-form-1","autoid":"Definition-5.40","refnum":"5.40","reflabel":"Definition","title":"Exponential form","neu":true,"file":"index.tex","reftag":"5.40","cls":"Definition"},{"label":"Remark","id":"periodicity-of-exponential","autoid":"Remark-5.42","refnum":"5.42","reflabel":"Remark","title":"Periodicity of exponential","neu":true,"file":"index.tex","reftag":"5.42","cls":"Remark"},{"label":"Proposition","id":"proposition-complex-exponential","autoid":"Proposition-id-proposition-complex-exponential","refnum":"5.43","reflabel":"Proposition","title":"","neu":true,"file":"index.tex","reftag":"5.43","cls":"Proposition"},{"label":"Example","id":"Example-5.44","autoid":"Example-5.44","refnum":"5.44","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.44","cls":"Example"},{"label":"Example","id":"Example-5.45","autoid":"Example-5.45","refnum":"5.45","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.45","cls":"Example"},{"label":"Question","id":"Question-5.46","autoid":"Question-5.46","refnum":"5.46","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"5.46","cls":"Question"},{"label":"Theorem","id":"theorem-fta","autoid":"Theorem-5.47","refnum":"5.47","reflabel":"Theorem","title":"Fundamental theorem of algebra","neu":true,"file":"index.tex","reftag":"5.47","cls":"Theorem"},{"label":"Example","id":"Example-5.48","autoid":"Example-5.48","refnum":"5.48","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.48","cls":"Example"},{"label":"Example","id":"example-degree-4","autoid":"Example-id-example-degree-4","refnum":"5.49","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.49","cls":"Example"},{"label":"Definition","id":"Definition-5.50","autoid":"Definition-5.50","refnum":"5.50","reflabel":"Definition","title":"","neu":true,"file":"index.tex","reftag":"5.50","cls":"Definition"},{"label":"Example","id":"example-multiplicity","autoid":"Example-id-example-multiplicity","refnum":"5.51","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.51","cls":"Example"},{"label":"Question","id":"Question-5.52","autoid":"Question-5.52","refnum":"5.52","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"5.52","cls":"Question"},{"label":"Theorem","id":"theorem-abel-ruffini","autoid":"Theorem-5.53","refnum":"5.53","reflabel":"Theorem","title":"Abel-Ruffini","neu":true,"file":"index.tex","reftag":"5.53","cls":"Theorem"},{"label":"Proposition","id":"proposition-quadratic-formula","autoid":"Proposition-5.54","refnum":"5.54","reflabel":"Proposition","title":"Quadratic formula","neu":true,"file":"index.tex","reftag":"5.54","cls":"Proposition"},{"label":"Example","id":"Example-5.55","autoid":"Example-5.55","refnum":"5.55","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.55","cls":"Example"},{"label":"Example","id":"Example-5.56","autoid":"Example-5.56","refnum":"5.56","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.56","cls":"Example"},{"label":"Example","id":"Example-5.57","autoid":"Example-5.57","refnum":"5.57","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.57","cls":"Example"},{"label":"Question","id":"Question-5.58","autoid":"Question-5.58","refnum":"5.58","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"5.58","cls":"Question"},{"label":"Proposition","id":"proposition-quadratic-formula-C","autoid":"Proposition-5.59","refnum":"5.59","reflabel":"Proposition","title":"Generalization of quadratci formula","neu":true,"file":"index.tex","reftag":"5.59","cls":"Proposition"},{"label":"Remark","id":"Remark-5.60","autoid":"Remark-5.60","refnum":"5.60","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"5.60","cls":"Remark"},{"label":"Example","id":"Example-5.61","autoid":"Example-5.61","refnum":"5.61","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.61","cls":"Example"},{"label":"Remark","id":"polynomial-equations-of-order-n34","autoid":"Remark-5.62","refnum":"5.62","reflabel":"Remark","title":"Polynomial equations of order \\(n=3,4\\)","neu":true,"file":"index.tex","reftag":"5.62","cls":"Remark"},{"label":"Example","id":"Example-5.63","autoid":"Example-5.63","refnum":"5.63","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.63","cls":"Example"},{"label":"Example","id":"Example-5.64","autoid":"Example-5.64","refnum":"5.64","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.64","cls":"Example"},{"label":"Problem","id":"Problem*-5.15","autoid":"Problem*-5.15","refnum":"??","reflabel":"Problem","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Problem"},{"label":"Question","id":"Question-5.65","autoid":"Question-5.65","refnum":"5.65","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"5.65","cls":"Question"},{"label":"Example","id":"Example-5.66","autoid":"Example-5.66","refnum":"5.66","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.66","cls":"Example"},{"label":"Theorem","id":"Theorem-5.67","autoid":"Theorem-5.67","refnum":"5.67","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"5.67","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.16","autoid":"Proof*-5.16","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Definition","id":"Definition-5.68","autoid":"Definition-5.68","refnum":"5.68","reflabel":"Definition","title":"","neu":true,"file":"index.tex","reftag":"5.68","cls":"Definition"},{"label":"Example","id":"Example-5.69","autoid":"Example-5.69","refnum":"5.69","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.69","cls":"Example"},{"label":"Example","id":"Example-5.70","autoid":"Example-5.70","refnum":"5.70","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.70","cls":"Example"},{"label":"Problem","id":"Problem*-5.17","autoid":"Problem*-5.17","refnum":"??","reflabel":"Problem","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Problem"},{"label":"Theorem","id":"Theorem-5.71","autoid":"Theorem-5.71","refnum":"5.71","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"5.71","cls":"Theorem"},{"label":"Proof","id":"Proof*-5.18","autoid":"Proof*-5.18","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-5.72","autoid":"Example-5.72","refnum":"5.72","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.72","cls":"Example"},{"label":"Example","id":"Example-5.73","autoid":"Example-5.73","refnum":"5.73","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"5.73","cls":"Example"},{"label":"Remark","id":"Remark-6.1","autoid":"Remark-6.1","refnum":"6.1","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"6.1","cls":"Remark"},{"label":"Definition","id":"sequence-of-real-numbers","autoid":"Definition-6.2","refnum":"6.2","reflabel":"Definition","title":"Sequence of Real numbers","neu":true,"file":"index.tex","reftag":"6.2","cls":"Definition"},{"label":"Notation","id":"Notation-6.3","autoid":"Notation-6.3","refnum":"6.3","reflabel":"Notation","title":"","neu":true,"file":"index.tex","reftag":"6.3","cls":"Notation"},{"label":"Example","id":"Example-6.4","autoid":"Example-6.4","refnum":"6.4","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.4","cls":"Example"},{"label":"Definition","id":"definition-convergent-sequence","autoid":"Definition-6.5","refnum":"6.5","reflabel":"Definition","title":"Convergent sequence","neu":true,"file":"index.tex","reftag":"6.5","cls":"Definition"},{"label":"Remark","id":"Remark-6.6","autoid":"Remark-6.6","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"6.6","refnum":"6.6","cls":"Remark"},{"label":"Theorem","id":"theorem-one-over-n","autoid":"Theorem-id-theorem-one-over-n","refnum":"6.8","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"6.8","cls":"Theorem"},{"label":"Theorem","id":"Theorem-6.8","autoid":"Theorem-6.8","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.8","refnum":"6.8","cls":"Theorem"},{"label":"Question","id":"Question-6.9","autoid":"Question-6.9","title":"","reflabel":"Question","file":"index.tex","neu":true,"reftag":"6.9","refnum":"6.9","cls":"Question"},{"label":"Important","id":"Important*-6.4","autoid":"Important*-6.4","refnum":"??","reflabel":"Important","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Important"},{"label":"Example","id":"Example-6.10","autoid":"Example-6.10","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.10","refnum":"6.10","cls":"Example"},{"label":"Definition","id":"divergent-sequence","autoid":"Definition-6.11","title":"Divergent sequence","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"6.11","refnum":"6.11","cls":"Definition"},{"label":"Remark","id":"Remark-6.12","autoid":"Remark-6.12","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"6.12","refnum":"6.12","cls":"Remark"},{"label":"Theorem","id":"Theorem-6.13","autoid":"Theorem-6.13","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.13","refnum":"6.13","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.5","autoid":"Proof*-6.5","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"Theorem-6.14","autoid":"Theorem-6.14","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.14","refnum":"6.14","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.6","autoid":"Proof*-6.6","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-6.15","autoid":"Example-6.15","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.15","refnum":"6.15","cls":"Example"},{"label":"Definition","id":"definition-bounded-sequence","autoid":"Definition-6.16","title":"Bounded sequence","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"6.16","refnum":"6.16","cls":"Definition"},{"label":"Theorem","id":"Theorem-6.17","autoid":"Theorem-6.17","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.17","refnum":"6.17","cls":"Theorem"},{"label":"Theorem","id":"theorem-convergent-bounded","autoid":"Theorem-id-theorem-convergent-bounded","refnum":"6.19","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"6.19","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.7","autoid":"Proof*-6.7","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-6.18","autoid":"Example-6.18","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.18","refnum":"6.18","cls":"Example"},{"label":"Corollary","id":"corollary-convergent-bounded","autoid":"Corollary-id-corollary-convergent-bounded","refnum":"6.22","reflabel":"Corollary","title":"","neu":true,"file":"index.tex","reftag":"6.22","cls":"Corollary"},{"label":"Remark","id":"Remark-6.20","autoid":"Remark-6.20","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"6.20","refnum":"6.20","cls":"Remark"},{"label":"Theorem","id":"Theorem-6.21","autoid":"Theorem-6.21","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.21","refnum":"6.21","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.8","autoid":"Proof*-6.8","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"Theorem-6.22","autoid":"Theorem-6.22","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.22","refnum":"6.22","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.9","autoid":"Proof*-6.9","title":"","reflabel":"Proof","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Proof"},{"label":"Theorem","id":"theorem-constant-sequence","autoid":"Theorem-id-theorem-constant-sequence","refnum":"6.12","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"6.12","cls":"Theorem"},{"label":"Definition","id":"divergent-sequence","autoid":"Definition-6.12","title":"Divergent sequence","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"6.12","refnum":"6.12","cls":"Definition"},{"label":"Remark","id":"Remark-6.13","autoid":"Remark-6.13","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"6.13","refnum":"6.13","cls":"Remark"},{"label":"Theorem","id":"theorem-uniqueness-limit","autoid":"Theorem-6.15","title":"Uniqueness of limit","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.15","refnum":"6.15","cls":"Theorem"},{"label":"Example","id":"Example-6.16","autoid":"Example-6.16","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.16","refnum":"6.16","cls":"Example"},{"label":"Definition","id":"definition-bounded-sequence","autoid":"Definition-6.17","title":"Bounded sequence","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"6.17","refnum":"6.17","cls":"Definition"},{"label":"Example","id":"Example-6.19","autoid":"Example-6.19","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.19","refnum":"6.19","cls":"Example"},{"label":"Remark","id":"Remark-6.21","autoid":"Remark-6.21","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"6.21","refnum":"6.21","cls":"Remark"},{"label":"Theorem","id":"Theorem-6.23","autoid":"Theorem-6.23","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.23","refnum":"6.23","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.10","autoid":"Proof*-6.10","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"Theorem-6.24","autoid":"Theorem-6.24","refnum":"6.24","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"6.24","cls":"Theorem"},{"label":"Example","id":"example-limit-ploynomial","autoid":"Example-id-example-limit-ploynomial","refnum":"6.27","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.27","cls":"Example"},{"label":"Example","id":"Example-6.26","autoid":"Example-6.26","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.26","refnum":"6.26","cls":"Example"},{"label":"Theorem","id":"theorem-one-over-np","autoid":"Theorem-id-theorem-one-over-np","refnum":"6.9","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"6.9","cls":"Theorem"},{"label":"Important","id":"Important*-6.11","autoid":"Important*-6.11","title":"","reflabel":"Important","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Important"},{"label":"Theorem","id":"theorem-1-minus-n","autoid":"Theorem-id-theorem-1-minus-n","refnum":"6.15","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"6.15","cls":"Theorem"},{"label":"Warning","id":"Warning*-6.9","autoid":"Warning*-6.9","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Example","id":"Example-6.20","autoid":"Example-6.20","refnum":"6.20","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.20","cls":"Example"},{"label":"Remark","id":"Remark-6.22","autoid":"Remark-6.22","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"6.22","refnum":"6.22","cls":"Remark"},{"label":"Proof","id":"Proof*-6.11","autoid":"Proof*-6.11","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"Theorem-6.25","autoid":"Theorem-6.25","refnum":"6.25","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"6.25","cls":"Theorem"},{"label":"Important","id":"Important*-6.12","autoid":"Important*-6.12","title":"","reflabel":"Important","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Important"},{"label":"Example","id":"example-algebra-of-limits-2","autoid":"Example-id-example-algebra-of-limits-2","refnum":"6.28","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.28","cls":"Example"},{"label":"Example","id":"Example-6.28","autoid":"Example-6.28","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.28","refnum":"6.28","cls":"Example"},{"label":"Warning","id":"Warning*-6.13","autoid":"Warning*-6.13","title":"","reflabel":"Warning","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Warning"},{"label":"Proof","id":"proof-of-theorem-5","autoid":"Proof*-6.14","title":"Proof of Theorem 6.25","reflabel":"Proof","file":"index.tex","neu":true,"reftag":"","refnum":"??","cls":"Proof"},{"label":"Example","id":"Example-6.29","autoid":"Example-6.29","refnum":"6.29","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.29","cls":"Example"},{"label":"Example","id":"Example-6.30","autoid":"Example-6.30","refnum":"6.30","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.30","cls":"Example"},{"label":"Theorem","id":"Theorem-6.31","autoid":"Theorem-6.31","title":"","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.31","refnum":"6.31","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.15","autoid":"Proof*-6.15","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-6.32","autoid":"Example-6.32","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.32","refnum":"6.32","cls":"Example"},{"label":"Example","id":"Example-6.33","autoid":"Example-6.33","refnum":"6.33","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.33","cls":"Example"},{"label":"Proof","id":"Proof*-6.12","autoid":"Proof*-6.12","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Important","id":"Important*-6.13","autoid":"Important*-6.13","refnum":"??","reflabel":"Important","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Important"},{"label":"Warning","id":"Warning*-6.14","autoid":"Warning*-6.14","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Theorem","id":"theorem-square-root-limit","autoid":"Theorem-id-theorem-square-root-limit","refnum":"6.32","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"6.32","cls":"Theorem"},{"label":"Theorem","id":"theorem-squeeze","autoid":"Theorem-6.34","title":"Squeeze theorem","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.34","refnum":"6.34","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.16","autoid":"Proof*-6.16","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-6.35","autoid":"Example-6.35","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.35","refnum":"6.35","cls":"Example"},{"label":"Example","id":"example-squeeze","autoid":"Example-id-example-squeeze","refnum":"6.37","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.37","cls":"Example"},{"label":"Warning","id":"Warning*-6.17","autoid":"Warning*-6.17","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Example","id":"Example-6.37","autoid":"Example-6.37","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.37","refnum":"6.37","cls":"Example"},{"label":"Definition","id":"Definition-6.38","autoid":"Definition-6.38","title":"","reflabel":"Definition","file":"index.tex","neu":true,"reftag":"6.38","refnum":"6.38","cls":"Definition"},{"label":"Theorem","id":"theorem-geometric-sequence","autoid":"Theorem-6.39","title":"Geometric sequence test","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.39","refnum":"6.39","cls":"Theorem"},{"label":"Warning","id":"Warning*-6.18","autoid":"Warning*-6.18","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Lemma","id":"lemma-bernoulli","autoid":"Lemma-6.40","title":"Bernoulli’s inequality","reflabel":"Lemma","file":"index.tex","neu":true,"reftag":"6.40","refnum":"6.40","cls":"Lemma"},{"label":"Proof","id":"Proof*-6.19","autoid":"Proof*-6.19","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Proof","id":"proof-of-theorem-5","autoid":"Proof*-6.20","refnum":"??","reflabel":"Proof","title":"Proof of Theorem 6.40","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-6.41","autoid":"Example-6.41","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.41","refnum":"6.41","cls":"Example"},{"label":"Theorem","id":"theorem-ratio-test","autoid":"Theorem-6.42","title":"Ratio test","reflabel":"Theorem","file":"index.tex","neu":true,"reftag":"6.42","refnum":"6.42","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.21","autoid":"Proof*-6.21","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-6.43","autoid":"Example-6.43","title":"","reflabel":"Example","file":"index.tex","neu":true,"reftag":"6.43","refnum":"6.43","cls":"Example"},{"label":"Warning","id":"Warning*-6.22","autoid":"Warning*-6.22","refnum":"??","reflabel":"Warning","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Warning"},{"label":"Example","id":"Example-6.44","autoid":"Example-6.44","refnum":"6.44","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.44","cls":"Example"},{"label":"Example","id":"Example-6.45","autoid":"Example-6.45","refnum":"6.45","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.45","cls":"Example"},{"label":"Remark","id":"Remark-6.46","autoid":"Remark-6.46","title":"","reflabel":"Remark","file":"index.tex","neu":true,"reftag":"6.46","refnum":"6.46","cls":"Remark"},{"label":"Notation","id":"Notation-6.6","autoid":"Notation-6.6","refnum":"6.6","reflabel":"Notation","title":"","neu":true,"file":"index.tex","reftag":"6.6","cls":"Notation"},{"label":"Remark","id":"Remark-6.7","autoid":"Remark-6.7","refnum":"6.7","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"6.7","cls":"Remark"},{"label":"Question","id":"Question-6.10","autoid":"Question-6.10","refnum":"6.10","reflabel":"Question","title":"","neu":true,"file":"index.tex","reftag":"6.10","cls":"Question"},{"label":"Example","id":"Example-6.11","autoid":"Example-6.11","refnum":"6.11","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.11","cls":"Example"},{"label":"Definition","id":"divergent-sequence","autoid":"Definition-6.13","refnum":"6.13","reflabel":"Definition","title":"Divergent sequence","neu":true,"file":"index.tex","reftag":"6.13","cls":"Definition"},{"label":"Remark","id":"Remark-6.14","autoid":"Remark-6.14","refnum":"6.14","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"6.14","cls":"Remark"},{"label":"Theorem","id":"theorem-uniqueness-limit","autoid":"Theorem-6.16","refnum":"6.16","reflabel":"Theorem","title":"Uniqueness of limit","neu":true,"file":"index.tex","reftag":"6.16","cls":"Theorem"},{"label":"Example","id":"Example-6.17","autoid":"Example-6.17","refnum":"6.17","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.17","cls":"Example"},{"label":"Definition","id":"definition-bounded-sequence","autoid":"Definition-6.18","refnum":"6.18","reflabel":"Definition","title":"Bounded sequence","neu":true,"file":"index.tex","reftag":"6.18","cls":"Definition"},{"label":"Example","id":"Example-6.21","autoid":"Example-6.21","refnum":"6.21","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.21","cls":"Example"},{"label":"Remark","id":"Remark-6.23","autoid":"Remark-6.23","refnum":"6.23","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"6.23","cls":"Remark"},{"label":"Theorem","id":"theorem-algebra-limits","autoid":"Theorem-6.26","refnum":"6.26","reflabel":"Theorem","title":"Algebra of limits","neu":true,"file":"index.tex","reftag":"6.26","cls":"Theorem"},{"label":"Example","id":"Example-6.31","autoid":"Example-6.31","refnum":"6.31","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.31","cls":"Example"},{"label":"Example","id":"Example-6.34","autoid":"Example-6.34","refnum":"6.34","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.34","cls":"Example"},{"label":"Theorem","id":"theorem-squeeze","autoid":"Theorem-6.35","refnum":"6.35","reflabel":"Theorem","title":"Squeeze theorem","neu":true,"file":"index.tex","reftag":"6.35","cls":"Theorem"},{"label":"Example","id":"Example-6.36","autoid":"Example-6.36","refnum":"6.36","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.36","cls":"Example"},{"label":"Example","id":"Example-6.38","autoid":"Example-6.38","refnum":"6.38","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.38","cls":"Example"},{"label":"Definition","id":"Definition-6.39","autoid":"Definition-6.39","refnum":"6.39","reflabel":"Definition","title":"","neu":true,"file":"index.tex","reftag":"6.39","cls":"Definition"},{"label":"Theorem","id":"theorem-geometric-sequence","autoid":"Theorem-6.40","refnum":"6.40","reflabel":"Theorem","title":"Geometric Sequence Test","neu":true,"file":"index.tex","reftag":"6.40","cls":"Theorem"},{"label":"Lemma","id":"lemma-bernoulli","autoid":"Lemma-6.41","refnum":"6.41","reflabel":"Lemma","title":"Bernoulli’s inequality","neu":true,"file":"index.tex","reftag":"6.41","cls":"Lemma"},{"label":"Example","id":"Example-6.42","autoid":"Example-6.42","refnum":"6.42","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.42","cls":"Example"},{"label":"Theorem","id":"theorem-ratio-test","autoid":"Theorem-6.43","refnum":"6.43","reflabel":"Theorem","title":"Ratio Test","neu":true,"file":"index.tex","reftag":"6.43","cls":"Theorem"},{"label":"Example","id":"Example-6.46","autoid":"Example-6.46","refnum":"6.46","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.46","cls":"Example"},{"label":"Remark","id":"Remark-6.47","autoid":"Remark-6.47","refnum":"6.47","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"6.47","cls":"Remark"},{"label":"Definition","id":"sequence-of-complex-numbers","autoid":"Definition-7.1","refnum":"7.1","reflabel":"Definition","title":"Sequence of Complex numbers","neu":true,"file":"index.tex","reftag":"7.1","cls":"Definition"},{"label":"Definition","id":"definition-convergent-sequence-C","autoid":"Definition-7.2","refnum":"7.2","reflabel":"Definition","title":"Convergent sequence in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"7.2","cls":"Definition"},{"label":"Important","id":"Important*-7.1","autoid":"Important*-7.1","refnum":"??","reflabel":"Important","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Important"},{"label":"Example","id":"Example-7.3","autoid":"Example-7.3","refnum":"7.3","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"7.3","cls":"Example"},{"label":"Definition","id":"bounded-sequence-in-mathbbc","autoid":"Definition-7.4","refnum":"7.4","reflabel":"Definition","title":"Bounded sequence in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"7.4","cls":"Definition"},{"label":"Theorem","id":"theorem-convergent-bounded-C","autoid":"Theorem-id-theorem-convergent-bounded-C","refnum":"7.5","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"7.5","cls":"Theorem"},{"label":"Definition","id":"divergent-sequences-in-mathbbc","autoid":"Definition-7.6","refnum":"7.6","reflabel":"Definition","title":"Divergent sequences in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"7.6","cls":"Definition"},{"label":"Corollary","id":"Corollary-7.7","autoid":"Corollary-7.7","refnum":"7.7","reflabel":"Corollary","title":"","neu":true,"file":"index.tex","reftag":"7.7","cls":"Corollary"},{"label":"Theorem","id":"theorem-algebra-limits-C","autoid":"Theorem-7.8","refnum":"7.8","reflabel":"Theorem","title":"Algebra of limits in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"7.8","cls":"Theorem"},{"label":"Example","id":"Example-7.9","autoid":"Example-7.9","refnum":"7.9","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"7.9","cls":"Example"},{"label":"Theorem","id":"theorem-convergence-zero-C","autoid":"Theorem-id-theorem-convergence-zero-C","refnum":"7.10","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"7.10","cls":"Theorem"},{"label":"Proof","id":"Proof*-7.2","autoid":"Proof*-7.2","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-7.11","autoid":"Example-7.11","refnum":"7.11","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"7.11","cls":"Example"},{"label":"Example","id":"Example-7.12","autoid":"Example-7.12","refnum":"7.12","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"7.12","cls":"Example"},{"label":"Theorem","id":"geometric-sequence-test-in-mathbbc","autoid":"Theorem-7.13","refnum":"7.13","reflabel":"Theorem","title":"Geometric sequence Test in \\(\\mathbb{C}\\)","neu":true,"file":"index.tex","reftag":"7.13","cls":"Theorem"},{"label":"Example","id":"Example-7.14","autoid":"Example-7.14","refnum":"7.14","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"7.14","cls":"Example"},{"label":"Theorem","id":"theorem-ratop-test-C","autoid":"Theorem-7.15","refnum":"7.15","reflabel":"Theorem","title":"Ratio Test in ","neu":true,"file":"index.tex","reftag":"7.15","cls":"Theorem"},{"label":"Example","id":"Example-7.16","autoid":"Example-7.16","refnum":"7.16","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"7.16","cls":"Example"},{"label":"Theorem","id":"theorem-convergence-real-imaginary","autoid":"Theorem-id-theorem-convergence-real-imaginary","refnum":"7.17","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"7.17","cls":"Theorem"},{"label":"Proof","id":"Proof*-7.3","autoid":"Proof*-7.3","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Example","id":"Example-7.18","autoid":"Example-7.18","refnum":"7.18","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"7.18","cls":"Example"},{"label":"Definition","id":"monotone-sequence","autoid":"Definition-6.48","refnum":"6.48","reflabel":"Definition","title":"Monotone sequence","neu":true,"file":"index.tex","reftag":"6.48","cls":"Definition"},{"label":"Example","id":"Example-6.49","autoid":"Example-6.49","refnum":"6.49","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"6.49","cls":"Example"},{"label":"Theorem","id":"theorem-monotone-convergence","autoid":"Theorem-6.50","refnum":"6.50","reflabel":"Theorem","title":"Monotone Convergence Theorem","neu":true,"file":"index.tex","reftag":"6.50","cls":"Theorem"},{"label":"Proof","id":"Proof*-6.23","autoid":"Proof*-6.23","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Definition","id":"partial-sums","autoid":"Definition-8.1","refnum":"8.1","reflabel":"Definition","title":"Partial sums","neu":true,"file":"index.tex","reftag":"8.1","cls":"Definition"},{"label":"Definition","id":"convergent-series-1","autoid":"Definition-8.2","refnum":"8.2","reflabel":"Definition","title":"Convergent series","neu":true,"file":"index.tex","reftag":"8.2","cls":"Definition"},{"label":"Definition","id":"divergent-series","autoid":"Definition-8.3","refnum":"8.3","reflabel":"Definition","title":"Divergent series","neu":true,"file":"index.tex","reftag":"8.3","cls":"Definition"},{"label":"Example","id":"Example-8.4","autoid":"Example-8.4","refnum":"8.4","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"8.4","cls":"Example"},{"label":"Example","id":"Example-8.5","autoid":"Example-8.5","refnum":"8.5","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"8.5","cls":"Example"},{"label":"Theorem","id":"theorem-series-necessary","autoid":"Theorem-id-theorem-series-necessary","refnum":"8.6","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"8.6","cls":"Theorem"},{"label":"Proof","id":"Proof*-8.1","autoid":"Proof*-8.1","refnum":"??","reflabel":"Proof","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Proof"},{"label":"Theorem","id":"theorem-series-necessary-1","autoid":"Theorem-id-theorem-series-necessary-1","refnum":"8.7","reflabel":"Theorem","title":"","neu":true,"file":"index.tex","reftag":"8.7","cls":"Theorem"},{"label":"Example","id":"Example-8.8","autoid":"Example-8.8","refnum":"8.8","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"8.8","cls":"Example"},{"label":"Example","id":"Example-8.9","autoid":"Example-8.9","refnum":"8.9","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"8.9","cls":"Example"},{"label":"Important","id":"Important*-8.2","autoid":"Important*-8.2","refnum":"??","reflabel":"Important","title":"","neu":true,"file":"index.tex","reftag":"","cls":"Important"},{"label":"Example","id":"Example-8.10","autoid":"Example-8.10","refnum":"8.10","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"8.10","cls":"Example"},{"label":"Remark","id":"Remark-8.11","autoid":"Remark-8.11","refnum":"8.11","reflabel":"Remark","title":"","neu":true,"file":"index.tex","reftag":"8.11","cls":"Remark"},{"label":"Example","id":"Example-8.12","autoid":"Example-8.12","refnum":"8.12","reflabel":"Example","title":"","neu":true,"file":"index.tex","reftag":"8.12","cls":"Example"}] \ No newline at end of file diff --git a/_freeze/sections/chap_6/execute-results/html.json b/_freeze/sections/chap_6/execute-results/html.json index fae8f97..ee5fb70 100644 --- a/_freeze/sections/chap_6/execute-results/html.json +++ b/_freeze/sections/chap_6/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "7fad6ef68c8214e909a15f5ae90ac025", + "hash": "0241865161a21267ad29b711c1e05808", "result": { - "markdown": "::: {.content-hidden}\n$\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\Q}{\\mathbb{Q}}\n\\newcommand{\\C}{\\mathbb{C}} \n\\newcommand{\\N}{\\mathbb{N}}\n\\newcommand{\\Z}{\\mathbb{Z}}\n\n\\renewcommand\\Re{\\operatorname{Re}}\n\\renewcommand\\Im{\\operatorname{Im}}\n\n\n\n\n\n\\newcommand{\\e}{\\varepsilon}\n\\newcommand{\\g}{\\gamma}\n\n\\newcommand{\\st}{\\, \\text{ s.t. } \\, }\n\\newcommand{\\divider}{\\, \\colon \\,}\n\n\\newcommand{\\closure}[2][2]{{}\\mkern#1mu \\overline{\\mkern-#1mu #2 \\mkern-#1mu}\\mkern#1mu {}}\n\n\n\\newcommand{\\Czero}{\\mathnormal{C}}\n\\newcommand{\\Cinf}{{\\mathnormal{C}}^{\\infty}}\n\\newcommand{\\Cinfcomp}{{\\mathnormal{C}}_0^{\\infty}}\n\\newcommand{\\Lone}{{\\mathnormal{L}}^1}\n\\newcommand{\\Loneloc}{{\\mathnormal{L}}_{loc}^1}\n\\newcommand{\\Ltwo}{{\\mathnormal{L}}^2}\n\\newcommand{\\Lp}{{\\mathnormal{L}}^p}\n\\newcommand{\\Linf}{{\\mathnormal{L}}^{\\infty}}\n\\newcommand{\\Woneone}{{\\mathnormal{W}}^{1,1}}\n\\newcommand{\\Wonetwo}{{\\mathnormal{W}}^{1,2}}\n\\newcommand{\\Wonep}{{\\mathnormal{W}}^{1,p}}\n\\newcommand{\\Woneinf}{{\\mathnormal{W}}^{1,\\infty}}\n\\newcommand{\\Wtwotwo}{{\\mathnormal{W}}^{2,2}}\n\\newcommand{\\Wktwo}{{\\mathnormal{W}}^{k,2}}\n\\newcommand{\\Wkp}{{\\mathnormal{W}}^{k,p}}\n\\newcommand{\\Lip}{\\mathnormal{Lip}}\n\n\\newcommand{\\scp}[2]{\\left\\langle #1,#2 \\right\\rangle} %prodotto scalare\n\\newcommand{\\abs}[1]{\\left| #1 \\right|} %valore assoluto\n\\newcommand{\\norm}[1]{\\left\\| #1 \\right\\|} %norma\n\n\n\n\n\n\n\n\n\n$\n:::\n\n\n\n\n\n# Sequences in $\\mathbb{R}$\n\n\n\nA sequence is an infinite list of real numbers. For example, the following are sequences:\n\n\n- $(1,2,3,4, \\ldots)$\n\n- $(-1,1,-1,1, \\ldots)$\n\n- $\\left(1, \\frac{1}{2}, \\frac{1}{3}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right)$\n\n\n::: Remark\n\n- The order of elements in a sequence matters. \n\n> For example\n>$$\n>(1,2,3,4,5,6, \\ldots) \\neq(2,1,4,3,6,5, \\ldots)\n>$$\n\n- A sequence is not a set. \n\n> For example \n>$$\n>\\{-1,1,-1,1,-1,1, \\ldots\\}=\\{-1,1\\}\n>$$\n>but we cannot make a similar statement for the sequence \n>$$\n>(-1,1,-1,1,-1,1, \\ldots) \\,.\n>$$\n\n- The above notation is ambiguous.\n\n> For example the sequence \n>$$\n>(1,2,3,4, \\ldots)\n>$$\ncan continue as\n>\n>$$\n>(1,2,3,4,1,2,3,4,1,2,3,4, \\ldots) \\,.\n>$$\n\n- In the sequence \n$$\n\\left(1, \\frac{1}{2}, \\frac{1}{3}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right)\n$$\nthe elements get smaller and smaller, and closer and closer to $0$. We say that this sequence converges to $0$, or has $0$ as a limit. \n\n\n:::\n\n\nWe would like to make the notions of sequence and convergence more precise.\n\n\n## Definition of sequence\n\n\nWe start with the definition of sequence of Real numbers.\n\n\n::: Definition \n### Sequence of Real numbers\n\nA sequence $a$ in $\\R$ is a function\n$$\na \\colon \\N \\to \\R \\,.\n$$\nFor $n \\in \\N$, we denote the $n$-th element of the sequence $a$ by \n$$\na_{n}=a(n)\n$$ \nand write the sequence as \n$$\n\\left(a_{n}\\right)_{n \\in \\N} \\,.\n$$\n:::\n\n\n::: Notation\n\nWe will sometimes omit the subscript $n \\in \\N$ and simply write \n$$\n\\left(a_{n}\\right) \\,.\n$$ \nIn certain situations, we will also write\n$$\n\\left(a_{n}\\right)_{n=1}^{\\infty} \\,.\n$$\n\n\n:::\n\n\n\n\n::: Example \n\n- In general $\\left(a_{n}\\right)_{n \\in \\N}$ is the sequence \n$$\n\\left(a_{1}, a_{2}, a_{3}, \\ldots\\right)\\,.\n$$\n\n- Consider the function \n$$\na \\colon \\N \\to \\N \\, , \\quad n \\mapsto 2 n \\,.\n$$\nThis is also a sequence of real numbers. It can be written as \n$$\n(2 n)_{n \\in \\N}\n$$\nand it represents the sequence of even numbers \n$$\n(2,4,6,8,10, \\ldots) \\,.\n$$\n\n- Let \n$$\na_{n}=(-1)^{n}\n$$\nThen $\\left(a_{n}\\right)$ is the sequence \n$$\n(-1,1,-1,1,-1,1, \\ldots) \\,.\n$$\n\n- $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ is the sequence \n$$\n\\left(1, \\frac{1}{2}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right) \\,.\n$$\n\n\n:::\n\n\n\n## Convergent sequences\n\n\nWe have notice that the sequence $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ gets close to $0$ as $n$ gets large. We would like to say that $a_{n}$ converges to $0$ as $n$ tends to infinity.\n\nTo make this precise, we first have to say what it means for two numbers to be *close*. For this we use the notion of absolute value, and say that:\n\n- $x$ and $y$ are close if $|x-y|$ is small. \n- $|x-y|$ is called the distance between $x$ and $y$\n- For $x$ to be close to $0$, we need that $|x-0|=|x|$ is small.\n\nSaying that $|x|$ is *small* is not very precise. Let us now give the formal definition of convergent sequence.\n\n::: Definition \n### Convergent sequence {#definition-convergent-sequence}\n\nWe say that a sequence $\\left(a_{n}\\right)_{n \\in \\N}$ in $\\mathbb{R}$ **converges** to $a \\in \\mathbb{R}$, or equivalently has limit $a$, denoted by\n$$\n\\lim_{n \\rightarrow \\infty} a_{n}=a \n$$\nif for all $\\e \\in \\mathbb{R}, \\e>0$, there exists $N \\in \\N$ such that for all $n \\in \\N, n \\geq N$ it holds that \n$$\n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nUsing quantifiers, we can write this as\n$$\n\\forall \\, \\e>0 , \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\,\\left|a_{n}-a\\right| < \\e \\,.\n$$\n\nIf there exists $a \\in \\R$ such that $\\lim_{n \\rightarrow \\infty} a_{n}=a$, then we say that the sequence $\\left(a_{n}\\right)_{n \\in \\N}$ is **convergent**.\n\n:::\n\n\n::: Notation\n\nWe will often write\n$$\na_n \\to a\n$$\nin place of\n$$\n\\lim_{n \\rightarrow \\infty} a_{n}=a \\,.\n$$\n\n:::\n\n\n::: Remark\n\n- Informally, Definition \\ref{definition-convergent-sequence} says that, no matter how small we choose $\\e$ (as long as it is strictly positive), we always have that $a_{n}$ has a distance to $a$ of less than or equal to $\\e$ from a certain point onwards (i.e., from $N$ onward). The sequence $\\left(a_{n}\\right)$ may fluctuate wildly in the beginning, but from $N$ onward it should stay within a distance of $\\e$ of $a$.\n\n- In general $N$ depends on $\\e$. If $\\e$ is chosen smaller, we might have to take $N$ larger: this means we need to wait longer before the sequence stays within a distance $\\e$ from $a$.\n\n:::\n\n\nWe now prove that the sequence\n$$\na_n = \\frac1n\n$$\nconverges to $0$, according to Definition \\ref{definition-convergent-sequence}.\n\n::: {.Theorem #theorem-one-over-n}\n\nThe sequence $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ converges to $0$ , i.e.,\n\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{1}{n}=0 \\,.\n$$\n\n:::\n\nWe give two proofs of the above theorem:\n\n- Long proof, with all the details.\n- Short proof, with less details, but still acceptable. \n\n::: Proof \n### Proof of Theorem \\ref{theorem-one-over-n} (Long version)\n\nWe have to show that\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{1}{n}=0,\n$$\n\nwhich by definition is equivalent to showing that\n\n$$\n\\forall \\, \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n}-0\\right| < \\e \\,.\n$${#eq-one-over-n}\n\nLet $\\e \\in \\mathbb{R}$ with $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e}\\,.\n$$\nSuch natural number $N$ exists thanks to the Archimedean property. The above implies\n$$\n\\frac{1}{N} < \\e \\,,\n$${#eq-one-over-n-1}\nLet $n \\in \\N$ with $n \\geq N$. By (@eq-one-over-n-1) we have\n$$\n\\frac{1}{n} \\leq \\frac{1}{N} < \\e \\,.\n$$\nFrom this we deduce\n$$\n\\left|\\frac{1}{n}-0\\right|=\\frac{1}{n} \\leq \\frac{1}{N} < \\e\n$$\n\nSince $n \\in \\N, n \\geq N$ was arbitrary, we have proven that \n$$\n\\left|\\frac{1}{n}-0\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-one-over-n-2}\nCondition (@eq-one-over-n-2) holds for all $\\e>0$, for the choice of $N \\in \\N$ such that\n$$\nN > \\frac{1}{\\e} \\,.\n$$\nWe have hence shown (@eq-one-over-n), and the proof is concluded.\n\n:::\n\nAs the above proof is quite long and includes lots of details, it is acceptable to shorten it. For example:\n\n- We skip some intermediate steps.\n- We do not mention the Archimedean property.\n- We leave out the conclusion when it is obvious that the statement has been proven. \n\n\n\n\n::: Proof \n### Proof of Theorem \\ref{theorem-one-over-n} (Short version)\n\nWe have to show that\n\n$$\n\\forall \\, \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n}-0\\right| < \\e \\,.\n$$\n\nLet $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e}\\,.\n$$\nLet $n \\geq N$. Then\n$$\n\\left|\\frac{1}{n}-0\\right|=\\frac{1}{n} \\leq \\frac{1}{N} < \\e \\,.\n$$\n\n:::\n\n\nIn Theorem \\ref{theorem-one-over-n} we showed that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n} = 0 \\,.\n$$\nWe can generalise this statement to prove that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n^{p}} = 0\n$$\nfor any $p>0$ fixed.\n\n\n::: {.Theorem #theorem-one-over-np}\nFor all $p>0$, the sequence $\\left(\\frac{1}{n^{p}}\\right)_{n \\in \\N}$ converges to $0$ , i.e.,\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{1}{n^{p}}=0\n$$\n:::\n\n::: Proof\n\nLet $p>0$. We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n^{p}}-0\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e^{1 / p}} \\,.\n$${#eq-theorem-one-over-np-1}\nLet $n \\geq N$. Since $p>0$, we have $n^{p} \\geq N^{p}$, which implies \n$$\n\\frac{1}{n^p} \\leq \\frac{1}{N^p} \\,.\n$$\nBy (@eq-theorem-one-over-np-1) we deduce\n$$\n\\frac{1}{N^p} < \\e \\,.\n$$\nThen\n$$\n\\left|\\frac{1}{n^{p}}-0\\right|=\\frac{1}{n^{p}} \\leq \\frac{1}{N^{p}} < \\e \\,.\n$$\n\n:::\n\n::: Question\nWhy did we choose $N \\in \\N$ such that\n$$\nN > \\frac{1}{\\e^p}\n$$\nin the above proof?\n:::\n\nThe answer is: because it works. Finding a number $N$ that makes the proof work requires some *rough work*: Specifically, such rough work consists in finding $N \\in \\N$ such that the inequality\n$$\n|a_N - a | < \\e \n$$\nis satisfied. \n\n\n::: Important \n\nAny *rough work* required to prove convergence must be shown before the formal proof (in assignments). \n\n:::\n\n\n\n\n::: Example \n\nProve that, as $n \\rightarrow \\infty$,\n\n$$\n\\frac{n}{2n+3} \\to \\frac{1}{2} \\,.\n$$\n\n*Part 1. Rough Work.*\n\nLet $\\e>0$. We want to find $N \\in \\N$ such that\n$$\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTo this end, we compute:\n\\begin{align*}\n\\left|\\frac{n}{2 n+3}-\\frac{1}{2}\\right| & \n=\\left|\\frac{2n -(2n + 3)}{2(2n +3)}\\right| \\\\\n& =\\left|\\frac{- 3}{4n + 6}\\right| \\\\\n& = \\frac{3}{4n + 6} \\,.\n\\end{align*}\nTherefore \n\\begin{align*}\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e\n\\quad \\iff & \\quad\n\\frac{3}{4n + 6} < \\e \\\\\n\\quad \\iff & \\quad\n\\frac{4n + 6}{3} > \\frac{1}{\\e} \\\\\n\\quad \\iff & \\quad\n4n + 6 > \\frac{3}{\\e} \\\\\n\\quad \\iff & \\quad\n4n > \\frac{3}{\\e} - 6 \\\\\n\\quad \\iff & \\quad\nn > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n\\end{align*}\nLooking at the above equivalences, it is clear that $N \\in \\N$ has to be chosen so that\n$$\nN > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n$$\n\n\n*Part 2. Formal Proof.* We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that\n$$\nN > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n$${#eq-example-limit-1}\nBy the rough work shown above, inequality (@eq-example-limit-1) is equivalent to \n$$\n \\frac{3}{4N + 6} < \\e \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| \n& = \\left|\\frac{- 3 }{2(2 n+3)}\\right| \\\\\n& = \\frac{3}{4 n+ 6 } \\\\\n& \\leq \\frac{3}{4 N+ 6 } \\\\\n& < \\e \\,,\n\\end{align*}\nwhere in the third line we used that $n \\geq N$.\n\n:::\n\n\nWe conclude by showing that constant sequences always converge.\n\n::: {.Theorem #theorem-constant-sequence}\n\nLet $c \\in \\R$ and define the constant sequence\n$$\na_n := c \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nWe have that \n$$\n\\lim_{n \\to \\infty} \\, a_n = c \\,.\n$$\n\n:::\n\n::: Proof\n\nWe have to prove that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_n - c \\right| < \\e \\,.\n$${#eq-constant-sequence}\nLet $\\e>0$. We have\n$$\n\\left|a_n - c \\right| = \\left|c - c \\right| = 0 < \\e \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nTherefore we can choose $N=1$ and (@eq-constant-sequence) is satisfied. \n:::\n\n\n\n\n## Divergent sequences\n\n\nThe opposite of convergent sequences are divergent sequences.\n\n::: Definition\n### Divergent sequence\n\nWe say that a sequence $\\left(a_{n}\\right)_{n \\in \\N}$ in $\\R$ is **divergent** if it is not convergent.\n\n:::\n\n\n\n::: Remark\n\nProving that a sequence $(a_n)$ is divergent is more complicated than showing it is convergent: To show that $(a_n)$ is divergent, we need to show that \n$(a_n)$ cannot converge to $a$ for any $a \\in \\R$.\n\nIn other words, we have to show that there does not exist an $a \\in \\mathbb{R}$ such that \n$$\n\\lim _{n \\rightarrow \\infty} \\, a_n = a \\,.\n$$\nUsing quantifiers, this means\n$$\n\\nexists \\, a \\in \\R \\st \\forall \\, \\e>0 \\,, \\, \n\\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\,\n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nThe above is equivalent to showing that\n$$\n\\forall \\, a \\in \\R \\,, \\, \\exists \\, \\e > 0 \\st \\forall \\, N \\in \\N \\,, \\, \\exists \\, n \\geq N \\st \\left|a_{n}-a\\right| \\geq \\e \\,.\n$$\n\n:::\n\n\n\n::: {.Theorem #theorem-1-minus-n}\nLet $\\left(a_{n}\\right)$ be the sequence defined by\n$$\na_{n}=(-1)^{n} \\,.\n$$\nThen $\\left(a_{n}\\right)$ does not converge. \n\n:::\n\n::: Proof\n\nTo prove that $\\left(a_{n}\\right)$ does not converge, we have to show that \n$$\n\\forall \\, a \\in \\R \\,, \\, \\exists \\, \\e > 0 \\st \\forall \\, N \\in \\N \\,, \\, \\exists \\, n \\geq N \\st \\left|a_{n}-a\\right| \\geq \\e \\,.\n$$\nLet $a \\in \\R$. Choose \n$$\n\\e=\\frac{1}{2} \\,.\n$$ \nLet $N \\in \\N$. We distinguish two cases:\n\n- $a \\geq 0$: Choose $n=2 N+1$. Note that $n \\geq N$. Then\n\\begin{align*}\n\\left|a_{n}-a\\right| & = \\left|a_{2 N+1}-a\\right| \\\\\n& = \\left|(-1)^{2 N+1}-a\\right| \\\\\n& =|-1-a| \\\\\n& =1+a \\\\\n& \\geq 1 \\\\\n& > \\frac{1}{2} = \\e \\,,\n\\end{align*}\nwhere we used that $a \\geq 0$, and therefore \n$$\n|-1-a|=1+a \\geq 1 \\,.\n$$\n\n- $a<0$: Choose $n=2 N$. Note that $n \\geq N$. Then\n\\begin{align*}\n\\left|a_{n}-a\\right| & = \\left|a_{2 N}-a\\right| \\\\\n& =\\left|(-1)^{2 N}-a\\right| \\\\ \n& = |1-a| \\\\\n& = 1-a \\\\\n& > 1 \\\\\n& > \\frac{1}{2} = \\e \\,,\n\\end{align*}\nwhere we used that $a < 0$, and therefore \n$$\n|1-a|=1-a > 1 \\,.\n$$\n\n\n:::\n\n\n\n## Uniqueness of limit\n\n\nIn Definition \\ref{definition-convergent-sequence} of convergence, we used the notation \n$$\n\\lim_{n \\rightarrow \\infty} a_{n}=a \\,.\n$$ \nThe above notation makes sense only if the limit is unique, that is, if we do not have that \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,,\n$$ \nfor some \n$$\na \\neq b \\,.\n$$\nIn the next theorem we will show that the limit is unique, if it exists.\n\n::: Theorem \n### Uniqueness of limit {#theorem-uniqueness-limit}\n\nLet $\\left(a_{n}\\right)_{n \\in \\N}$ be a sequence. Suppose that \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = a \\,, \\quad \n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,.\n$$\nThen $a=b$.\n:::\n\n\n::: Proof\n\nAssume that, \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = a \\,, \\quad \n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,.\n$$\nSuppose by contradiction that\n$$\na \\neq b \\,.\n$$\nChoose \n$$\n\\e := \\frac{1}{2} \\, |a-b| \\,.\n$$\nTherefore $\\e>0$, since $|a-b|>0$. By the convergence $a_{n} \\rightarrow a$,\n$$\n\\exists \\, N_1 \\in \\N \\st \\forall \\, n \\geq N_1 \\,, \\, \n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nBy the convergence $a_{n} \\rightarrow b$,\n$$\n\\exists \\, N_2 \\in \\N \\st \\forall \\, n \\geq N_2 \\,, \\, \n\\left|a_{n} - b \\right| < \\e \\,.\n$$\nDefine\n$$\nN := \\max \\{ N_1, N_2 \\} \\,.\n$$\nChoose an $n \\in \\N$ such that $n \\geq N$. In particular\n$$\nn \\geq N_1 \\,, \\quad n \\geq N_2 \\,.\n$$\nThen\n\\begin{align*}\n2 \\e & = |a-b| \\\\\n& = \\left|a-a_{n}+a_{n}-b\\right| \\\\\n& \\leq\\left|a-a_{n}\\right|+\\left|a_{n}-b\\right| \\\\\n& < \\e + \\e \\\\\n& = 2 \\e \\,,\n\\end{align*}\nwhere we used the triangle inequality in the first inequality.\nHence $2 \\e < 2 \\e$, which gives a contradiction.\n\n:::\n\n\n::: Example \n\nProve that\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3}=\\frac{1}{2}\n$$\n\nAccording to Theorem \\ref{theorem-uniqueness-limit}, it suffices to show that the sequence \n$$\n\\left(\\frac{n^{2}-1}{2 n^{2}-3}\\right)_{n \\in \\N}\n$$ \nconverges to $\\frac{1}{2}$, since then $\\frac{1}{2}$ can be the only limit.\n\n\n*Part 1. Rough Work.*\n\nLet $\\e>0$. We want to find $N \\in \\N$ such that\n$$\n\\left|\\frac{n^{2}-1}{2 n^{2}-3} - \\frac{1}{2}\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTo this end, we compute:\n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| \n& =\\left|\\frac{2\\left(n^{2}-1\\right)-\\left(2 n^{2}-3\\right)}{2\\left(2 n^{2}-3\\right)}\\right| \\\\\n& =\\left|\\frac{1}{4 n^{2}-6}\\right| \\\\\n& =\\frac{1}{4 n^{2}-6} \\\\\n& =\\frac{1}{3 n^{2}+n^{2}-6} \\\\\n& \\leq \\frac{1}{3 n^{2}} \n\\end{align*}\nwhich holds if $n \\geq 3$, since in this case $n^2 - 6 \\geq 0$.\nTherefore \n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| < \\e\n\\quad \\impliedby & \\quad\n\\frac{1}{3n^2} < \\e \\\\\n\\quad \\iff & \\quad\n3n^2 > \\frac{1}{\\e} \\\\\n\\quad \\iff & \\quad\nn^2 > \\frac{1}{3\\e} \\\\\n\\quad \\iff & \\quad\nn > \\frac{1}{\\sqrt{3\\e}} \\,.\n\\end{align*}\nLooking at the above implications, it is clear that $N \\in \\N$ has to be chosen so that\n$$\nN > \\frac{1}{\\sqrt{3\\e}} \\,.\n$$\nMoreover we need to recall that $N$ has to satisfy \n$$\nN \\geq 3\n$$ \nfor the estimates to hold.\n\n\n*Part 2. Formal Proof.* We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that\n$$\nN > \\max \\left\\{ \\frac{1}{\\sqrt{3\\e}}, 3 \\right\\} \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| \n& =\\frac{1}{4 n^{2}-6} \\\\\n& =\\frac{1}{3 n^{2}+n^{2}-6} \\\\\n& \\leq \\frac{1}{3 n^{2}} \\\\\n& \\leq \\frac{1}{3 N^{2}} \\\\\n& < \\e \\,,\n\\end{align*}\nwhere we used that \n$$\nn \\geq N \\geq 3 \n$$ \nwhich implies \n$$\nn^2 - 6 \\geq 0\\,,\n$$\nin the third line. The last inequality holds, since it is equivalent \nto \n$$\nN > \\frac{1}{\\sqrt{3 \\e}} \\,.\n$$\n\n:::\n\n\n\n\n## Bounded sequences\n\n\nAn important property of sequences is boundedness. \n\n\n::: Definition \n### Bounded sequence {#definition-bounded-sequence}\n\nA sequence $\\left(a_{n}\\right)_{n \\in \\N}$ is called **bounded** if there exists a constant $M \\in \\R$, with $M>0$, such that\n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\n\n:::\n\nDefinition \\ref{definition-bounded-sequence} says that a sequence is bounded, if we can find some constant $M>0$ (possibly very large), such that for all elements of the sequence it holds that \n$$\n\\left|a_{n}\\right| \\leq M \\,,\n$$\nor equivalently, that \n$$\n-M \\leq a_{n} \\leq M \\,.\n$$\n\n\nWe now show that any sequence that converges is also bounded\n\n::: {.Theorem #theorem-convergent-bounded}\n\nIf a sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ converges, then the sequence is bounded.\n\n:::\n\n\n::: Proof \n\nSuppose the sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ converges and let\n$$\na: = \\lim_{n \\rightarrow \\infty} a_{n}\n$$\nBy definition of convergence we have that\n$$\n\\forall \\, \\e >0 \\,, \\, \\exists N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_{n}-a \\right| < \\e \\,.\n$$\nIn particular, we can choose\n$$\n\\e = 1\n$$ \nand let $N \\in \\N$ be that value such that\n$$\n\\left|a_{n}-a \\right| < 1 \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nIf $n \\geq N$ we have, by the triangle inequality,\n\\begin{align*}\n\\left|a_{n}\\right| & = \\left|a_{n}-a+a\\right| \\\\\n & \\leq \\left|a_{n}-a\\right|+|a| \\\\\n & < 1+|a| \\,.\n\\end{align*}\nSet\n$$\nM:=\\max \\left\\{\\left|a_{1}\\right|,\\left|a_{2}\\right|, \\ldots,\\left|a_{N-1}\\right|, 1+|a|\\right\\} \\,.\n$$\nNote that such maximum exists, being the set finite. Then \n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nshowing that $(a_n)$ is bounded.\n\n:::\n\n\nThe choice of $M$ in the above proof says that the sequence can behave wildly for a finite number of terms. After that, it will stay close to the value of the limit, if the latter exists.\n\n::: Example\n\nIn Theorem \\ref{theorem-one-over-n} we have shown that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n} = 0 \n$$\nHence, it follows from Theorem \\ref{theorem-convergent-bounded} that the sequence $(1/n)$ is bounded.\n\nIndeed, we have that\n$$\n\\left|\\frac{1}{n}\\right|=\\frac{1}{n} \\leq 1 \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nsince $n \\geq 1$ for all $n \\in \\N$.\n\n:::\n\n\n::: Warning\n\nThe converse of Theorem \\ref{theorem-convergent-bounded} does not hold: There exist sequences $(a_n)$ which are bounded, but not convergent.\n\n:::\n\n\n::: Example\n\nDefine the sequence\n$$\na_n = (-1)^n \\,.\n$$\nWe have proven in Theorem \\ref{theorem-1-minus-n} that $(a_n)$ is not convergent. However\n$(a_n)$ is bounded, with $M=1$, since\n$$\n|a_n| = |(-1)^n| = 1 = M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\n\n:::\n\n\n\nTaking the contrapositive of the statement in Theorem \\ref{theorem-convergent-bounded} we get the following corollary:\n\n\n::: {.Corollary #corollary-convergent-bounded}\n\nIf a sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ is not bounded, then the sequence does not converge.\n\n:::\n\n\n::: Remark\n\nFor a sequence $(a_n)$ to be unbounded, it means that\n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nThe above is saying that no real number $M>0$ can be a bound for $|a_n|$, since there is always an index $n \\in \\N$ such that \n$$\n|a_n| > M \\,.\n$$\n\n:::\n\n\nWe can use Corollary \\ref{corollary-convergent-bounded} to show that certain sequences do not converge.\n\n\n::: Theorem \n\nFor all $p>0$, the sequence $\\left(n^{p}\\right)_{n \\in \\mathbb{N}}$ does not converge.\n\n:::\n\n\n::: Proof\nLet $p>0$. We prove that the sequence $\\left(n^{p}\\right)_{n \\in \\mathbb{N}}$ is unbounded, that is, \n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nTo this end, let $M > 0$. Choose $n \\in \\N$ such that \n$$\nn > M^{1/p} \\,.\n$$\nThen\n$$\na_n = n^{p}>\\left(M^{1/p}\\right)^{p}=M \\,.\n$$\nThis proves that the sequence $(n^p)$ is unbounded. Hence $(n^p)$ cannot converge, by Corollary \\ref{corollary-convergent-bounded}.\n\n:::\n\n\n\n::: Theorem\n\nThe sequence $(\\log n)_{n \\in \\mathbb{N}}$ does not converge.\n\n:::\n\n\n::: Proof \n\nLet us show that $(\\log n)_{n \\in \\mathbb{N}}$ is unbounded, that is, \n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nTo this end let $M > 0$. Choose $n \\in \\N$ such that \n$$\nn \\geq e^{M+1} \\,.\n$$\nThen\n$$\n|a_n| = |\\log n| \\geq \\left| \\log e^{M+1} \\right| = M + 1 > M \\,.\n$$\nThis proves that the sequence $(\\log n)$ is unbounded. Hence $(\\log n)$ cannot converge, by Corollary \\ref{corollary-convergent-bounded}.\n\n:::\n\n\n\n\n## Algebra of limits\n\nProving convergence using Definition \\ref{definition-convergent-sequence} can be a tedious task. In this section we discuss how to prove convergence, starting from known convergence results.\n\n\n::: Theorem \n### Algebra of limits {#theorem-algebra-limits} \n\nLet $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ and $\\left(b_{n}\\right)_{n \\in \\mathbb{N}}$ be sequences in $\\mathbb{R}$. Suppose that\n$$\n\\lim_{n \\rightarrow \\infty} a_{n}=a \\,, \\quad \\lim_{n \\rightarrow \\infty} b_{n}=b \\,,\n$$\nfor some $a,b \\in \\R$. Then,\n\n1. Limit of sum is the sum of limits:\n$$\n\\lim_{n \\rightarrow \\infty}\\left(a_{n} \\pm b_{n}\\right)=a \\pm b\n$$\n\n2. Limit of product is the product of limits: \n$$\n\\lim _{n \\rightarrow \\infty}\\left(a_{n} b_{n}\\right) = a b \n$$\n\n3. If $b_{n} \\neq 0$ for all $n \\in \\mathbb{N}$ and $b \\neq 0$, then \n$$\n\\lim_{n \\rightarrow \\infty} \\left(\\frac{a_{n}}{b_{n}}\\right)=\\frac{a}{b} \n$$\n\n:::\n\n\n\n\n::: Proof \n\n\n Let $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ and $\\left(b_{n}\\right)_{n \\in \\mathbb{N}}$ be sequences in $\\mathbb{R}$ and let $c \\in \\mathbb{R}$. Suppose that, for some $a, b \\in \\mathbb{R}$\n$$\n\\lim _{n \\rightarrow \\infty} a_{n}=a \\,, \\quad \\lim _{n \\rightarrow \\infty} b_{n}=b \\,.\n$$\n\n\n*Proof of Point 1.* \n\nWe need to show that \n$$\n\\lim_{n \\to \\infty} (a_n \\pm b_n) = a \\pm b \\,.\n$$\nWe only give a proof of the formula with $+$, since the case with $-$ follows with a very similar proof. Hence, we need to show that\n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|(a_{n} + b_n) - (a+b) \\right| < \\e \\,.\n$$\nLet $\\e>0$ and set\n$$\n\\widetilde{\\e} := \\frac{\\e}{2} \\,.\n$$\nSince $a_{n} \\rightarrow a$ and $\\widetilde{\\e}>0$, there exists $N_1 \\in \\N$ such that\n$$\n|a_n - a|< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nSince $b_{n} \\rightarrow b$ and $\\widetilde{\\e}>0$, there exists $N_2 \\in \\N$ such that\n$$\n|b_n - b|< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n$$\nDefine\n$$\nN : = \\max \\{ N_1, N_2 \\} \\,.\n$$\nFor all $n \\geq N$ we have, by the triangle inequality,\n\\begin{align*}\n\\left|\\left(a_{n}+b_{n}\\right)-(a+b)\\right| \n& = \\left|\\left(a_{n}-a\\right) + \\left(b_{n}-b\\right)\\right| \\\\\n& \\leq \\left|a_{n}-a\\right|+\\left|b_{n}-b\\right| \\\\\n& < \\widetilde{\\e}+\\widetilde{\\e} \\\\\n& =\\e \\,.\n\\end{align*}\n\n\n\n*Proof of Point 2.*\n\n\nWe need to show that \n$$\n\\lim_{n \\to \\infty} (a_n b_n) = a b \\,,\n$$\nwhich is equivalent to \n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_{n} b_{n} - a b \\right| < \\e \\,.\n$$\nLet $\\e>0$. The sequence $\\left(a_{n}\\right)$ converges, and hence is bounded, by Theorem \\ref{theorem-convergent-bounded}. This means there exists some $M>0$ such that \n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nDefine \n$$\n\\widetilde{\\e} = \\frac{\\e}{ M + |b| } \\,. \n$$\nSince $a_{n} \\rightarrow a$ and $\\widetilde{\\e} > 0$, there exists \n$N_1 \\in \\N$ such that\n$$\n| a_n - a | < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nSince $b_{n} \\rightarrow b$ and $\\widetilde{\\e} > 0$, there exists \n$N_2 \\in \\N$ such that\n$$\n| b_n - b | < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n$$\nLet \n$$\nN:= \\max\\{ N_1, N_2 \\} \\,.\n$$\nFor all $n \\geq N$ we have\n\\begin{align*}\n\\left|a_{n}b_{n}-a b\\right| \n& = \\left|a_{n} b_{n} - a_n b + a_n b - a b \\right| \\\\\n& \\leq \\left|a_{n} b_{n} - a_n b \\right| + \\left|a_n b - a b \\right| \\\\\n& =\\left|a_{n}\\right| \\left|b_{n}-b\\right|+ |b| \\left|a_{n}-a\\right| \\\\\n& < M \\, \\widetilde{\\e} +|b| \\, \\widetilde{\\e} \\\\\n& = (M + |b|) \\, \\widetilde{\\e} \\\\\n& = \\e \\,.\n\\end{align*}\n\n\n*Proof of Point 3.* \n\nSuppose in addition that $b_n \\neq 0$ and $b \\neq 0$. We need to show that\n$$\n\\lim_{n \\to \\infty} \\, \\frac{a_n}{b_n} = \\frac{a}{b} \\,,\n$$\nwhich is equivalent to\n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{a_{n}}{ b_{n}} - \\frac{a}{b} \\right| < \\e \\,.\n$$\nWe suppose in addition that $b>0$. The proof is very similar for the case $b <0$. Let $\\e > 0$. Set\n$$\n\\delta := \\frac{b}{2} \\,.\n$$\nSince $b_n \\to b$ and $\\delta>0$, there exists $N_1 \\in \\N$ such that\n$$\n|b_n - b| < \\delta \\, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nIn particular we have\n$$\nb_n > b - \\delta = b - \\frac{b}{2} = \\frac{b}{2} \\, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nDefine\n$$\n\\widetilde{\\e} := \\frac{ b^2 }{ 2 (b + |a|)} \\, \\e \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $a_n \\to a$, there exists $N_2 \\in \\N$ such that\n$$\n|a_n - a |< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $b_n \\to b$, there exists $N_3 \\in \\N$ such that\n$$\n|b_n - b |< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_3 \\,.\n$$\nDefine\n$$\nN:= \\max\\{ N_1, N_2, N_3 \\} \\,.\n$$\nFor all $n \\geq N$ we have\n\\begin{align*}\n\\left|\\frac{a_{n}}{ b_{n}} - \\frac{a}{b} \\right| & = \n\\left|\\frac{a_{n} b - a b_n}{ b_{n} b } \\right| \\\\\n& = \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left| a_{n}b - a b + a b - a b_n \\right| \\\\\n& = \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left| (a_{n} - a) b + a(b-b_n) \\right| \\\\\n& \\leq \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left( |a_{n} - a| |b| + |a| |b-b_n| \\right) \\\\\n& < \\frac{1}{ \\dfrac{b}{2} \\, b } \\, \\left( \\widetilde{\\e} \\, b + \\widetilde{\\e} |a| \\right) \\\\\n& = \\frac{2 (b + |a|) }{b^2} \\, \\widetilde{\\e} \\\\\n& = \\e \\,.\n\\end{align*}\n\n:::\n\n\n\nIn the future we will refer to Theorem \\ref{theorem-algebra-limits} as the *Algebra of Limits*. We now show how to use Theorem \\ref{theorem-algebra-limits} for computing certain limits. \n\n\n::: {.Example #example-limit-ploynomial}\nProve that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{3 n}{7 n+4} = \\frac{3}{7} \\,.\n$$\n\n\n> *Proof*. We can rewrite\n$$\n\\frac{3 n}{7 n+4}=\\frac{3}{7+\\dfrac{4}{n}}\n$$\nBy Theorem \\ref{theorem-constant-sequence} we know that\n$$\n3 \\rightarrow 3\\,, \\quad 4 \\to 4 \\,, \\quad 7 \\to 7 \\,.\n$$\nFrom Theorem \\ref{theorem-one-over-n} we know that \n$$\n\\frac{1}{n} \\rightarrow 0 \\,.\n$$\nHence, it follows from Theorem \\ref{theorem-algebra-limits} Point 2 that \n$$\n\\frac{4}{n} = 4 \\cdot \\frac1n \\rightarrow 4 \\cdot 0 = 0 \\,.\n$$\nBy Theorem \\ref{theorem-algebra-limits} Point 1 we have\n$$\n7 + \\frac{4}{n} \\rightarrow 7 + 0 = 7 \\,.\n$$\nFinally we can use Theorem \\ref{theorem-algebra-limits} Point 3 to infer\n$$\n\\frac{3 n}{7 n+4}=\\frac{3}{7+\\dfrac{4}{n}} \\rightarrow \\frac{3}{7} \\,.\n$$\n\n:::\n\n\n::: Important \n\nThe technique shown in Example \\ref{example-limit-ploynomial} is useful to compute limits of fractions of polynomials. To identify the possible limit, if it exists, it is often best to divide by the largest power of $n$ in the denominator.\n\n:::\n\n\n\n::: {.Example #example-algebra-of-limits-2}\nProve that\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1}{2} \\,.\n$$\n\n> *Proof*. Factor $n^2$ to obtain\n$$\n\\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} \\,.\n$$\nBy Theorem \\ref{theorem-one-over-np} we have\n$$\n\\frac{1}{n^2} \\to 0 \\,.\n$$\nWe can then use the Algebra of Limits Theorem \\ref{theorem-algebra-limits} Point 2 to infer\n$$\n\\frac{3}{n^2} \\to 3 \\cdot 0 = 0\n$$\nand Theorem \\ref{theorem-algebra-limits} Point 1 to get\n$$\n1 - \\frac{1}{n^2} \\to 1 - 0 = 1 \\,, \\quad \n2 - \\frac{3}{n^2} \\to 2 - 0 = 2 \\,.\n$$\nFinally we use Theorem \\ref{theorem-algebra-limits} Point 3 and conclude\n$$\n \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} \\to \\frac{1}{2} \\,.\n$$\nTherefore\n$$\n\\lim_{n \\to \\infty } \\, \\frac{n^{2}-1}{2 n^{2}-3} = \\lim_{n \\to \\infty} \\, \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} = \\frac{1}{2} \\,.\n$$\n\n:::\n\n\n\nWe can also use the Algebra of Limits to prove that certain limits do not exist.\n\n\n\n::: Example \n\nProve that the sequence\n$$\na_n = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1}\n$$\ndoes not converge.\n\n> *Proof*. To show that the sequence $\\left(a_n\\right)$ does not converge, we divide by the largest power in the denominator, which in this case is $n^2$\n\\begin{align*}\na_n & = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1} \\\\\n & =\\frac{4 n+ \\dfrac{8}{n} + \\dfrac{1}{n^{2}} }{7+ \\dfrac{2}{n} + \\dfrac{1}{n^{2}} } \\\\\n & = \\frac{b_n}{c_n}\n\\end{align*}\nwhere we set \n$$\nb_n := 4 n+ \\dfrac{8}{n} + \\dfrac{1}{n^{2}}\\,, \\quad\nc_n := 7 + \\dfrac{2}{n} + \\dfrac{1}{n^{2}} \\,.\n$$\nUsing the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we see that\n$$\nc_n = 7+ \\dfrac{2}{n} + \\dfrac{1}{n^{2}} \\to 7 \\,.\n$$\nSuppose by contradiction that\n$$\na_n \\to a\n$$\nfor some $a \\in \\R$. Then, by the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we would infer\n$$\nb_n = c_n \\cdot a_n \\to 7 a \\,,\n$$\nconcluding that $b_n$ is convergent to $7a$. We have that\n$$\nb_n = 4n + d_n \\,, \\quad d_n := \\dfrac{8}{n} + \\dfrac{1}{n^{2}} \\,.\n$$\nAgain by the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we get that \n$$\nd_n = \\dfrac{8}{n} + \\dfrac{1}{n^{2}} \\to 0 \\,,\n$$\nand hence\n$$\n4n = b_n - d_n \\to 7a - 0 = 7a \\,.\n$$\nThis is a contradiction, since the sequence $(4n)$ is unbounded, and hence cannot be convergent. Hence $(a_n)$ is not convergent.\n:::\n\n\n\n::: Warning\n\nConsider the sequence \n$$\na_n = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1}\n$$\nfrom the previous example. We have proven that $(a_n)$ is not convergent, by making use of the Algebra of Limits. \n\nLet us review a **faulty** argument to conclude that $(a_n)$ is not convergent. Write\n$$\na_n = \\frac{b_n}{c_n} \\,, \\quad b_n:= 4 n^{3}+8 n+1\\,, \n\\quad c_n : =7 n^{2}+2 n+1 \\,.\n$$\nThe numerator \n$$\nb_n = 4 n^{3}+8 n+1\n$$\nand denominator \n$$\nc_n =7 n^{2}+2 n+1 \n$$\nare both unbounded, and hence $(b_n)$ and $(c_n)$ do not converge. One might be tempted to conclude that $(a_n)$ does not converge. However this is **false** in general: as seen in \nExample \\ref{example-algebra-of-limits-2}, we have\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1}{2} \\,,\n$$\nwhile numerator and denominator are unbounded.\n\n:::\n\n\n\n\n\nSometimes it is useful to rearrange the terms of a sequence, before applying the Algebra of Limits.\n\n\n\n::: Example \n\nDefine \n$$\n a_n := \\frac{2 n^{3}+7 n+1}{5 n+9} \\cdot \\frac{8 n+9}{6 n^{3}+8 n^{2}+3} \\,.\n$$\nProve that \n$$\n\\lim_{n \\to \\infty} a_n = \\frac{8}{15} \\,.\n$$\n\n\n> *Proof.* \nThe first fraction in $(a_n)$ does not converge, as it is unbounded. Therefore we cannot use Point 2 in Theorem \\ref{theorem-algebra-limits} directly. However, we note that\n\\begin{align*}\na_{n} & =\\frac{2 n^{3}+7 n+1}{5 n+9} \\cdot \\frac{8 n+9}{6 n^{3}+8 n^{2}+3} \\\\\n& = \\frac{8 n+9}{5 n+9} \\cdot \\frac{2 n^{3}+7 n+1}{6 n^{3}+8 n^{2}+3} \\,.\n\\end{align*}\nFactoring out $n$ and $n^3$, respectively, and using the Algebra of Limits, we see that\n$$\n\\frac{8 n+9}{5 n+9}=\\frac{8+9 / n}{5+9 / n} \\to \\frac{8+0}{5+0}=\\frac{8}{5}\n$$\nand\n$$\n\\frac{2+7 / n^{2}+1 / n^{3}}{6+8 / n+3 / n^{3}} \\to \\frac{2+0+0}{6+0+0}=\\frac{1}{3}\n$$\nTherefore Theorem \\ref{theorem-algebra-limits} Point 2 ensures that\n$$\na_{n} \\to \\frac{8}{5} \\cdot \\frac{1}{3}=\\frac{8}{15} \\,.\n$$\n\n:::\n\n\n\n\n\n## Fractional powers\n\n\nThe Algebra of Limits Theorem \\ref{theorem-algebra-limits} can also be used when fractional powers of $n$ are involved.\n\n::: Example\n\nProve that \n$$\na_n = \\frac{n^{7 / 3}+2 \\sqrt{n}+7}{4 n^{3 / 2}+5 n}\n$$\ndoes not converge.\n\n> *Proof*. The largest power of $n$ in the denominator is $n^{3/2}$. Hence we factor out $n^{3/2}$\n\\begin{align*}\na_n & = \\frac{n^{7 / 3}+2 \\sqrt{n}+7}{4 n^{3 / 2}+5 n} \\\\\n & = \\frac{n^{7 / 3-3 / 2}+2 n^{1/2 - 3/2} + 7 n^{-3 / 2}}{4 + 5 n^{-3/2} } \\\\\n & = \\frac{n^{5/6}+2 n^{- 1} + 7 n^{-3 / 2}}{4 + 5 n^{-3/2} } \\\\\n & = \\frac{b_n}{c_n}\n\\end{align*}\nwhere we set\n$$\nb_n := n^{5/6}+2 n^{- 1} + 7 n^{-3 / 2} \\,, \\quad \nc_n := 4 + 5 n^{-3/2} \\,.\n$$\nWe see that $b_n$ is unbounded while $c_n \\to 4$. By the Algebra of Limits (and usual contradiction argument) we conclude that $(a_n)$ is divergent.\n\n:::\n\n\n\nWe now present a general result about the square root of a sequence.\n\n::: {.Theorem #theorem-square-root-limit}\n\nLet $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ be a sequence in $\\mathbb{R}$ such that \n$$\n\\lim_{n \\to \\infty} \\, a_n = a \\,,\n$$\nfor some $a \\in \\R$. If $a_{n} \\geq 0$ for all $n \\in \\mathbb{N}$ and $a \\geq 0$, then\n$$\n\\lim _{n \\rightarrow \\infty} \\sqrt{a_{n}}=\\sqrt{a} \\,.\n$$\n\n:::\n\n\n::: Proof \n\nLet $\\e>0$. We the two cases $a>0$ and $a=0$:\n\n- $a>0$: Define\n$$\n\\delta := \\frac{a}{2} \\,.\n$$\nSince $\\delta > 0$ and $a_n \\to a$, there exists $N_1 \\in \\N$ such that\n$$\n\\left|a_{n}-a\\right| < \\delta \\,, \\quad \\forall \\, n \\geq N_1 \\,. \n$$\nIn particular\n$$\na_n > a - \\delta = a - \\frac{a}{2} = \\frac{a}{2} \\,, \\quad \\forall \\, n \\geq N_1 \\,,\n$$\nfrom which we infer\n$$\n\\sqrt{a_n} > \\sqrt{a/2} \\,, \\quad \\forall \\, n \\geq N_1 \\,,\n$$\nNow set\n$$\n\\widetilde{\\e} := \\left(\\sqrt{a/2} + \\sqrt{a} \\right) \\, \\e \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $a_n \\to a$, there exists $N_2 \\in \\mathbb{N}$ such that \n$$\n\\left|a_{n}-a\\right| < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,. \n$$\nLet \n$$\nN:= \\max\\{ N_1, N_2 \\} \\,.\n$$\nFor $n \\geq N$ we have\n\\begin{align*}\n\\left|\\sqrt{a_{n}}-\\sqrt{a}\\right| \n& = \\left|\\frac{\\left(\\sqrt{a_{n}}-\\sqrt{a}\\right)\\left(\\sqrt{a_{n}}+\\sqrt{a}\\right)}{\\sqrt{a_{n}}+\\sqrt{a}}\\right| \\\\\n& = \\frac{\\left|a_{n}-a\\right|}{\\sqrt{a_{n}}+\\sqrt{a}} \\\\\n& < \\frac{ \\widetilde{\\e} }{\\sqrt{a/2} + \\sqrt{a}} \\\\\n& = \\e \\,.\n\\end{align*}\n\n\n- $a=0$: In this case\n$$\na_n \\to a = 0 \\,.\n$$\nSince $\\e^2>0$, there exists $N \\in \\N$ such that\n$$\n|a_n - 0 | = |a_n| < \\e^2 \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTherefore\n$$\n|\\sqrt{a_n} - \\sqrt{0} | = | \\sqrt{a_n}| < \\sqrt{\\e^2} = \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\n\n\n:::\n\n\nLet us show an application of Theorem \\ref{theorem-square-root-limit}.\n\n\n::: Example \n\nDefine the sequence\n$$\na_n = \\sqrt{9 n^{2}+3 n+1}-3 n \\,.\n$$\nProve that\n$$\n\\lim_{n \\to \\infty} \\, a_n = \\frac12 \\,.\n$$\n\n\n> *Proof*. We first rewrite\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-3 n \\\\\n& = \\frac{\\left(\\sqrt{9 n^{2}+3 n+1}-3 n\\right)\\left(\\sqrt{9 n^{2}+3 n+1}+3 n\\right)}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{9 n^{2}+3 n+1-(3 n)^{2}}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{3 n+1}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\, .\n\\end{align*}\nThe biggest power of $n$ in the denominator is $n$. Therefore we factor out $n$:\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-3 n \\\\\n& =\\frac{3 n+1}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{3+ \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{n^{2}}} + 3 } \\,.\n\\end{align*}\nBy the Algebra of Limits we have\n$$\n9+ \\frac{3}{n} + \\frac{1}{n^{2}} \\to 9 + 0 + 0 = 9 \\,.\n$$\nTherefore we can use Theorem \\ref{theorem-square-root-limit} to infer\n$$\n\\sqrt{ 9 + \\frac{3}{n} + \\frac{1}{n^{2}} } \\to \\sqrt{9} \\,.\n$$\nBy the Algebra of Limits we conclude:\n$$\na_n = \\frac{3+ \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{n^{2}} }+ 3 } \\to \\frac{ 3 + 0 }{ \\sqrt{9} + 3 } = \\frac12 \\,.\n$$\n\n\n:::\n\n\n::: Example \n\nProve that the sequence\n$$\na_n = \\sqrt{9 n^{2}+3 n+1}-2 n\n$$\ndoes not converge.\n\n> *Proof.* We rewrite $a_n$ as\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-2 n \\\\\n& =\\frac{ (\\sqrt{9 n^{2}+3 n+1} - 2 n) (\\sqrt{9 n^{2}+3 n+1}+2 n) }{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{9 n^{2}+3 n+1-(2 n)^{2}}{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{5 n^{2}+3 n+1}{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{5 n + 3 + \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } } + 2 } \\\\\n& = \\frac{b_n}{c_n} \\,,\n\\end{align*}\nwhere we factored $n$, being it the largest power of $n$ in the denominator, and defined\n$$\nb_n : = 5 n + 3 + \\dfrac{1}{n}\\,, \\quad \nc_n := \\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } } + 2 \\,.\n$$\nNote that \n$$\n9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } \\to 9\n$$\nby the Algebra of Limits. Therefore \n$$\n\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 }} \\to \\sqrt{9} = 3 \n$$\nby Theorem \\ref{theorem-square-root-limit}. Hence \n$$\nc_n = \\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 }} + 2 \\to 3 + 2 = 5 \\,.\n$$\nThe numerator \n$$\nb_n = 5 n + 3 + \\dfrac{1}{n}\n$$\nis instead unbounded. Therefore $(a_n)$ is not convergent, by the Algebra of Limits and the usual contradiction argument.\n:::\n\n\n\n\n\n\n\n## Limit Tests\n\n\nIn this section we discuss a number of *Tests* to determine whether a sequence converges or not. These are known as **Limit Tests**.\n\n\n### Squeeze Theorem\n\n\nWhen a sequence $(a_n)$ oscillates, it is difficult to compute the limit. Examples of terms which produce oscillations are\n$$\n(-1)^n \\,, \\quad \\sin(n) \\,, \\quad \\cos(n) \\,. \n$$\nIn such instance it might be useful to compare $(a_n)$ with other sequences whose limit is known. If we can prove that $(a_n)$ is *squeezed* between two other sequences with the same limiting value, then we can show that also $(a_n)$ converges to this value.\n\n\n\n::: Theorem \n### Squeeze theorem {#theorem-squeeze}\n\nLet $\\left(a_{n}\\right), \\left(b_{n}\\right)$ and $\\left(c_{n}\\right)$ be sequences in $\\R$. Suppose that\n$$\nb_{n} \\leq a_{n} \\leq c_{n} \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nand that\n$$\n\\lim_{n \\rightarrow \\infty} b_{n} = \\lim_{n \\rightarrow \\infty} c_{n} = L \\, .\n$$\nThen\n$$\n\\lim_{n \\rightarrow \\infty} a_{n}= L \\, .\n$$\n\n:::\n\n\n::: Proof\n\nLet $\\e>0$. Since $b_{n} \\to L$ and $c_n \\to L$ , there exist $N_1, N_2 \\in \\N$ such that \n\\begin{align*}\n-\\e < b_n - L < \\e \\,, \\,\\, \\forall \\, n \\geq N_1 \\,, \\\\\n- \\e < c_n - L < \\e \\,, \\,\\, \\forall \\, n \\geq N_2 \\,. \n\\end{align*}\nSet\n$$\nN := \\max\\{N_1,N_2\\} \\,.\n$$\nLet $n \\geq N$. Using the assumption that $b_n \\leq a_{n} \\leq c_{n}$, we get\n$$\nb_n - L \\leq a_{n} - L \\leq c_{n} - L \\,.\n$$\nIn particular\n$$\n- \\e < b_n - L \\leq a_n - L \\leq b_n - L < \\e \\,.\n$$\nThe above implies \n$$\n- \\e < a_n - L < \\e \\quad \\implies \\quad \\left|a_{n}-L\\right| < \\e \\,.\n$$\n\n:::\n\n\n\n::: Example \n\nProve that\n$$\n\\lim_{n \\to \\infty} \\, \\frac{(-1)^{n}}{n} = 0 \\,.\n$$\n\n> *Proof.*\nFor all $n \\in \\N$ we can estimate\n$$\n-1 \\leq(-1)^{n} \\leq 1 \\,.\n$$\nTherefore\n$$\n\\frac{-1}{n} \\leq \\frac{(-1)^{n}}{n} \\leq \\frac{1}{n} \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nMoreover\n$$\n\\lim_{n \\to \\infty} \\frac{-1}{n}= -1 \\cdot 0=0 \\,, \\quad \n\\lim_{n \\to \\infty} \\frac{1}{n}=0 \\,.\n$$\nBy the Squeeze Theorem \\ref{theorem-squeeze} we conclude\n$$\n\\lim_{n \\to \\infty} \\frac{(-1)^{n}}{n}=0 \\,.\n$$\n\n:::\n\n\n\n::: {.Example #example-squeeze}\n\nProve that \n$$\n\\lim_{n \\to \\infty} \\frac{\\cos (3 n) + 9 n^{2}}{11 n^{2}+15 \\sin (17 n)} = \\frac{9}{11} \\,.\n$$\n\n\n> *Proof.* \nWe know that \n$$\n-1 \\leq \\cos(x) \\leq 1 \\,, \\quad - 1 \\leq \\sin(x) \\leq 1 \\,, \\quad \\forall \\, x \\in \\R \\,.\n$$\nTherefore, for all $n \\in \\N$\n$$\n- 1 \\leq \\cos(3n) \\leq 1 \\,, \\quad -1 \\leq \\sin(17n) \\leq 1 \\,.\n$$\nWe can use the above to estimate the numerator in the given sequence:\n$$\n-1 + 9 n^{2} \\leq \\cos (3 n)+9 n^{2} \\leq 1+ 9 n^{2} \\,.\n$${#eq-squeeze-example-1}\nConcerning the denominator, we have\n$$\n11 n^{2}-15 \\leq 11 n^{2}+15 \\sin (17 n) \\leq 11 n^{2} + 15\n$$\nand therefore\n$$\n\\frac{1}{11 n^{2} + 15} \\leq \\frac{1}{11 n^{2}+15 \\sin (17 n)} \\leq \\frac{1}{11 n^{2}-15} \\,.\n$${#eq-squeeze-example-2}\nPutting together (@eq-squeeze-example-1)-(@eq-squeeze-example-2) we obtain \n$$\n\\frac{-1 + 9 n^{2}}{11 n^{2} + 15} \\leq \\frac{\\cos (3 n)+9 n^{2}}{11 n^{2}+15 \\sin (17 n)} \\leq \\frac{1+ 9 n^{2}}{11 n^{2}-15} \\,.\n$$\nBy the Algebra of Limits we infer\n$$\n\\frac{-1+9 n^{2}}{11 n^{2}+15}=\\frac{-\\dfrac{1}{n^{2}} + 9}{11 + \\dfrac{15}{n^{2}}} \\to \\frac{0+9}{11+0}=\\frac{9}{11}\n$$\nand\n$$\n\\frac{1+9 n^{2}}{11 n^{2} - 15}=\\frac{ \\dfrac{1}{n^{2}} + 9}{ 11 - \\dfrac{15}{n^{2}}} \\to \\frac{0+9}{11+0}=\\frac{9}{11} \\,.\n$$\nApplying the Squeeze Theorem \\ref{theorem-squeeze} we conclude\n$$\n\\lim_{n \\to \\infty} \\frac{\\cos (3 n)+ 9 n^{2}}{11 n^{2}+15 \\sin (17 n)}=\\frac{9}{11} \\,.\n$$\n\n:::\n \n::: Warning\n\nSuppose that the sequences $(a_n), (b_n), (c_n)$ satisfy\n$$\nb_n \\leq a_n \\leq c_n \\,, \\quad \\forall n \\in \\N \\,,\n$$\nand\n$$\nb_n \\to L_1 \\,, \\quad c_n \\to L_2 \\,, \\quad L_1 \\neq L_2 \\,.\n$$\nIn general, we cannot conclude that $a_n$ converges.\n\n:::\n\n\n::: Example \n\nConsider the sequence\n$$\na_n = \\left( 1 + \\frac{1}{n} \\right) (-1)^n \\,.\n$$\nFor all $n \\in \\N$ we can bound\n$$\n- 1 - \\frac{1}{n} \\leq \\left( 1 + \\frac{1}{n} \\right) (-1)^n \\leq 1 + \\frac{1}{n} \\,.\n$$\nHowever \n$$\n- 1 - \\frac{1}{n} \\longrightarrow - 1 - 0 = -1 \n$$\nand\n$$\n1 + \\frac{1}{n} \\longrightarrow 1 + 0 = 1 \\,.\n$$\nSince \n$$\n- 1 \\neq 1 \\,,\n$$\nwe cannot apply the Squeeze Theorem \\ref{theorem-squeeze} to conclude convergence of $(a_n)$. Indeed, $(a_n)$ is a divergent sequence.\n\n> *Proof.* Suppose by contradiction that $a_n \\to a$. We have\n$$\na_n = (-1)^n + \\frac{(-1)^n}{n} = b_n + c_n\n$$\nwhere\n$$\nb_n := (-1)^n \\,, \\quad c_n := \\frac{(-1)^n}{n} \\,.\n$$\nWe have seen in Example \\ref{example-squeeze} that $c_n \\to 0$. Therefore, \nby the Algebra of Limits, we have\n$$\nb_n = a_n - c_n \\longrightarrow a - 0 = a \\,.\n$$\nHowever, Theorem \\ref{theorem-1-minus-n} says that the sequence\n$b_n = (-1)^n$ diverges. Contradiction. Hence $(a_n)$ diverges.\n\n:::\n\n\n\n\n\n### Geometric sequences\n\n\n::: Definition \n\nA sequence $\\left(a_{n}\\right)$ is called a **geometric sequence** if\n$$\na_{n}=x^{n} \\,,\n$$\nfor some $x \\in \\R$.\n\n:::\n\n\nThe value of $|x|$ determines whether or not a geometric sequence converges, as shown in the following theorem.\n\n\n::: Theorem \n### Geometric Sequence Test {#theorem-geometric-sequence}\n\nLet $x \\in \\R$ and let $\\left(a_{n}\\right)$ be the sequence defined by\n$$\na_{n}:=x^{n} \\,.\n$$\nWe have:\n\n1. If $|x|<1$, then \n$$\n\\lim_{n \\to \\infty} a_{n} = 0 \\,.\n$$\n\n2. If $|x|>1$, then sequence $\\left(a_{n}\\right)$ is unbounded, and hence divergent.\n\n:::\n\n\n\n::: Warning\n\nThe Geometric Sequence Test in Theorem \\ref{theorem-geometric-sequence} does not address the case\n$$\n|x|=1 \\,.\n$$\nThis is because, in this case, the sequence \n$$\na_n = x^n \n$$\nmight converge or diverge, depending on the value of $x$. Indeed, \n$$\n|x| = 1 \\quad \\implies \\quad x = \\pm 1 \\,.\n$$\nWe therefore have two cases:\n\n- $x = 1$: Then \n$$\na_n = 1^n = 1\n$$\nso that $a_n \\to 1$ and $(a_n)$ is convergent.\n\n- $x=-1$: Then\n$$\na_n = x^n = (-1)^n\n$$\nwhich is divergent by Theorem \\ref{theorem-1-minus-n}.\n\n:::\n\n\n\nTo prove Theorem \\ref{theorem-geometric-sequence} we need the following inequality, known as Bernoulli's inequality.\n\n\n::: Lemma \n### Bernoulli's inequality {#lemma-bernoulli}\n\nLet $x \\in \\R$ with $x>-1$. Then\n$$\n(1+x)^{n} \\geq 1+n x \\,, \\quad \\forall \\, n \\in \\N \\,.\n$${#eq-bernoulli-inequality}\n\n:::\n\n\n::: Proof\n\nLet $x \\in \\mathbb{R}, x>-1$. We prove the statement by induction:\n\n- Base case: (@eq-bernoulli-inequality) holds with equality when $n=1$.\n\n- Induction hypothesis: Let $k \\in \\N$ and suppose that (@eq-bernoulli-inequality) holds for $n=k$, i.e.,\n$$\n(1+x)^{k} \\geq 1+k x \\,.\n$$\nThen\n\\begin{align*}\n(1+x)^{k+1} & = (1+x)^{k}(1+x) \\\\\n & \\geq(1+k x)(1+x) \\\\\n & =1+k x+x+k x^{2} \\\\\n & \\geq 1+(k+1) x \\,,\n\\end{align*}\nwhere we used that $kx^2 \\geq 0$. Then (@eq-bernoulli-inequality) holds for $n=k+1$.\n\nBy induction we conclude (@eq-bernoulli-inequality).\n\n:::\n\n\nWe are ready to prove Theorem \\ref{theorem-geometric-sequence}.\n\n\n::: Proof \n### Proof of Theorem \\ref{theorem-geometric-sequence}\n\n*Part 1. The case $|x|<1$*. \n\nIf $x=0$, then\n$$\na_n = x^n = 0 \n$$\nso that $a_n \\to 0$. Hence assume $x \\neq 0$. We need to prove that\n$$\n\\forall \\, \\e> 0 \\,, \\, \\exists \\, N \\in \\N \\st \n\\forall \\, n \\geq N \\,, \\,\\, |x^n - 0| < \\e \\,.\n$$\nLet $\\e>0$. We have \n$$\n|x| < 1 \\quad \\implies \\quad \\frac{1}{|x|} > 1 \\,.\n$$\nTherefore \n$$\n|x|= \\frac{1}{1+u} \\,, \\quad u:=\\frac{1}{|x|} - 1 > 0 \\,.\n$$\nLet $N \\in \\N$ be such that \n$$\nN > \\frac{1}{\\e u} \\,,\n$$\nso that \n$$\n\\frac{1}{N u} < \\e \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|x^{n}-0\\right| & =|x|^{n} \\\\\n & = \\left(\\frac{1}{1+u}\\right)^{n} \\\\\n & =\\frac{1}{(1+u)^{n}} \\\\\n & \\leq \\frac{1}{1+n u} \\\\\n & \\leq \\frac{1}{n u} \\\\\n & \\leq \\frac{1}{N u} \\\\\n & < \\e \\,,\n\\end{align*}\nwhere we used Bernoulli's inequality (@eq-bernoulli-inequality) in the first inequality.\n\n\n*Part 2. The case $|x|>1$*. \n\nTo prove that (a_n) does not converge, we prove that it is unbounded. \nThis means showing that\n$$\n\\forall \\, M > 0 \\,, \\, \\exists n \\in \\N \\st \\left| a_{n}\\right| >M \\,.\n$$\nLet $M > 0$. We have two cases: \n\n- $0 < M \\leq 1$: Choose $n=1$. Then\n$$\n\\left|a_{1}\\right|=|x|>1 \\geq M \\,.\n$$\n\n- $M>1$: Choose $n \\in \\N$ such that \n$$\nn> \\frac{\\log M}{\\log |x|} \\,.\n$$ \nNote that $\\log |x|>0$ since $|x|>1$. Therefore\n\\begin{align*}\nn>\\frac{\\log M}{\\log |x|} & \\iff n \\log |x|>\\log M \\\\\n & \\iff \\log |x|^n>\\log M \\\\\n & \\iff |x|^{n}>M \\,.\n\\end{align*}\nThen \n$$\n\\left|a_{n}\\right|=\\left|x^{n}\\right|=|x|^{n} > M \\,.\n$$\n\n\nHence $(a_n)$ is unbounded. By Corollary \\ref{corollary-convergent-bounded} we conclude that $(a_n)$ is divergent. \n\n\n:::\n\n\n\n\n\n\n::: Example \n\nWe can apply Theorem \\ref{theorem-geometric-sequence} to prove convergence\nor divergence for the following sequences.\n\n1. We have\n$$\n\\left(\\frac{1}{2}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|\\frac{1}{2}\\right|=\\frac{1}{2}<1 \\,.\n$$\n\n2. We have\n$$\n\\left(\\frac{-1}{2}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|\\frac{-1}{2}\\right|=\\frac{1}{2}<1 \\,.\n$$\n\n3. The sequence \n$$\na_n = \\left(\\frac{-3}{2}\\right)^{n}\n$$ \ndoes not converge, since \n$$\n\\left|\\frac{-3}{2}\\right|=\\frac{3}{2}>1 \\,.\n$$\n\n4. As $n \\rightarrow \\infty$,\n$$\n\\frac{3^{n}}{(-5)^{n}}=\\left(-\\frac{3}{5}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|-\\frac{3}{5}\\right|=\\frac{3}{5}<1 \\,.\n$$\n\n5. The sequence \n$$\na_{n}=\\frac{(-7)^{n}}{2^{2 n}}\n$$ \ndoes not converge, since\n$$\n\\frac{(-7)^{n}}{2^{2 n}}=\\frac{(-7)^{n}}{\\left(2^{2}\\right)^{n}}=\\left(-\\frac{7}{4}\\right)^{n}\n$$\nand \n$$\n\\left|-\\frac{7}{4}\\right|=\\frac{7}{4}>1 \\,.\n$$\n\n:::\n\n\n\n\n\n\n\n### Ratio Test\n\n\n\n::: Theorem \n### Ratio Test {#theorem-ratio-test}\n\nLet $\\left(a_{n}\\right)$ be a sequence in $\\R$ such that\n$$\na_{n} \\neq 0 \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$ \n\n\n1. Suppose that the following limit exists:\n$$\nL:=\\lim_{n \\to \\infty}\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\,.\n$$\nThen,\n\n - If $L<1$ we have\n $$\n \\lim_{n \\to\\infty} a_{n}=0 \\,.\n $$\n\n - If $L>1$, the sequence $\\left(a_{n}\\right)$ is unbounded, and hence does not converge.\n\n2. Suppose that there exists $N \\in \\N$ and $L>1$ such that\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\geq L \\,, \\quad \\forall \\, n \\geq N \\,. \n$$\nThen the sequence $\\left(a_{n}\\right)$ is unbounded, and hence does not converge.\n\n:::\n\n\n\n::: Proof\n\nDefine the sequence $b_{n}=\\left|a_{n}\\right|$. Then,\n\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right|=\\frac{\\left|a_{n+1}\\right|}{\\left|a_{n}\\right|}=\\frac{b_{n+1}}{b_{n}}\n$$\n\n\n*Part 1.* Suppose that there exists the limit\n$$\nL:=\\lim_{n \\to \\infty}\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\,.\n$$\nTherefore \n$$\n\\lim_{n \\to \\infty} \\frac{b_{n+1}}{b_{n}} = L \\,.\n$${#eq-ratio-test-proof}\n\n- $L<1$: Choose $r>0$ such that \n$$\nL1$: Choose $r>0$ such that \n$$\n1 0 \\,.\n$$\nBy the convergence (@eq-ratio-test-proof), there exists $N \\in \\N$ such that\n$$\n\\left|\\frac{b_{n+1}}{b_{n}}-L\\right| < \\e = L - r \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nIn particular,\n$$\n-(L-r) < \\frac{b_{n+1}}{b_{n}}-L \\,, \\quad \\forall \\, n \\geq N \\,,\n$$\nwhich implies\n$$\nb_{n+1} > r \\, b_{n} \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-ratio-test-proof-4}\nLet $n \\geq N$. Applying (@eq-ratio-test-proof-4) recursively we get\n$$\nb_{n} > r^{n-N} \\, b_{N} = r^{n} \\, \\frac{b_{N}}{r^{N}} \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-ratio-test-proof-5}\nSince $|r|>1$, by the Geometric Sequence Test we have that the sequence\n$$\n(r^n)\n$$\nis unbounded. Therefore also the right hand side of (@eq-ratio-test-proof-5) is unbounded, proving that $(b_n)$ is unbounded. Since\n$$\nb_n = |a_n|\\,,\n$$\nwe conclude that $(a_n)$ is unbounded. By Corollary \\ref{corollary-convergent-bounded} we conclude that $(a_n)$ does not converge.\n\n\n*Part 2.* Suppose that there exists $N \\in \\N$ and $M>1$ such that\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\geq M \\,, \\quad \\forall \\, n \\geq N \\,. \n$$\nSince $b_n = |a_n|$, we infer\n$$\nb_{n+1} \\geq L \\, b_n \\,, \\quad \\forall \\, n \\geq N \\,. \n$$\nArguing as above, we obtain\n$$\nb_n \\geq L^n \\, \\frac{b_N}{L^N} \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nSince $L>1$, we have that the sequence \n$$ \nL^n \\, \\frac{b_N}{L^N}\n$$\nis unbounded, by the Geometric Sequence Test. Hence also $(b_n)$ is unbounded, from which we conclude that $(a_n)$ is unbounded. By Corollary \\ref{corollary-convergent-bounded} we conclude that $(a_n)$ does not converge.\n\n\n:::\n\n\nLet us apply the Ratio Test to some concrete examples.\n\n\n\n::: Example\n\n\nLet \n$$\na_{n}=\\frac{3^{n}}{n !} \\,,\n$$\nwhere we recall that $n!$ (pronounced $n$ factorial) is defined by\n$$\nn! := n \\cdot (n-1) \\cdot (n-2) \\cdot \\ldots \\cdot 3 \\cdot 2 \\cdot 1 \\,. \n$$\nProve that\n$$\n\\lim_{n \\to \\infty} a_n = 0 \\,.\n$$\n\n> *Proof*. We have\n\\begin{align*}\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| & = \\dfrac{\\left( \\dfrac{3^{n+1}}{(n+1) !} \\right) }{ \\left( \\dfrac{3^{n}}{n !} \\right) } \\\\\n& = \\frac{3^{n+1}}{3^{n}} \\, \\frac{n !}{(n+1) !} \\\\\n& = \\frac{3 \\cdot 3^n}{3^n} \\, \\frac{n!}{(n+1) n!} \\\\\n& =\\frac{3}{n+1} \\longrightarrow L = 0 \\,.\n\\end{align*}\nHence, $L=0<1$ so $a_{n} \\to 0$ by the Ratio Test in Theorem \\ref{theorem-ratio-test}.\n\n:::\n\n\n::: Example\n\nConsider the sequence\n$$\na_{n}=\\frac{n ! \\cdot 3^{n}}{\\sqrt{(2 n) !}} \\,.\n$$\nProve that $(a_n)$ is divergent.\n\n> *Proof.* We have\n\\begin{align*}\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| & =\\frac{(n+1) ! \\cdot 3^{n+1}}{\\sqrt{(2(n+1)) !}} \\frac{\\sqrt{(2 n) !}}{n ! \\cdot 3^{n}} \\\\\n& =\\frac{(n+1) !}{n !} \\cdot \\frac{3^{n+1}}{3^{n}} \\cdot \\frac{\\sqrt{(2 n) !}}{\\sqrt{(2(n+1)) !}}\n\\end{align*}\nFor the first two fractions we have\n$$\n\\frac{(n+1) !}{n !} \\cdot \\frac{3^{n+1}}{3^{n}} = 3(n+1) \\,,\n$$\nwhile for the third fraction\n\\begin{align*}\n\\frac{\\sqrt{(2 n) !}}{\\sqrt{(2(n+1)) !}} & =\\sqrt{\\frac{(2 n) !}{(2 n+2) !}} \\\\\n& = \\sqrt{\\frac{ (2n)! }{ (2n+2) \\cdot (2n+1) \\cdot (2n)! }} \\\\\n& = \\frac{1}{\\sqrt{(2 n+1)(2 n+2)}} \\,.\n\\end{align*}\nTherefore, using the Algebra of Limits,\n\\begin{align*}\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| & = \\frac{3(n+1)}{\\sqrt{(2 n+1)(2 n+2)}}\\\\\n& = \\frac{3n \\left(1+ \\dfrac{1}{n} \\right)}{\\sqrt{n^2 \\left( 2 + \\dfrac{1}{n}\\right) \\left(2 + \\dfrac{2}{n} \\right)}} \\\\\n& = \\frac{3 \\left(1+ \\dfrac{1}{n} \\right)}{\\sqrt{ \\left( 2 + \\dfrac{1}{n}\\right) \\left(2 + \\dfrac{2}{n} \\right)}} \\longrightarrow \\frac{3}{\\sqrt{4}} = \\frac{3}{2} > 1 \\,.\n\\end{align*}\nBy the Ratio Test we conclude that $(a_n)$ is divergent.\n\n:::\n\n\n\n::: Example \n\nLet \n$$\na_{n}=\\frac{n !}{100^{n}} \\,.\n$$\nProve that $(a_n)$ is divergent.\n\n> *Proof.*\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \n= \\frac{100^{n}}{100^{n+1}} \\frac{(n+1) !}{n !}\n=\\frac{n+1}{100} \\,.\n$$\nChoose $N=101$. Then for all $n \\geq N$,\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\geq \\frac{101}{100}>1 \\,.\n$$\nHence $a_{n}$ is divergent by the Ratio Test.\n\n:::\n\n\n\n\n::: Warning\n\nThe Ratio Test in Theorem \\ref{theorem-ratio-test} does not address the case\n$$\nL=1 \\,.\n$$\nThis is because, in this case, the sequence $(a_n)$ \nmight converge or diverge. \n\nFor example:\n\n- Define the sequence\n$$\na_n = \\frac1n \\,.\n$$\nWe have\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| = \\frac{n}{n+1} \\rightarrow L = 1 \\,. \n$$\nHence we cannot apply the Ratio Test. However we know that \n$$\n\\lim_{n \\to \\infty} \\, \\frac1n = 0 \\,.\n$$\n\n\n- Consider the sequence\n$$\na_n = n \\,.\n$$\nWe have\n$$\n\\frac{|a_{n+1}|}{|a_n|} = \\frac{n+1}{n} \\rightarrow L = 1 \\,. \n$$\nHence we cannot apply the Ratio Test. However we know that $(a_n)$ is unbounded, and thus divergent.\n\n:::\n\n\n\nIf the sequence $(a_n)$ is geometric, the Ratio Test of Theorem \\ref{theorem-ratio-test} will give the same\nanswer as the Geometric Sequence Test of Theorem \\ref{theorem-geometric-sequence}. This is the content of the following remark.\n\n\n::: Remark\n\nLet $x \\in \\R$ and define the geometric sequence \n$$\na_{n}=x^{n} \\,.\n$$\nThen\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| = \\frac{\\left|x^{n+1}\\right|}{\\left|x^{n}\\right|} \n= \\frac{|x|^{n+1}}{|x|^{n}} \n =|x| \\rightarrow |x| \\,.\n$$\nHence: \n\n- If $|x|<1$, the sequence $(a_n)$ converges by the Ratio Test\n- If $|x|>1$, the sequence $(a_n)$ diverges by the Ratio Test. \n- If $|x|=1$, the sequence $(a_n)$ might be convergent or divergent.\n\nThese results are in agreement with the Geometric Sequence Test. \n\n:::\n\n\n\n\n\n\n## Monotone sequences\n\n\nWe showed in Theorem \\ref{theorem-convergent-bounded} that convergent sequences are bounded. We noted that the converse statement is not true. \nFor example the sequence\n$$\na_n = (-1)^n\n$$\nis bounded but not convergent, as shown in Theorem \\ref{theorem-1-minus-n}.\nOn the other hand, if a bounded sequence is **monotone**, then it is convergent.\n\n\n::: Definition\n### Monotone sequence\n\nLet $(a_n)$ be a real sequence. We say that:\n\n1. $(a_n)$ is **increasing** if \n$$\na_n \\leq a_{n+1} \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\n\n2. $(a_n)$ is **decreasing** if \n$$\na_n \\geq a_{n+1} \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\n\n3. $(a_n)$ is **monotone** if it is either increasing or decreasing.\n\n:::\n\n\n\n::: Example\n\n- The sequence \n$$\na_n = \\frac1n\n$$\nis decreasing.\n\n > We have\n $$\n a_n = \\frac1n > \\frac{1}{n+1} = a_{n+1} \\,.\n $$\n\n- The sequence \n$$\nb_n = \\frac{n-1}{n} \n$$\nis increasing. \n\n > We have\n $$\n b_{n+1} = \\frac{n}{n+1} > \\frac{n-1}{n} = b_n \\,,\n $$\n where the inequality holds because\n \\begin{align*}\n \\frac{n}{n+1} > \\frac{n-1}{n} \\quad & \\iff \\quad \n n^2 > (n-1)(n+1) \\quad \\\\\n & \\iff \\quad n^2 > n^2 - 1 \\\\\n & \\iff \\quad 0 > - 1\n \\end{align*}\n\n:::\n\n\nThe main result about monotone sequences is the Monotone Convergence\nTheorem.\n\n\n::: Theorem\n### Monotone Convergence Theorem {#theorem-monotone-convergence}\n\nIf a sequence is bounded and monotone, then it converges.\n\n:::\n\n\n::: Proof\n\nAssume $(a_n)$ is bounded and monotone. Since $(a_n)$ is bounded, the set \n$$\nA:=\\{ a_n \\divider n \\in \\N \\} \\subseteq \\R \n$$\nis bounded below and above. By the Axiom of Completeness of $\\R$ there exist $i,s \\in \\R$ such that\n$$\ni = \\inf A \\,, \\quad s = \\sup A \\,.\n$$\n\nWe have two cases:\n\n1. $(a_n)$ is increasing: We are going to prove that\n$$\n\\lim_{n \\to \\infty} a_n = s \\,.\n$$\nEquivalently, we need to prove that\n$$\n\\forall \\, \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\,\\,\n|a_n - s| < \\e \\,. \n$$\nLet $\\e > 0$. Since $s$ is the smallest upper bound for $A$, this means\n$$\ns - \\e\n$$\nis not an upper bound. Therefore there exists $N \\in \\N$ such that \n$$\ns - \\e < a_N \\,.\n$${#eq-monotone-convergence-proof-1}\nLet $n \\geq N$. Since $a_n$ is increasing, we have\n$$\na_N \\leq a_n \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-monotone-convergence-proof-2}\nMoreover $s$ is the supremum of $A$, so that\n$$\na_n \\leq s < s + \\e \\,, \\quad \\forall \\, n \\in \\N \\,.\n$${#eq-monotone-convergence-proof-3}\nPutting together estimates (@eq-monotone-convergence-proof-1)-(@eq-monotone-convergence-proof-2)-(@eq-monotone-convergence-proof-3)\nwe get\n$$\ns - \\e < a_N \\leq a_n \\leq s < s + \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTherefore, for all $n \\geq N$, we have\n$$\ns - \\e < a_n < s + \\e \\quad \\implies \\quad |a_n - s | < \\e \\,.\n$$\n\n\n\n\n2. $(a_n)$ is decreasing: With a similar proof, one can show that\n$$\n\\lim_{n \\to \\infty} a_n = i \\,.\n$$\nThis is left as an exercise.\n\n\n:::\n\n\n\n\n::: {.content-hidden}\n\n\n\n### Example: Euler's Number\n\n\nAs an application of the Monotone Convergence Theorem we can give\na formal definition for the Euler's Number\n$$\ne = 2.71828182845904523536 \\dots\n$$\n\n\n::: Theorem \n\nConsider the sequence\n$$\na_n = \\left( 1 + \\frac{1}{n} \\right)^n \\,.\n$$\n\nWe have that:\n\n1. $(a_n)$ is monotone increasing,\n2. $(a_n)$ is bounded.\n\nIn particular $(a_n)$ is convergent.\n\n:::\n\n\n::: Proof\n\nCopiala da Marcellini Sbordone, pagina 106\n\n:::\n\n\nThanks to Theorem \\ref{theorem-euler-number} we can define the Euler's Number $e$.\n\n\n::: Definition\n### Euler's Number\n\nThe Euler's number is defined as\n$$\ne := \\lim_{n \\to \\infty } \\, \\left( 1 + \\frac{1}{n} \\right)^n \\,.\n$$\n\n:::\n\n\nAlready for $n=1000$ we have a good approximation of $e$:\n$$\na_{1000} = 2.7169 \\,.\n$$\n\n\n\n\n\n\n\n\n\nUse abbot, marcellini, and analisi sapienza note. For next year remove integral test and add cauchy condensation test.\n\n\n## Divergence to infinity\n\nDo this from abbott or marcellini. For the moment we have only done\ndivergent as non-convergent. Would need definition of Divergence to $\\pm \\infty$. Vedi anche forme indeterminate a pagina 96 Marcellini.\n\n\n## Some notable limits\n\nMarcellini Page 101. Also see what is the english name for limiti notevoli.\n\n\n\n\n\n## Recurrence relations\n\nMarcellini Page 110\n\n\n\n## Example: Heron's Method\n\n\nThe first explicit algorithm for approximating \n$$\n\\sqrt{x}\n$$ \nfor $x > 0$ is known as **Heron's method**, after the first-century Greek mathematician [Heron of Alexandria](https://en.wikipedia.org/wiki/Hero_of_Alexandria) who described the method in his AD 60 work Metrica, see reference to\n[Wikipedia page](https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method).\n\nLet us see what is the idea of the algorithm:\n\n- Suppose that $a_1$ is an approximation of $\\sqrt{x}$ from above, that is,\n$$\n \\sqrt{x} < a_1 \\,.\n$$ {#eq-heron}\n- Multiplying (@eq-heron) by $\\sqrt{x}/a_1$ we obtain\n$$\n\\frac{x}{a_1} < \\sqrt{x} \\,,\n$${#eq-heron-1}\nobtaining an approximation of $\\sqrt{x}$ from below.\n- Therefore, putting together the above inequalities,\n$$\n\\frac{x}{a_1} < \\sqrt{x} < a_1 \n$$ {#eq-heron-2}\n- If we take the average of the points $x/a_1$ and $a_1$, it is reasonable to think that we find a better approximation of $\\sqrt{x}$. Thus our next approximation is\n$$\na_2 := \\frac{1}{2} \\left( a_1 + \\frac{x}{a_1} \\right) \\,,\n$$\nsee figure below.\n\n\n![Heron's Algorithm for approximating $\\sqrt{x}$](/images/heron.png){width=70%}\n\n\nIterating, we define by recurrence the sequence \n$$\na_{n+1} := \\frac12 \\left( a_n + \\frac{x}{a_n} \\right)\n$$\nfor all $n \\in \\N$, where the initial guess $a_1$ has to satisfy (@eq-heron). The aim of the section is to show that\n$$\n\\lim_{n \\to \\infty } \\ a_n = \\sqrt{x} \\,.\n$${#eq-heron-convergence}\nWe start by showing that (@eq-heron-2) holds for all $n \\in \\N$.\n\n::: {.Proposition #proposition-heron}\nWe have\n$$\n\\frac{x}{a_n} < \\sqrt{x} < a_n \n$${#eq-heron-3}\nfor all $n \\in \\N$.\n:::\n\n\n::: Proof\nWe prove it by induction:\n\n1. By (@eq-heron) and (@eq-heron-1) we know that (@eq-heron-3) holds for $n=1$. \n\n2. Suppose now that (@eq-heron-3) holds for $n$. Then\n\\begin{align}\na_{n+1} - \\sqrt{x} & = \\frac12 \\left( a_n + \\frac{x}{a_n} \\right) - \\sqrt{x} \\\\\n& = \\frac{1}{2 a_n} ( a_n^2 + x - 2 a_n \\sqrt{x} ) \\\\\n& = \\frac{1}{2 a_n} ( a_n - \\sqrt{x} )^2 > 0 \\,,\n\\end{align}\nsince we are assuming that $a_n > \\sqrt{x}$. Therefore\n$$\n\\sqrt{x} < a_{n+1} \\,.\n$${#eq-heron-proof-1}\nMultiplying the above by $\\sqrt{x}/a_{n+1}$ we get\n$$\n\\frac{x}{a_{n+1}} < \\sqrt{x} \\,.\n$${#eq-heron-proof-2}\nInequalities (@eq-heron-proof-1) and (@eq-heron-proof-2) show that (@eq-heron-3) holds for $n+1$.\n\nTherefore we conclude (@eq-heron-3) by the Principle of Induction.\n:::\n\n\nWe are now ready to prove error estimates, that is, estimating how far away $a_n$ is from $\\sqrt{x}$. \n\n\n::: Proposition\n### Error estimate {#proposition-heron-error}\nFor all $n \\in \\N$ we have\n$$\na_{n+1} - \\sqrt{x} < \\frac12 (a_{n} - \\sqrt{x}) \\,.\n$${#eq-heron-half}\n:::\n\n\n::: Proof\nBy Proposition \\ref{proposition-heron} we know that \n$$\n\\frac{x}{a_n} < \\sqrt{x}\n$$\nfor all $n \\in \\N$. Therefore\n\\begin{align}\na_{n+1} & = \\frac12 \\left( a_n + \\frac{x}{a_n} \\right) \\\\\n & < \\frac12 \\left( a_n + \\sqrt{x} \\right) \\,.\n\\end{align}\nSubtracting $\\sqrt{x}$ from both members in the above inequality we get the thesis.\n:::\n\n\nInequality (@eq-heron-half) is saying that the error halves at each step. Therefore we can prove that after $n$ steps the error is exponentially lower, as detailed in the following proposition.\n\n\n::: {.Proposition #proposition-heron-error-exp}\nFor all $n \\in \\N$ we have\n$$\na_{n+1} - \\sqrt{x} < \\frac{1}{2^n} (a_1 - \\sqrt{x})\n$$ {#eq-heron-error}\n:::\n\n\n\n::: Proof\nWe prove (@eq-heron-error) by induction:\n\n1. For $n=1$ we have that (@eq-heron-error) is satisfied, since it coincides with (@eq-heron-half) for $n=1$.\n2. Suppose that (@eq-heron-error) holds for $n$. By (@eq-heron-half) with $n$ replaced by $n+1$ we have\n\\begin{align}\na_{n+2} - \\sqrt{x} & < \\frac12 (a_{n+1} - \\sqrt{x}) \\\\\n& < \\frac12 \\,\\cdot \\, \\frac{1}{2^n} (a_{1} - \\sqrt{x}) \\\\\n& = \\frac{1}{2^{n+1}} (a_{1} - \\sqrt{x})\n\\end{align}\nwhere in the second inequality we used the induction hypothesis (@eq-heron-error). Hence (@eq-heron-error) holds for $n+1$.\n\nBy invoking the Induction Principle we conclude the proof.\n:::\n\nLet us comment estimate (@eq-heron-error). Denote the error at step $n$ by\n$$\ne_n := a_n - \\sqrt{x}\\,.\n$$\nThe initial error $e_1$ depends on how far the initial guess is from $\\sqrt{x}$. The estimate in (@eq-heron-error) is telling us that $e_n$ is a fraction of $e_1$, and actually\n$$\n\\lim_{n \\to \\infty} \\ e_n = 0\n$$\nexponentially fast. From this fact we are finally able to prove (@eq-heron-convergence).\n\n::: Theorem\n### Convergence of Heron's Algorithm\nWe have that \n$$\n\\lim_{n \\to \\infty} \\ a_n = \\sqrt{x} \\,.\n$$\n:::\n\n::: Proof\nBy Proposition \\ref{proposition-heron-error-exp} we have that\n$$\na_{n+1} - \\sqrt{x} < \\frac{1}{2^n} (a_1 - \\sqrt{x})\n$$\nMoreover Proposition \\ref{proposition-heron} tells us that\n$$\n\\sqrt{x} < a_{n+1} \\,.\n$$\nPutting together the two inequalities above we infer\n$$\n\\sqrt{x} < a_{n+1} < \\sqrt{x} + \\frac{1}{2^n} (a_1 - \\sqrt{x}) \\,.\n$${#eq-heron-final}\nNow note that\n$$\n\\lim_{n \\to \\infty} \\ \\frac{1}{2^n} =\n\\lim_{n \\to \\infty} \\ \\left( \\frac{1}{2} \\right)^n = 0 \\,.\n$$\nTherefore the RHS of (@eq-heron-final) converges to $\\sqrt{x}$ as $n \\to \\infty$. Applying the Squeeze Theorem to (@eq-heron-final) we conclude that $a_n \\to \\sqrt{x}$ as $n \\to \\infty$.\n:::\n\n\n\n### Coding the Algorithm\n\nHeron's Algorithm can be easily coded in Python. For example, see the function below:\n\n```python\n# x is the number for which to compute sqrt(x)\n# guess is the point a_1\n# a_1 must be strictly larger than sqrt(x)\n# n is the number of iterations\n# the function returns a_{n+1}\n\ndef herons_algorithm(x, guess, n):\n for i in range(n):\n guess = (guess + x / guess) / 2.0\n return guess\n```\n\nFor example let us use the Algorithm to compute $\\sqrt{2}$ after $3$ iterations. For initial guess we take $a_1 = 2$. \n\n```python\n# Calculate sqrt(2) with 3 iterations and guess 2\nsqrt_2 = herons_algorithm(2, 2, 3)\n\nprint(f\"The sqrt(2) is approximately {sqrt_2}\")\n```\n\n::: {.cell execution_count=1}\n\n::: {.cell-output .cell-output-stdout}\n```\nThe sqrt(2) is approximately 1.4142156862745097\n```\n:::\n:::\n\n\nThat is a pretty good approximation in just $3$ iterations!\n\n\n\n\n\n## Fibonacci Sequence\n\n\n\n\n:::\n\n", + "markdown": "::: {.content-hidden}\n$\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\Q}{\\mathbb{Q}}\n\\newcommand{\\C}{\\mathbb{C}} \n\\newcommand{\\N}{\\mathbb{N}}\n\\newcommand{\\Z}{\\mathbb{Z}}\n\n\\renewcommand\\Re{\\operatorname{Re}}\n\\renewcommand\\Im{\\operatorname{Im}}\n\n\n\n\n\n\\newcommand{\\e}{\\varepsilon}\n\\newcommand{\\g}{\\gamma}\n\n\\newcommand{\\st}{\\, \\text{ s.t. } \\, }\n\\newcommand{\\divider}{\\, \\colon \\,}\n\n\\newcommand{\\closure}[2][2]{{}\\mkern#1mu \\overline{\\mkern-#1mu #2 \\mkern-#1mu}\\mkern#1mu {}}\n\n\n\\newcommand{\\Czero}{\\mathnormal{C}}\n\\newcommand{\\Cinf}{{\\mathnormal{C}}^{\\infty}}\n\\newcommand{\\Cinfcomp}{{\\mathnormal{C}}_0^{\\infty}}\n\\newcommand{\\Lone}{{\\mathnormal{L}}^1}\n\\newcommand{\\Loneloc}{{\\mathnormal{L}}_{loc}^1}\n\\newcommand{\\Ltwo}{{\\mathnormal{L}}^2}\n\\newcommand{\\Lp}{{\\mathnormal{L}}^p}\n\\newcommand{\\Linf}{{\\mathnormal{L}}^{\\infty}}\n\\newcommand{\\Woneone}{{\\mathnormal{W}}^{1,1}}\n\\newcommand{\\Wonetwo}{{\\mathnormal{W}}^{1,2}}\n\\newcommand{\\Wonep}{{\\mathnormal{W}}^{1,p}}\n\\newcommand{\\Woneinf}{{\\mathnormal{W}}^{1,\\infty}}\n\\newcommand{\\Wtwotwo}{{\\mathnormal{W}}^{2,2}}\n\\newcommand{\\Wktwo}{{\\mathnormal{W}}^{k,2}}\n\\newcommand{\\Wkp}{{\\mathnormal{W}}^{k,p}}\n\\newcommand{\\Lip}{\\mathnormal{Lip}}\n\n\\newcommand{\\scp}[2]{\\left\\langle #1,#2 \\right\\rangle} %prodotto scalare\n\\newcommand{\\abs}[1]{\\left| #1 \\right|} %valore assoluto\n\\newcommand{\\norm}[1]{\\left\\| #1 \\right\\|} %norma\n\n\n\n\n\n\n\n\n\n$\n:::\n\n\n\n\n\n# Sequences in $\\mathbb{R}$\n\n\n\nA sequence is an infinite list of real numbers. For example, the following are sequences:\n\n\n- $(1,2,3,4, \\ldots)$\n\n- $(-1,1,-1,1, \\ldots)$\n\n- $\\left(1, \\frac{1}{2}, \\frac{1}{3}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right)$\n\n\n::: Remark\n\n- The order of elements in a sequence matters. \n\n> For example\n>$$\n>(1,2,3,4,5,6, \\ldots) \\neq(2,1,4,3,6,5, \\ldots)\n>$$\n\n- A sequence is not a set. \n\n> For example \n>$$\n>\\{-1,1,-1,1,-1,1, \\ldots\\}=\\{-1,1\\}\n>$$\n>but we cannot make a similar statement for the sequence \n>$$\n>(-1,1,-1,1,-1,1, \\ldots) \\,.\n>$$\n\n- The above notation is ambiguous.\n\n> For example the sequence \n>$$\n>(1,2,3,4, \\ldots)\n>$$\ncan continue as\n>\n>$$\n>(1,2,3,4,1,2,3,4,1,2,3,4, \\ldots) \\,.\n>$$\n\n- In the sequence \n$$\n\\left(1, \\frac{1}{2}, \\frac{1}{3}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right)\n$$\nthe elements get smaller and smaller, and closer and closer to $0$. We say that this sequence converges to $0$, or has $0$ as a limit. \n\n\n:::\n\n\nWe would like to make the notions of sequence and convergence more precise.\n\n\n## Definition of sequence\n\n\nWe start with the definition of sequence of Real numbers.\n\n\n::: Definition \n### Sequence of Real numbers\n\nA sequence $a$ in $\\R$ is a function\n$$\na \\colon \\N \\to \\R \\,.\n$$\nFor $n \\in \\N$, we denote the $n$-th element of the sequence $a$ by \n$$\na_{n}=a(n)\n$$ \nand write the sequence as \n$$\n\\left(a_{n}\\right)_{n \\in \\N} \\,.\n$$\n:::\n\n\n::: Notation\n\nWe will sometimes omit the subscript $n \\in \\N$ and simply write \n$$\n\\left(a_{n}\\right) \\,.\n$$ \nIn certain situations, we will also write\n$$\n\\left(a_{n}\\right)_{n=1}^{\\infty} \\,.\n$$\n\n\n:::\n\n\n\n\n::: Example \n\n- In general $\\left(a_{n}\\right)_{n \\in \\N}$ is the sequence \n$$\n\\left(a_{1}, a_{2}, a_{3}, \\ldots\\right)\\,.\n$$\n\n- Consider the function \n$$\na \\colon \\N \\to \\N \\, , \\quad n \\mapsto 2 n \\,.\n$$\nThis is also a sequence of real numbers. It can be written as \n$$\n(2 n)_{n \\in \\N}\n$$\nand it represents the sequence of even numbers \n$$\n(2,4,6,8,10, \\ldots) \\,.\n$$\n\n- Let \n$$\na_{n}=(-1)^{n}\n$$\nThen $\\left(a_{n}\\right)$ is the sequence \n$$\n(-1,1,-1,1,-1,1, \\ldots) \\,.\n$$\n\n- $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ is the sequence \n$$\n\\left(1, \\frac{1}{2}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right) \\,.\n$$\n\n\n:::\n\n\n\n## Convergent sequences\n\n\nWe have notice that the sequence $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ gets close to $0$ as $n$ gets large. We would like to say that $a_{n}$ converges to $0$ as $n$ tends to infinity.\n\nTo make this precise, we first have to say what it means for two numbers to be *close*. For this we use the notion of absolute value, and say that:\n\n- $x$ and $y$ are close if $|x-y|$ is small. \n- $|x-y|$ is called the distance between $x$ and $y$\n- For $x$ to be close to $0$, we need that $|x-0|=|x|$ is small.\n\nSaying that $|x|$ is *small* is not very precise. Let us now give the formal definition of convergent sequence.\n\n::: Definition \n### Convergent sequence {#definition-convergent-sequence}\n\nWe say that a sequence $\\left(a_{n}\\right)_{n \\in \\N}$ in $\\mathbb{R}$ **converges** to $a \\in \\mathbb{R}$, or equivalently has limit $a$, denoted by\n$$\n\\lim_{n \\rightarrow \\infty} a_{n}=a \n$$\nif for all $\\e \\in \\mathbb{R}, \\e>0$, there exists $N \\in \\N$ such that for all $n \\in \\N, n \\geq N$ it holds that \n$$\n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nUsing quantifiers, we can write this as\n$$\n\\forall \\, \\e>0 , \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\,\\left|a_{n}-a\\right| < \\e \\,.\n$$\n\nIf there exists $a \\in \\R$ such that $\\lim_{n \\rightarrow \\infty} a_{n}=a$, then we say that the sequence $\\left(a_{n}\\right)_{n \\in \\N}$ is **convergent**.\n\n:::\n\n\n::: Notation\n\nWe will often write\n$$\na_n \\to a\n$$\nin place of\n$$\n\\lim_{n \\rightarrow \\infty} a_{n}=a \\,.\n$$\n\n:::\n\n\n::: Remark\n\n- Informally, Definition \\ref{definition-convergent-sequence} says that, no matter how small we choose $\\e$ (as long as it is strictly positive), we always have that $a_{n}$ has a distance to $a$ of less than or equal to $\\e$ from a certain point onwards (i.e., from $N$ onward). The sequence $\\left(a_{n}\\right)$ may fluctuate wildly in the beginning, but from $N$ onward it should stay within a distance of $\\e$ of $a$.\n\n- In general $N$ depends on $\\e$. If $\\e$ is chosen smaller, we might have to take $N$ larger: this means we need to wait longer before the sequence stays within a distance $\\e$ from $a$.\n\n:::\n\n\nWe now prove that the sequence\n$$\na_n = \\frac1n\n$$\nconverges to $0$, according to Definition \\ref{definition-convergent-sequence}.\n\n::: {.Theorem #theorem-one-over-n}\n\nThe sequence $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ converges to $0$ , i.e.,\n\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{1}{n}=0 \\,.\n$$\n\n:::\n\nWe give two proofs of the above theorem:\n\n- Long proof, with all the details.\n- Short proof, with less details, but still acceptable. \n\n::: Proof \n### Proof of Theorem \\ref{theorem-one-over-n} (Long version)\n\nWe have to show that\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{1}{n}=0,\n$$\n\nwhich by definition is equivalent to showing that\n\n$$\n\\forall \\, \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n}-0\\right| < \\e \\,.\n$${#eq-one-over-n}\n\nLet $\\e \\in \\mathbb{R}$ with $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e}\\,.\n$$\nSuch natural number $N$ exists thanks to the Archimedean property. The above implies\n$$\n\\frac{1}{N} < \\e \\,,\n$${#eq-one-over-n-1}\nLet $n \\in \\N$ with $n \\geq N$. By (@eq-one-over-n-1) we have\n$$\n\\frac{1}{n} \\leq \\frac{1}{N} < \\e \\,.\n$$\nFrom this we deduce\n$$\n\\left|\\frac{1}{n}-0\\right|=\\frac{1}{n} \\leq \\frac{1}{N} < \\e\n$$\n\nSince $n \\in \\N, n \\geq N$ was arbitrary, we have proven that \n$$\n\\left|\\frac{1}{n}-0\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-one-over-n-2}\nCondition (@eq-one-over-n-2) holds for all $\\e>0$, for the choice of $N \\in \\N$ such that\n$$\nN > \\frac{1}{\\e} \\,.\n$$\nWe have hence shown (@eq-one-over-n), and the proof is concluded.\n\n:::\n\nAs the above proof is quite long and includes lots of details, it is acceptable to shorten it. For example:\n\n- We skip some intermediate steps.\n- We do not mention the Archimedean property.\n- We leave out the conclusion when it is obvious that the statement has been proven. \n\n\n\n\n::: Proof \n### Proof of Theorem \\ref{theorem-one-over-n} (Short version)\n\nWe have to show that\n\n$$\n\\forall \\, \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n}-0\\right| < \\e \\,.\n$$\n\nLet $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e}\\,.\n$$\nLet $n \\geq N$. Then\n$$\n\\left|\\frac{1}{n}-0\\right|=\\frac{1}{n} \\leq \\frac{1}{N} < \\e \\,.\n$$\n\n:::\n\n\nIn Theorem \\ref{theorem-one-over-n} we showed that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n} = 0 \\,.\n$$\nWe can generalise this statement to prove that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n^{p}} = 0\n$$\nfor any $p>0$ fixed.\n\n\n::: {.Theorem #theorem-one-over-np}\nFor all $p>0$, the sequence $\\left(\\frac{1}{n^{p}}\\right)_{n \\in \\N}$ converges to $0$ , i.e.,\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{1}{n^{p}}=0\n$$\n:::\n\n::: Proof\n\nLet $p>0$. We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n^{p}}-0\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e^{1 / p}} \\,.\n$${#eq-theorem-one-over-np-1}\nLet $n \\geq N$. Since $p>0$, we have $n^{p} \\geq N^{p}$, which implies \n$$\n\\frac{1}{n^p} \\leq \\frac{1}{N^p} \\,.\n$$\nBy (@eq-theorem-one-over-np-1) we deduce\n$$\n\\frac{1}{N^p} < \\e \\,.\n$$\nThen\n$$\n\\left|\\frac{1}{n^{p}}-0\\right|=\\frac{1}{n^{p}} \\leq \\frac{1}{N^{p}} < \\e \\,.\n$$\n\n:::\n\n::: Question\nWhy did we choose $N \\in \\N$ such that\n$$\nN > \\frac{1}{\\e^p}\n$$\nin the above proof?\n:::\n\nThe answer is: because it works. Finding a number $N$ that makes the proof work requires some *rough work*: Specifically, such rough work consists in finding $N \\in \\N$ such that the inequality\n$$\n|a_N - a | < \\e \n$$\nis satisfied. \n\n\n::: Important \n\nAny *rough work* required to prove convergence must be shown before the formal proof (in assignments). \n\n:::\n\n\n\n\n::: Example \n\nProve that, as $n \\rightarrow \\infty$,\n\n$$\n\\frac{n}{2n+3} \\to \\frac{1}{2} \\,.\n$$\n\n*Part 1. Rough Work.*\n\nLet $\\e>0$. We want to find $N \\in \\N$ such that\n$$\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTo this end, we compute:\n\\begin{align*}\n\\left|\\frac{n}{2 n+3}-\\frac{1}{2}\\right| & \n=\\left|\\frac{2n -(2n + 3)}{2(2n +3)}\\right| \\\\\n& =\\left|\\frac{- 3}{4n + 6}\\right| \\\\\n& = \\frac{3}{4n + 6} \\,.\n\\end{align*}\nTherefore \n\\begin{align*}\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e\n\\quad \\iff & \\quad\n\\frac{3}{4n + 6} < \\e \\\\\n\\quad \\iff & \\quad\n\\frac{4n + 6}{3} > \\frac{1}{\\e} \\\\\n\\quad \\iff & \\quad\n4n + 6 > \\frac{3}{\\e} \\\\\n\\quad \\iff & \\quad\n4n > \\frac{3}{\\e} - 6 \\\\\n\\quad \\iff & \\quad\nn > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n\\end{align*}\nLooking at the above equivalences, it is clear that $N \\in \\N$ has to be chosen so that\n$$\nN > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n$$\n\n\n*Part 2. Formal Proof.* We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that\n$$\nN > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n$${#eq-example-limit-1}\nBy the rough work shown above, inequality (@eq-example-limit-1) is equivalent to \n$$\n \\frac{3}{4N + 6} < \\e \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| \n& = \\left|\\frac{- 3 }{2(2 n+3)}\\right| \\\\\n& = \\frac{3}{4 n+ 6 } \\\\\n& \\leq \\frac{3}{4 N+ 6 } \\\\\n& < \\e \\,,\n\\end{align*}\nwhere in the third line we used that $n \\geq N$.\n\n:::\n\n\nWe conclude by showing that constant sequences always converge.\n\n::: {.Theorem #theorem-constant-sequence}\n\nLet $c \\in \\R$ and define the constant sequence\n$$\na_n := c \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nWe have that \n$$\n\\lim_{n \\to \\infty} \\, a_n = c \\,.\n$$\n\n:::\n\n::: Proof\n\nWe have to prove that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_n - c \\right| < \\e \\,.\n$${#eq-constant-sequence}\nLet $\\e>0$. We have\n$$\n\\left|a_n - c \\right| = \\left|c - c \\right| = 0 < \\e \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nTherefore we can choose $N=1$ and (@eq-constant-sequence) is satisfied. \n:::\n\n\n\n\n## Divergent sequences\n\n\nThe opposite of convergent sequences are divergent sequences.\n\n::: Definition\n### Divergent sequence\n\nWe say that a sequence $\\left(a_{n}\\right)_{n \\in \\N}$ in $\\R$ is **divergent** if it is not convergent.\n\n:::\n\n\n\n::: Remark\n\nProving that a sequence $(a_n)$ is divergent is more complicated than showing it is convergent: To show that $(a_n)$ is divergent, we need to show that \n$(a_n)$ cannot converge to $a$ for any $a \\in \\R$.\n\nIn other words, we have to show that there does not exist an $a \\in \\mathbb{R}$ such that \n$$\n\\lim _{n \\rightarrow \\infty} \\, a_n = a \\,.\n$$\nUsing quantifiers, this means\n$$\n\\nexists \\, a \\in \\R \\st \\forall \\, \\e>0 \\,, \\, \n\\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\,\n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nThe above is equivalent to showing that\n$$\n\\forall \\, a \\in \\R \\,, \\, \\exists \\, \\e > 0 \\st \\forall \\, N \\in \\N \\,, \\, \\exists \\, n \\geq N \\st \\left|a_{n}-a\\right| \\geq \\e \\,.\n$$\n\n:::\n\n\n\n::: {.Theorem #theorem-1-minus-n}\nLet $\\left(a_{n}\\right)$ be the sequence defined by\n$$\na_{n}=(-1)^{n} \\,.\n$$\nThen $\\left(a_{n}\\right)$ does not converge. \n\n:::\n\n::: Proof\n\nTo prove that $\\left(a_{n}\\right)$ does not converge, we have to show that \n$$\n\\forall \\, a \\in \\R \\,, \\, \\exists \\, \\e > 0 \\st \\forall \\, N \\in \\N \\,, \\, \\exists \\, n \\geq N \\st \\left|a_{n}-a\\right| \\geq \\e \\,.\n$$\nLet $a \\in \\R$. Choose \n$$\n\\e=\\frac{1}{2} \\,.\n$$ \nLet $N \\in \\N$. We distinguish two cases:\n\n- $a \\geq 0$: Choose $n=2 N+1$. Note that $n \\geq N$. Then\n\\begin{align*}\n\\left|a_{n}-a\\right| & = \\left|a_{2 N+1}-a\\right| \\\\\n& = \\left|(-1)^{2 N+1}-a\\right| \\\\\n& =|-1-a| \\\\\n& =1+a \\\\\n& \\geq 1 \\\\\n& > \\frac{1}{2} = \\e \\,,\n\\end{align*}\nwhere we used that $a \\geq 0$, and therefore \n$$\n|-1-a|=1+a \\geq 1 \\,.\n$$\n\n- $a<0$: Choose $n=2 N$. Note that $n \\geq N$. Then\n\\begin{align*}\n\\left|a_{n}-a\\right| & = \\left|a_{2 N}-a\\right| \\\\\n& =\\left|(-1)^{2 N}-a\\right| \\\\ \n& = |1-a| \\\\\n& = 1-a \\\\\n& > 1 \\\\\n& > \\frac{1}{2} = \\e \\,,\n\\end{align*}\nwhere we used that $a < 0$, and therefore \n$$\n|1-a|=1-a > 1 \\,.\n$$\n\n\n:::\n\n\n\n## Uniqueness of limit\n\n\nIn Definition \\ref{definition-convergent-sequence} of convergence, we used the notation \n$$\n\\lim_{n \\rightarrow \\infty} a_{n}=a \\,.\n$$ \nThe above notation makes sense only if the limit is unique, that is, if we do not have that \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,,\n$$ \nfor some \n$$\na \\neq b \\,.\n$$\nIn the next theorem we will show that the limit is unique, if it exists.\n\n::: Theorem \n### Uniqueness of limit {#theorem-uniqueness-limit}\n\nLet $\\left(a_{n}\\right)_{n \\in \\N}$ be a sequence. Suppose that \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = a \\,, \\quad \n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,.\n$$\nThen $a=b$.\n:::\n\n\n::: Proof\n\nAssume that, \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = a \\,, \\quad \n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,.\n$$\nSuppose by contradiction that\n$$\na \\neq b \\,.\n$$\nChoose \n$$\n\\e := \\frac{1}{2} \\, |a-b| \\,.\n$$\nTherefore $\\e>0$, since $|a-b|>0$. By the convergence $a_{n} \\rightarrow a$,\n$$\n\\exists \\, N_1 \\in \\N \\st \\forall \\, n \\geq N_1 \\,, \\, \n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nBy the convergence $a_{n} \\rightarrow b$,\n$$\n\\exists \\, N_2 \\in \\N \\st \\forall \\, n \\geq N_2 \\,, \\, \n\\left|a_{n} - b \\right| < \\e \\,.\n$$\nDefine\n$$\nN := \\max \\{ N_1, N_2 \\} \\,.\n$$\nChoose an $n \\in \\N$ such that $n \\geq N$. In particular\n$$\nn \\geq N_1 \\,, \\quad n \\geq N_2 \\,.\n$$\nThen\n\\begin{align*}\n2 \\e & = |a-b| \\\\\n& = \\left|a-a_{n}+a_{n}-b\\right| \\\\\n& \\leq\\left|a-a_{n}\\right|+\\left|a_{n}-b\\right| \\\\\n& < \\e + \\e \\\\\n& = 2 \\e \\,,\n\\end{align*}\nwhere we used the triangle inequality in the first inequality.\nHence $2 \\e < 2 \\e$, which gives a contradiction.\n\n:::\n\n\n::: Example \n\nProve that\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3}=\\frac{1}{2}\n$$\n\nAccording to Theorem \\ref{theorem-uniqueness-limit}, it suffices to show that the sequence \n$$\n\\left(\\frac{n^{2}-1}{2 n^{2}-3}\\right)_{n \\in \\N}\n$$ \nconverges to $\\frac{1}{2}$, since then $\\frac{1}{2}$ can be the only limit.\n\n\n*Part 1. Rough Work.*\n\nLet $\\e>0$. We want to find $N \\in \\N$ such that\n$$\n\\left|\\frac{n^{2}-1}{2 n^{2}-3} - \\frac{1}{2}\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTo this end, we compute:\n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| \n& =\\left|\\frac{2\\left(n^{2}-1\\right)-\\left(2 n^{2}-3\\right)}{2\\left(2 n^{2}-3\\right)}\\right| \\\\\n& =\\left|\\frac{1}{4 n^{2}-6}\\right| \\\\\n& =\\frac{1}{4 n^{2}-6} \\\\\n& =\\frac{1}{3 n^{2}+n^{2}-6} \\\\\n& \\leq \\frac{1}{3 n^{2}} \n\\end{align*}\nwhich holds if $n \\geq 3$, since in this case $n^2 - 6 \\geq 0$.\nTherefore \n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| < \\e\n\\quad \\impliedby & \\quad\n\\frac{1}{3n^2} < \\e \\\\\n\\quad \\iff & \\quad\n3n^2 > \\frac{1}{\\e} \\\\\n\\quad \\iff & \\quad\nn^2 > \\frac{1}{3\\e} \\\\\n\\quad \\iff & \\quad\nn > \\frac{1}{\\sqrt{3\\e}} \\,.\n\\end{align*}\nLooking at the above implications, it is clear that $N \\in \\N$ has to be chosen so that\n$$\nN > \\frac{1}{\\sqrt{3\\e}} \\,.\n$$\nMoreover we need to recall that $N$ has to satisfy \n$$\nN \\geq 3\n$$ \nfor the estimates to hold.\n\n\n*Part 2. Formal Proof.* We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that\n$$\nN > \\max \\left\\{ \\frac{1}{\\sqrt{3\\e}}, 3 \\right\\} \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| \n& =\\frac{1}{4 n^{2}-6} \\\\\n& =\\frac{1}{3 n^{2}+n^{2}-6} \\\\\n& \\leq \\frac{1}{3 n^{2}} \\\\\n& \\leq \\frac{1}{3 N^{2}} \\\\\n& < \\e \\,,\n\\end{align*}\nwhere we used that \n$$\nn \\geq N \\geq 3 \n$$ \nwhich implies \n$$\nn^2 - 6 \\geq 0\\,,\n$$\nin the third line. The last inequality holds, since it is equivalent \nto \n$$\nN > \\frac{1}{\\sqrt{3 \\e}} \\,.\n$$\n\n:::\n\n\n\n\n## Bounded sequences\n\n\nAn important property of sequences is boundedness. \n\n\n::: Definition \n### Bounded sequence {#definition-bounded-sequence}\n\nA sequence $\\left(a_{n}\\right)_{n \\in \\N}$ is called **bounded** if there exists a constant $M \\in \\R$, with $M>0$, such that\n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\n\n:::\n\nDefinition \\ref{definition-bounded-sequence} says that a sequence is bounded, if we can find some constant $M>0$ (possibly very large), such that for all elements of the sequence it holds that \n$$\n\\left|a_{n}\\right| \\leq M \\,,\n$$\nor equivalently, that \n$$\n-M \\leq a_{n} \\leq M \\,.\n$$\n\n\nWe now show that any sequence that converges is also bounded\n\n::: {.Theorem #theorem-convergent-bounded}\n\nIf a sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ converges, then the sequence is bounded.\n\n:::\n\n\n::: Proof \n\nSuppose the sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ converges and let\n$$\na: = \\lim_{n \\rightarrow \\infty} a_{n}\n$$\nBy definition of convergence we have that\n$$\n\\forall \\, \\e >0 \\,, \\, \\exists N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_{n}-a \\right| < \\e \\,.\n$$\nIn particular, we can choose\n$$\n\\e = 1\n$$ \nand let $N \\in \\N$ be that value such that\n$$\n\\left|a_{n}-a \\right| < 1 \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nIf $n \\geq N$ we have, by the triangle inequality,\n\\begin{align*}\n\\left|a_{n}\\right| & = \\left|a_{n}-a+a\\right| \\\\\n & \\leq \\left|a_{n}-a\\right|+|a| \\\\\n & < 1+|a| \\,.\n\\end{align*}\nSet\n$$\nM:=\\max \\left\\{\\left|a_{1}\\right|,\\left|a_{2}\\right|, \\ldots,\\left|a_{N-1}\\right|, 1+|a|\\right\\} \\,.\n$$\nNote that such maximum exists, being the set finite. Then \n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nshowing that $(a_n)$ is bounded.\n\n:::\n\n\nThe choice of $M$ in the above proof says that the sequence can behave wildly for a finite number of terms. After that, it will stay close to the value of the limit, if the latter exists.\n\n::: Example\n\nIn Theorem \\ref{theorem-one-over-n} we have shown that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n} = 0 \n$$\nHence, it follows from Theorem \\ref{theorem-convergent-bounded} that the sequence $(1/n)$ is bounded.\n\nIndeed, we have that\n$$\n\\left|\\frac{1}{n}\\right|=\\frac{1}{n} \\leq 1 \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nsince $n \\geq 1$ for all $n \\in \\N$.\n\n:::\n\n\n::: Warning\n\nThe converse of Theorem \\ref{theorem-convergent-bounded} does not hold: There exist sequences $(a_n)$ which are bounded, but not convergent.\n\n:::\n\n\n::: Example\n\nDefine the sequence\n$$\na_n = (-1)^n \\,.\n$$\nWe have proven in Theorem \\ref{theorem-1-minus-n} that $(a_n)$ is not convergent. However\n$(a_n)$ is bounded, with $M=1$, since\n$$\n|a_n| = |(-1)^n| = 1 = M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\n\n:::\n\n\n\nTaking the contrapositive of the statement in Theorem \\ref{theorem-convergent-bounded} we get the following corollary:\n\n\n::: {.Corollary #corollary-convergent-bounded}\n\nIf a sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ is not bounded, then the sequence does not converge.\n\n:::\n\n\n::: Remark\n\nFor a sequence $(a_n)$ to be unbounded, it means that\n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nThe above is saying that no real number $M>0$ can be a bound for $|a_n|$, since there is always an index $n \\in \\N$ such that \n$$\n|a_n| > M \\,.\n$$\n\n:::\n\n\nWe can use Corollary \\ref{corollary-convergent-bounded} to show that certain sequences do not converge.\n\n\n::: Theorem \n\nFor all $p>0$, the sequence $\\left(n^{p}\\right)_{n \\in \\mathbb{N}}$ does not converge.\n\n:::\n\n\n::: Proof\nLet $p>0$. We prove that the sequence $\\left(n^{p}\\right)_{n \\in \\mathbb{N}}$ is unbounded, that is, \n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nTo this end, let $M > 0$. Choose $n \\in \\N$ such that \n$$\nn > M^{1/p} \\,.\n$$\nThen\n$$\na_n = n^{p}>\\left(M^{1/p}\\right)^{p}=M \\,.\n$$\nThis proves that the sequence $(n^p)$ is unbounded. Hence $(n^p)$ cannot converge, by Corollary \\ref{corollary-convergent-bounded}.\n\n:::\n\n\n\n::: Theorem\n\nThe sequence $(\\log n)_{n \\in \\mathbb{N}}$ does not converge.\n\n:::\n\n\n::: Proof \n\nLet us show that $(\\log n)_{n \\in \\mathbb{N}}$ is unbounded, that is, \n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nTo this end let $M > 0$. Choose $n \\in \\N$ such that \n$$\nn \\geq e^{M+1} \\,.\n$$\nThen\n$$\n|a_n| = |\\log n| \\geq \\left| \\log e^{M+1} \\right| = M + 1 > M \\,.\n$$\nThis proves that the sequence $(\\log n)$ is unbounded. Hence $(\\log n)$ cannot converge, by Corollary \\ref{corollary-convergent-bounded}.\n\n:::\n\n\n\n\n## Algebra of limits\n\nProving convergence using Definition \\ref{definition-convergent-sequence} can be a tedious task. In this section we discuss how to prove convergence, starting from known convergence results.\n\n\n::: Theorem \n### Algebra of limits {#theorem-algebra-limits} \n\nLet $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ and $\\left(b_{n}\\right)_{n \\in \\mathbb{N}}$ be sequences in $\\mathbb{R}$. Suppose that\n$$\n\\lim_{n \\rightarrow \\infty} a_{n}=a \\,, \\quad \\lim_{n \\rightarrow \\infty} b_{n}=b \\,,\n$$\nfor some $a,b \\in \\R$. Then,\n\n1. Limit of sum is the sum of limits:\n$$\n\\lim_{n \\rightarrow \\infty}\\left(a_{n} \\pm b_{n}\\right)=a \\pm b\n$$\n\n2. Limit of product is the product of limits: \n$$\n\\lim _{n \\rightarrow \\infty}\\left(a_{n} b_{n}\\right) = a b \n$$\n\n3. If $b_{n} \\neq 0$ for all $n \\in \\mathbb{N}$ and $b \\neq 0$, then \n$$\n\\lim_{n \\rightarrow \\infty} \\left(\\frac{a_{n}}{b_{n}}\\right)=\\frac{a}{b} \n$$\n\n:::\n\n\n\n\n::: Proof \n\n\n Let $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ and $\\left(b_{n}\\right)_{n \\in \\mathbb{N}}$ be sequences in $\\mathbb{R}$ and let $c \\in \\mathbb{R}$. Suppose that, for some $a, b \\in \\mathbb{R}$\n$$\n\\lim _{n \\rightarrow \\infty} a_{n}=a \\,, \\quad \\lim _{n \\rightarrow \\infty} b_{n}=b \\,.\n$$\n\n\n*Proof of Point 1.* \n\nWe need to show that \n$$\n\\lim_{n \\to \\infty} (a_n \\pm b_n) = a \\pm b \\,.\n$$\nWe only give a proof of the formula with $+$, since the case with $-$ follows with a very similar proof. Hence, we need to show that\n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|(a_{n} + b_n) - (a+b) \\right| < \\e \\,.\n$$\nLet $\\e>0$ and set\n$$\n\\widetilde{\\e} := \\frac{\\e}{2} \\,.\n$$\nSince $a_{n} \\rightarrow a, b_n \\to b$, and $\\widetilde{\\e}>0$, there exist $N_1, N_2 \\in \\N$ such that\n\\begin{align*}\n|a_n - a| & < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_1 \\,, \\\\\n|b_n - b| & < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n\\end{align*}\nDefine\n$$\nN : = \\max \\{ N_1, N_2 \\} \\,.\n$$\nFor all $n \\geq N$ we have, by the triangle inequality,\n\\begin{align*}\n\\left|\\left(a_{n}+b_{n}\\right)-(a+b)\\right| \n& = \\left|\\left(a_{n}-a\\right) + \\left(b_{n}-b\\right)\\right| \\\\\n& \\leq \\left|a_{n}-a\\right|+\\left|b_{n}-b\\right| \\\\\n& < \\widetilde{\\e}+\\widetilde{\\e} \\\\\n& =\\e \\,.\n\\end{align*}\n\n\n\n*Proof of Point 2.*\n\n\nWe need to show that \n$$\n\\lim_{n \\to \\infty} (a_n b_n) = a b \\,,\n$$\nwhich is equivalent to \n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_{n} b_{n} - a b \\right| < \\e \\,.\n$$\nLet $\\e>0$. The sequence $\\left(a_{n}\\right)$ converges, and hence is bounded, by Theorem \\ref{theorem-convergent-bounded}. This means there exists some $M>0$ such that \n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nDefine \n$$\n\\widetilde{\\e} = \\frac{\\e}{ M + |b| } \\,. \n$$\nSince $a_{n} \\rightarrow a, b_n \\to b$, and $\\widetilde{\\e} > 0$, there exist \n$N_1, N_2 \\in \\N$ such that\n\\begin{align*}\n| a_n - a | & < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_1 \\,. \\\\\n| b_n - b | & < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n\\end{align*}\nLet \n$$\nN:= \\max\\{ N_1, N_2 \\} \\,.\n$$\nFor all $n \\geq N$ we have\n\\begin{align*}\n\\left|a_{n}b_{n}-a b\\right| \n& = \\left|a_{n} b_{n} - a_n b + a_n b - a b \\right| \\\\\n& \\leq \\left|a_{n} b_{n} - a_n b \\right| + \\left|a_n b - a b \\right| \\\\\n& =\\left|a_{n}\\right| \\left|b_{n}-b\\right|+ |b| \\left|a_{n}-a\\right| \\\\\n& < M \\, \\widetilde{\\e} +|b| \\, \\widetilde{\\e} \\\\\n& = (M + |b|) \\, \\widetilde{\\e} \\\\\n& = \\e \\,.\n\\end{align*}\n\n\n*Proof of Point 3.* \n\nSuppose in addition that $b_n \\neq 0$ and $b \\neq 0$. We need to show that\n$$\n\\lim_{n \\to \\infty} \\, \\frac{a_n}{b_n} = \\frac{a}{b} \\,,\n$$\nwhich is equivalent to\n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{a_{n}}{ b_{n}} - \\frac{a}{b} \\right| < \\e \\,.\n$$\nWe suppose in addition that $b>0$. The proof is very similar for the case $b <0$, and is hence omitted. Let $\\e > 0$. Set\n$$\n\\delta := \\frac{b}{2} \\,.\n$$\nSince $b_n \\to b$ and $\\delta>0$, there exists $N_1 \\in \\N$ such that\n$$\n|b_n - b| < \\delta \\, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nIn particular we have\n$$\nb_n > b - \\delta = b - \\frac{b}{2} = \\frac{b}{2} \\, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nDefine\n$$\n\\widetilde{\\e} := \\frac{ b^2 }{ 2 (b + |a|)} \\, \\e \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $a_n \\to a, b_n \\to b$, there exist $N_2, N_3 \\in \\N$ such that\n\\begin{align*}\n|a_n - a | & < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,, \\\\\n|b_n - b | & < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_3 \\,.\n\\end{align*}\nDefine\n$$\nN:= \\max\\{ N_1, N_2, N_3 \\} \\,.\n$$\nFor all $n \\geq N$ we have\n\\begin{align*}\n\\left|\\frac{a_{n}}{ b_{n}} - \\frac{a}{b} \\right| & = \n\\left|\\frac{a_{n} b - a b_n}{ b_{n} b } \\right| \\\\\n& = \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left| a_{n}b - a b + a b - a b_n \\right| \\\\\n& = \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left| (a_{n} - a) b + a(b-b_n) \\right| \\\\\n& \\leq \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left( |a_{n} - a| |b| + |a| |b-b_n| \\right) \\\\\n& < \\frac{1}{ \\dfrac{b}{2} \\, b } \\, \\left( \\widetilde{\\e} \\, b + \\widetilde{\\e} |a| \\right) \\\\\n& = \\frac{2 (b + |a|) }{b^2} \\, \\widetilde{\\e} \\\\\n& = \\e \\,.\n\\end{align*}\n\n:::\n\n\n\nIn the future we will refer to Theorem \\ref{theorem-algebra-limits} as the *Algebra of Limits*. We now show how to use Theorem \\ref{theorem-algebra-limits} for computing certain limits. \n\n\n::: {.Example #example-limit-ploynomial}\nProve that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{3 n}{7 n+4} = \\frac{3}{7} \\,.\n$$\n\n\n> *Proof*. We can rewrite\n$$\n\\frac{3 n}{7 n+4}=\\frac{3}{7+\\dfrac{4}{n}}\n$$\nBy Theorem \\ref{theorem-constant-sequence} we know that\n$$\n3 \\rightarrow 3\\,, \\quad 4 \\to 4 \\,, \\quad 7 \\to 7 \\,.\n$$\nFrom Theorem \\ref{theorem-one-over-n} we know that \n$$\n\\frac{1}{n} \\rightarrow 0 \\,.\n$$\nHence, it follows from Theorem \\ref{theorem-algebra-limits} Point 2 that \n$$\n\\frac{4}{n} = 4 \\cdot \\frac1n \\rightarrow 4 \\cdot 0 = 0 \\,.\n$$\nBy Theorem \\ref{theorem-algebra-limits} Point 1 we have\n$$\n7 + \\frac{4}{n} \\rightarrow 7 + 0 = 7 \\,.\n$$\nFinally we can use Theorem \\ref{theorem-algebra-limits} Point 3 to infer\n$$\n\\frac{3 n}{7 n+4}=\\frac{3}{7+\\dfrac{4}{n}} \\rightarrow \\frac{3}{7} \\,.\n$$\n\n:::\n\n\n::: Important \n\nThe technique shown in Example \\ref{example-limit-ploynomial} is useful to compute limits of fractions of polynomials. To identify the possible limit, if it exists, it is often best to divide by the largest power of $n$ in the denominator.\n\n:::\n\n\n\n::: {.Example #example-algebra-of-limits-2}\nProve that\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1}{2} \\,.\n$$\n\n> *Proof*. Factor $n^2$ to obtain\n$$\n\\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} \\,.\n$$\nBy Theorem \\ref{theorem-one-over-np} we have\n$$\n\\frac{1}{n^2} \\to 0 \\,.\n$$\nWe can then use the Algebra of Limits Theorem \\ref{theorem-algebra-limits} Point 2 to infer\n$$\n\\frac{3}{n^2} \\to 3 \\cdot 0 = 0\n$$\nand Theorem \\ref{theorem-algebra-limits} Point 1 to get\n$$\n1 - \\frac{1}{n^2} \\to 1 - 0 = 1 \\,, \\quad \n2 - \\frac{3}{n^2} \\to 2 - 0 = 2 \\,.\n$$\nFinally we use Theorem \\ref{theorem-algebra-limits} Point 3 and conclude\n$$\n \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} \\to \\frac{1}{2} \\,.\n$$\nTherefore\n$$\n\\lim_{n \\to \\infty } \\, \\frac{n^{2}-1}{2 n^{2}-3} = \\lim_{n \\to \\infty} \\, \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} = \\frac{1}{2} \\,.\n$$\n\n:::\n\n\n\nWe can also use the Algebra of Limits to prove that certain limits do not exist.\n\n\n\n::: Example \n\nProve that the sequence\n$$\na_n = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1}\n$$\ndoes not converge.\n\n> *Proof*. To show that the sequence $\\left(a_n\\right)$ does not converge, we divide by the largest power in the denominator, which in this case is $n^2$\n\\begin{align*}\na_n & = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1} \\\\\n & =\\frac{4 n+ \\dfrac{8}{n} + \\dfrac{1}{n^{2}} }{7+ \\dfrac{2}{n} + \\dfrac{1}{n^{2}} } \\\\\n & = \\frac{b_n}{c_n}\n\\end{align*}\nwhere we set \n$$\nb_n := 4 n+ \\dfrac{8}{n} + \\dfrac{1}{n^{2}}\\,, \\quad\nc_n := 7 + \\dfrac{2}{n} + \\dfrac{1}{n^{2}} \\,.\n$$\nUsing the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we see that\n$$\nc_n = 7+ \\dfrac{2}{n} + \\dfrac{1}{n^{2}} \\to 7 \\,.\n$$\nSuppose by contradiction that\n$$\na_n \\to a\n$$\nfor some $a \\in \\R$. Then, by the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we would infer\n$$\nb_n = c_n \\cdot a_n \\to 7 a \\,,\n$$\nconcluding that $b_n$ is convergent to $7a$. We have that\n$$\nb_n = 4n + d_n \\,, \\quad d_n := \\dfrac{8}{n} + \\dfrac{1}{n^{2}} \\,.\n$$\nAgain by the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we get that \n$$\nd_n = \\dfrac{8}{n} + \\dfrac{1}{n^{2}} \\to 0 \\,,\n$$\nand hence\n$$\n4n = b_n - d_n \\to 7a - 0 = 7a \\,.\n$$\nThis is a contradiction, since the sequence $(4n)$ is unbounded, and hence cannot be convergent. Hence $(a_n)$ is not convergent.\n:::\n\n\n\n::: Warning\n\nConsider the sequence \n$$\na_n = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1}\n$$\nfrom the previous example. We have proven that $(a_n)$ is not convergent, by making use of the Algebra of Limits. \n\nLet us review a **faulty** argument to conclude that $(a_n)$ is not convergent. Write\n$$\na_n = \\frac{b_n}{c_n} \\,, \\quad b_n:= 4 n^{3}+8 n+1\\,, \n\\quad c_n : =7 n^{2}+2 n+1 \\,.\n$$\nThe numerator \n$$\nb_n = 4 n^{3}+8 n+1\n$$\nand denominator \n$$\nc_n =7 n^{2}+2 n+1 \n$$\nare both unbounded, and hence $(b_n)$ and $(c_n)$ do not converge. One might be tempted to conclude that $(a_n)$ does not converge. However this is **false** in general: as seen in \nExample \\ref{example-algebra-of-limits-2}, we have\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1}{2} \\,,\n$$\nwhile numerator and denominator are unbounded.\n\n:::\n\n\n\n\n\nSometimes it is useful to rearrange the terms of a sequence, before applying the Algebra of Limits.\n\n\n\n::: Example \n\nDefine \n$$\n a_n := \\frac{2 n^{3}+7 n+1}{5 n+9} \\cdot \\frac{8 n+9}{6 n^{3}+8 n^{2}+3} \\,.\n$$\nProve that \n$$\n\\lim_{n \\to \\infty} a_n = \\frac{8}{15} \\,.\n$$\n\n\n> *Proof.* \nThe first fraction in $(a_n)$ does not converge, as it is unbounded. Therefore we cannot use Point 2 in Theorem \\ref{theorem-algebra-limits} directly. However, we note that\n\\begin{align*}\na_{n} & =\\frac{2 n^{3}+7 n+1}{5 n+9} \\cdot \\frac{8 n+9}{6 n^{3}+8 n^{2}+3} \\\\\n& = \\frac{8 n+9}{5 n+9} \\cdot \\frac{2 n^{3}+7 n+1}{6 n^{3}+8 n^{2}+3} \\,.\n\\end{align*}\nFactoring out $n$ and $n^3$, respectively, and using the Algebra of Limits, we see that\n$$\n\\frac{8 n+9}{5 n+9}=\\frac{8+9 / n}{5+9 / n} \\to \\frac{8+0}{5+0}=\\frac{8}{5}\n$$\nand\n$$\n\\frac{2+7 / n^{2}+1 / n^{3}}{6+8 / n+3 / n^{3}} \\to \\frac{2+0+0}{6+0+0}=\\frac{1}{3}\n$$\nTherefore Theorem \\ref{theorem-algebra-limits} Point 2 ensures that\n$$\na_{n} \\to \\frac{8}{5} \\cdot \\frac{1}{3}=\\frac{8}{15} \\,.\n$$\n\n:::\n\n\n\n\n\n## Fractional powers\n\n\nThe Algebra of Limits Theorem \\ref{theorem-algebra-limits} can also be used when fractional powers of $n$ are involved.\n\n::: Example\n\nProve that \n$$\na_n = \\frac{n^{7 / 3}+2 \\sqrt{n}+7}{4 n^{3 / 2}+5 n}\n$$\ndoes not converge.\n\n> *Proof*. The largest power of $n$ in the denominator is $n^{3/2}$. Hence we factor out $n^{3/2}$\n\\begin{align*}\na_n & = \\frac{n^{7 / 3}+2 \\sqrt{n}+7}{4 n^{3 / 2}+5 n} \\\\\n & = \\frac{n^{7 / 3-3 / 2}+2 n^{1/2 - 3/2} + 7 n^{-3 / 2}}{4 + 5 n^{-3/2} } \\\\\n & = \\frac{n^{5/6}+2 n^{- 1} + 7 n^{-3 / 2}}{4 + 5 n^{-3/2} } \\\\\n & = \\frac{b_n}{c_n}\n\\end{align*}\nwhere we set\n$$\nb_n := n^{5/6}+2 n^{- 1} + 7 n^{-3 / 2} \\,, \\quad \nc_n := 4 + 5 n^{-3/2} \\,.\n$$\nWe see that $b_n$ is unbounded while $c_n \\to 4$. By the Algebra of Limits (and usual contradiction argument) we conclude that $(a_n)$ is divergent.\n\n:::\n\n\n\nWe now present a general result about the square root of a sequence.\n\n::: {.Theorem #theorem-square-root-limit}\n\nLet $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ be a sequence in $\\mathbb{R}$ such that \n$$\n\\lim_{n \\to \\infty} \\, a_n = a \\,,\n$$\nfor some $a \\in \\R$. If $a_{n} \\geq 0$ for all $n \\in \\mathbb{N}$ and $a \\geq 0$, then\n$$\n\\lim _{n \\rightarrow \\infty} \\sqrt{a_{n}}=\\sqrt{a} \\,.\n$$\n\n:::\n\n\n::: Proof \n\nLet $\\e>0$. We the two cases $a>0$ and $a=0$:\n\n- $a>0$: Define\n$$\n\\delta := \\frac{a}{2} \\,.\n$$\nSince $\\delta > 0$ and $a_n \\to a$, there exists $N_1 \\in \\N$ such that\n$$\n\\left|a_{n}-a\\right| < \\delta \\,, \\quad \\forall \\, n \\geq N_1 \\,. \n$$\nIn particular\n$$\na_n > a - \\delta = a - \\frac{a}{2} = \\frac{a}{2} \\,, \\quad \\forall \\, n \\geq N_1 \\,,\n$$\nfrom which we infer\n$$\n\\sqrt{a_n} > \\sqrt{a/2} \\,, \\quad \\forall \\, n \\geq N_1 \\,,\n$$\nNow set\n$$\n\\widetilde{\\e} := \\left(\\sqrt{a/2} + \\sqrt{a} \\right) \\, \\e \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $a_n \\to a$, there exists $N_2 \\in \\mathbb{N}$ such that \n$$\n\\left|a_{n}-a\\right| < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,. \n$$\nLet \n$$\nN:= \\max\\{ N_1, N_2 \\} \\,.\n$$\nFor $n \\geq N$ we have\n\\begin{align*}\n\\left|\\sqrt{a_{n}}-\\sqrt{a}\\right| \n& = \\left|\\frac{\\left(\\sqrt{a_{n}}-\\sqrt{a}\\right)\\left(\\sqrt{a_{n}}+\\sqrt{a}\\right)}{\\sqrt{a_{n}}+\\sqrt{a}}\\right| \\\\\n& = \\frac{\\left|a_{n}-a\\right|}{\\sqrt{a_{n}}+\\sqrt{a}} \\\\\n& < \\frac{ \\widetilde{\\e} }{\\sqrt{a/2} + \\sqrt{a}} \\\\\n& = \\e \\,.\n\\end{align*}\n\n\n- $a=0$: In this case\n$$\na_n \\to a = 0 \\,.\n$$\nSince $\\e^2>0$, there exists $N \\in \\N$ such that\n$$\n|a_n - 0 | = |a_n| < \\e^2 \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTherefore\n$$\n|\\sqrt{a_n} - \\sqrt{0} | = | \\sqrt{a_n}| < \\sqrt{\\e^2} = \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\n\n\n:::\n\n\nLet us show an application of Theorem \\ref{theorem-square-root-limit}.\n\n\n::: Example \n\nDefine the sequence\n$$\na_n = \\sqrt{9 n^{2}+3 n+1}-3 n \\,.\n$$\nProve that\n$$\n\\lim_{n \\to \\infty} \\, a_n = \\frac12 \\,.\n$$\n\n\n> *Proof*. We first rewrite\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-3 n \\\\\n& = \\frac{\\left(\\sqrt{9 n^{2}+3 n+1}-3 n\\right)\\left(\\sqrt{9 n^{2}+3 n+1}+3 n\\right)}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{9 n^{2}+3 n+1-(3 n)^{2}}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{3 n+1}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\, .\n\\end{align*}\nThe biggest power of $n$ in the denominator is $n$. Therefore we factor out $n$:\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-3 n \\\\\n& =\\frac{3 n+1}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{3+ \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{n^{2}}} + 3 } \\,.\n\\end{align*}\nBy the Algebra of Limits we have\n$$\n9+ \\frac{3}{n} + \\frac{1}{n^{2}} \\to 9 + 0 + 0 = 9 \\,.\n$$\nTherefore we can use Theorem \\ref{theorem-square-root-limit} to infer\n$$\n\\sqrt{ 9 + \\frac{3}{n} + \\frac{1}{n^{2}} } \\to \\sqrt{9} \\,.\n$$\nBy the Algebra of Limits we conclude:\n$$\na_n = \\frac{3+ \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{n^{2}} }+ 3 } \\to \\frac{ 3 + 0 }{ \\sqrt{9} + 3 } = \\frac12 \\,.\n$$\n\n\n:::\n\n\n::: Example \n\nProve that the sequence\n$$\na_n = \\sqrt{9 n^{2}+3 n+1}-2 n\n$$\ndoes not converge.\n\n> *Proof.* We rewrite $a_n$ as\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-2 n \\\\\n& =\\frac{ (\\sqrt{9 n^{2}+3 n+1} - 2 n) (\\sqrt{9 n^{2}+3 n+1}+2 n) }{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{9 n^{2}+3 n+1-(2 n)^{2}}{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{5 n^{2}+3 n+1}{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{5 n + 3 + \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } } + 2 } \\\\\n& = \\frac{b_n}{c_n} \\,,\n\\end{align*}\nwhere we factored $n$, being it the largest power of $n$ in the denominator, and defined\n$$\nb_n : = 5 n + 3 + \\dfrac{1}{n}\\,, \\quad \nc_n := \\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } } + 2 \\,.\n$$\nNote that \n$$\n9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } \\to 9\n$$\nby the Algebra of Limits. Therefore \n$$\n\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 }} \\to \\sqrt{9} = 3 \n$$\nby Theorem \\ref{theorem-square-root-limit}. Hence \n$$\nc_n = \\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 }} + 2 \\to 3 + 2 = 5 \\,.\n$$\nThe numerator \n$$\nb_n = 5 n + 3 + \\dfrac{1}{n}\n$$\nis instead unbounded. Therefore $(a_n)$ is not convergent, by the Algebra of Limits and the usual contradiction argument.\n:::\n\n\n\n\n\n\n\n## Limit Tests\n\n\nIn this section we discuss a number of *Tests* to determine whether a sequence converges or not. These are known as **Limit Tests**.\n\n\n### Squeeze Theorem\n\n\nWhen a sequence $(a_n)$ oscillates, it is difficult to compute the limit. Examples of terms which produce oscillations are\n$$\n(-1)^n \\,, \\quad \\sin(n) \\,, \\quad \\cos(n) \\,. \n$$\nIn such instance it might be useful to compare $(a_n)$ with other sequences whose limit is known. If we can prove that $(a_n)$ is *squeezed* between two other sequences with the same limiting value, then we can show that also $(a_n)$ converges to this value.\n\n\n\n::: Theorem \n### Squeeze theorem {#theorem-squeeze}\n\nLet $\\left(a_{n}\\right), \\left(b_{n}\\right)$ and $\\left(c_{n}\\right)$ be sequences in $\\R$. Suppose that\n$$\nb_{n} \\leq a_{n} \\leq c_{n} \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nand that\n$$\n\\lim_{n \\rightarrow \\infty} b_{n} = \\lim_{n \\rightarrow \\infty} c_{n} = L \\, .\n$$\nThen\n$$\n\\lim_{n \\rightarrow \\infty} a_{n}= L \\, .\n$$\n\n:::\n\n\n::: Proof\n\nLet $\\e>0$. Since $b_{n} \\to L$ and $c_n \\to L$ , there exist $N_1, N_2 \\in \\N$ such that \n\\begin{align*}\n-\\e < b_n - L < \\e \\,, \\,\\, \\forall \\, n \\geq N_1 \\,, \\\\\n- \\e < c_n - L < \\e \\,, \\,\\, \\forall \\, n \\geq N_2 \\,. \n\\end{align*}\nSet\n$$\nN := \\max\\{N_1,N_2\\} \\,.\n$$\nLet $n \\geq N$. Using the assumption that $b_n \\leq a_{n} \\leq c_{n}$, we get\n$$\nb_n - L \\leq a_{n} - L \\leq c_{n} - L \\,.\n$$\nIn particular\n$$\n- \\e < b_n - L \\leq a_n - L \\leq b_n - L < \\e \\,.\n$$\nThe above implies \n$$\n- \\e < a_n - L < \\e \\quad \\implies \\quad \\left|a_{n}-L\\right| < \\e \\,.\n$$\n\n:::\n\n\n\n::: Example \n\nProve that\n$$\n\\lim_{n \\to \\infty} \\, \\frac{(-1)^{n}}{n} = 0 \\,.\n$$\n\n> *Proof.*\nFor all $n \\in \\N$ we can estimate\n$$\n-1 \\leq(-1)^{n} \\leq 1 \\,.\n$$\nTherefore\n$$\n\\frac{-1}{n} \\leq \\frac{(-1)^{n}}{n} \\leq \\frac{1}{n} \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nMoreover\n$$\n\\lim_{n \\to \\infty} \\frac{-1}{n}= -1 \\cdot 0=0 \\,, \\quad \n\\lim_{n \\to \\infty} \\frac{1}{n}=0 \\,.\n$$\nBy the Squeeze Theorem \\ref{theorem-squeeze} we conclude\n$$\n\\lim_{n \\to \\infty} \\frac{(-1)^{n}}{n}=0 \\,.\n$$\n\n:::\n\n\n\n::: {.Example #example-squeeze}\n\nProve that \n$$\n\\lim_{n \\to \\infty} \\frac{\\cos (3 n) + 9 n^{2}}{11 n^{2}+15 \\sin (17 n)} = \\frac{9}{11} \\,.\n$$\n\n\n> *Proof.* \nWe know that \n$$\n-1 \\leq \\cos(x) \\leq 1 \\,, \\quad - 1 \\leq \\sin(x) \\leq 1 \\,, \\quad \\forall \\, x \\in \\R \\,.\n$$\nTherefore, for all $n \\in \\N$\n$$\n- 1 \\leq \\cos(3n) \\leq 1 \\,, \\quad -1 \\leq \\sin(17n) \\leq 1 \\,.\n$$\nWe can use the above to estimate the numerator in the given sequence:\n$$\n-1 + 9 n^{2} \\leq \\cos (3 n)+9 n^{2} \\leq 1+ 9 n^{2} \\,.\n$${#eq-squeeze-example-1}\nConcerning the denominator, we have\n$$\n11 n^{2}-15 \\leq 11 n^{2}+15 \\sin (17 n) \\leq 11 n^{2} + 15\n$$\nand therefore\n$$\n\\frac{1}{11 n^{2} + 15} \\leq \\frac{1}{11 n^{2}+15 \\sin (17 n)} \\leq \\frac{1}{11 n^{2}-15} \\,.\n$${#eq-squeeze-example-2}\nPutting together (@eq-squeeze-example-1)-(@eq-squeeze-example-2) we obtain \n$$\n\\frac{-1 + 9 n^{2}}{11 n^{2} + 15} \\leq \\frac{\\cos (3 n)+9 n^{2}}{11 n^{2}+15 \\sin (17 n)} \\leq \\frac{1+ 9 n^{2}}{11 n^{2}-15} \\,.\n$$\nBy the Algebra of Limits we infer\n$$\n\\frac{-1+9 n^{2}}{11 n^{2}+15}=\\frac{-\\dfrac{1}{n^{2}} + 9}{11 + \\dfrac{15}{n^{2}}} \\to \\frac{0+9}{11+0}=\\frac{9}{11}\n$$\nand\n$$\n\\frac{1+9 n^{2}}{11 n^{2} - 15}=\\frac{ \\dfrac{1}{n^{2}} + 9}{ 11 - \\dfrac{15}{n^{2}}} \\to \\frac{0+9}{11+0}=\\frac{9}{11} \\,.\n$$\nApplying the Squeeze Theorem \\ref{theorem-squeeze} we conclude\n$$\n\\lim_{n \\to \\infty} \\frac{\\cos (3 n)+ 9 n^{2}}{11 n^{2}+15 \\sin (17 n)}=\\frac{9}{11} \\,.\n$$\n\n:::\n \n::: Warning\n\nSuppose that the sequences $(a_n), (b_n), (c_n)$ satisfy\n$$\nb_n \\leq a_n \\leq c_n \\,, \\quad \\forall n \\in \\N \\,,\n$$\nand\n$$\nb_n \\to L_1 \\,, \\quad c_n \\to L_2 \\,, \\quad L_1 \\neq L_2 \\,.\n$$\nIn general, we cannot conclude that $a_n$ converges.\n\n:::\n\n\n::: Example \n\nConsider the sequence\n$$\na_n = \\left( 1 + \\frac{1}{n} \\right) (-1)^n \\,.\n$$\nFor all $n \\in \\N$ we can bound\n$$\n- 1 - \\frac{1}{n} \\leq \\left( 1 + \\frac{1}{n} \\right) (-1)^n \\leq 1 + \\frac{1}{n} \\,.\n$$\nHowever \n$$\n- 1 - \\frac{1}{n} \\longrightarrow - 1 - 0 = -1 \n$$\nand\n$$\n1 + \\frac{1}{n} \\longrightarrow 1 + 0 = 1 \\,.\n$$\nSince \n$$\n- 1 \\neq 1 \\,,\n$$\nwe cannot apply the Squeeze Theorem \\ref{theorem-squeeze} to conclude convergence of $(a_n)$. Indeed, $(a_n)$ is a divergent sequence.\n\n> *Proof.* Suppose by contradiction that $a_n \\to a$. We have\n$$\na_n = (-1)^n + \\frac{(-1)^n}{n} = b_n + c_n\n$$\nwhere\n$$\nb_n := (-1)^n \\,, \\quad c_n := \\frac{(-1)^n}{n} \\,.\n$$\nWe have seen in Example \\ref{example-squeeze} that $c_n \\to 0$. Therefore, \nby the Algebra of Limits, we have\n$$\nb_n = a_n - c_n \\longrightarrow a - 0 = a \\,.\n$$\nHowever, Theorem \\ref{theorem-1-minus-n} says that the sequence\n$b_n = (-1)^n$ diverges. Contradiction. Hence $(a_n)$ diverges.\n\n:::\n\n\n\n\n\n### Geometric sequences\n\n\n::: Definition \n\nA sequence $\\left(a_{n}\\right)$ is called a **geometric sequence** if\n$$\na_{n}=x^{n} \\,,\n$$\nfor some $x \\in \\R$.\n\n:::\n\n\nThe value of $|x|$ determines whether or not a geometric sequence converges, as shown in the following theorem.\n\n\n::: Theorem \n### Geometric Sequence Test {#theorem-geometric-sequence}\n\nLet $x \\in \\R$ and let $\\left(a_{n}\\right)$ be the sequence defined by\n$$\na_{n}:=x^{n} \\,.\n$$\nWe have:\n\n1. If $|x|<1$, then \n$$\n\\lim_{n \\to \\infty} a_{n} = 0 \\,.\n$$\n\n2. If $|x|>1$, then sequence $\\left(a_{n}\\right)$ is unbounded, and hence divergent.\n\n:::\n\n\n\n::: Warning\n\nThe Geometric Sequence Test in Theorem \\ref{theorem-geometric-sequence} does not address the case\n$$\n|x|=1 \\,.\n$$\nThis is because, in this case, the sequence \n$$\na_n = x^n \n$$\nmight converge or diverge, depending on the value of $x$. Indeed, \n$$\n|x| = 1 \\quad \\implies \\quad x = \\pm 1 \\,.\n$$\nWe therefore have two cases:\n\n- $x = 1$: Then \n$$\na_n = 1^n = 1\n$$\nso that $a_n \\to 1$ and $(a_n)$ is convergent.\n\n- $x=-1$: Then\n$$\na_n = x^n = (-1)^n\n$$\nwhich is divergent by Theorem \\ref{theorem-1-minus-n}.\n\n:::\n\n\n\nTo prove Theorem \\ref{theorem-geometric-sequence} we need the following inequality, known as Bernoulli's inequality.\n\n\n::: Lemma \n### Bernoulli's inequality {#lemma-bernoulli}\n\nLet $x \\in \\R$ with $x>-1$. Then\n$$\n(1+x)^{n} \\geq 1+n x \\,, \\quad \\forall \\, n \\in \\N \\,.\n$${#eq-bernoulli-inequality}\n\n:::\n\n\n::: Proof\n\nLet $x \\in \\mathbb{R}, x>-1$. We prove the statement by induction:\n\n- Base case: (@eq-bernoulli-inequality) holds with equality when $n=1$.\n\n- Induction hypothesis: Let $k \\in \\N$ and suppose that (@eq-bernoulli-inequality) holds for $n=k$, i.e.,\n$$\n(1+x)^{k} \\geq 1+k x \\,.\n$$\nThen\n\\begin{align*}\n(1+x)^{k+1} & = (1+x)^{k}(1+x) \\\\\n & \\geq(1+k x)(1+x) \\\\\n & =1+k x+x+k x^{2} \\\\\n & \\geq 1+(k+1) x \\,,\n\\end{align*}\nwhere we used that $kx^2 \\geq 0$. Then (@eq-bernoulli-inequality) holds for $n=k+1$.\n\nBy induction we conclude (@eq-bernoulli-inequality).\n\n:::\n\n\nWe are ready to prove Theorem \\ref{theorem-geometric-sequence}.\n\n\n::: Proof \n### Proof of Theorem \\ref{theorem-geometric-sequence}\n\n*Part 1. The case $|x|<1$*. \n\nIf $x=0$, then\n$$\na_n = x^n = 0 \n$$\nso that $a_n \\to 0$. Hence assume $x \\neq 0$. We need to prove that\n$$\n\\forall \\, \\e> 0 \\,, \\, \\exists \\, N \\in \\N \\st \n\\forall \\, n \\geq N \\,, \\,\\, |x^n - 0| < \\e \\,.\n$$\nLet $\\e>0$. We have \n$$\n|x| < 1 \\quad \\implies \\quad \\frac{1}{|x|} > 1 \\,.\n$$\nTherefore \n$$\n|x|= \\frac{1}{1+u} \\,, \\quad u:=\\frac{1}{|x|} - 1 > 0 \\,.\n$$\nLet $N \\in \\N$ be such that \n$$\nN > \\frac{1}{\\e u} \\,,\n$$\nso that \n$$\n\\frac{1}{N u} < \\e \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|x^{n}-0\\right| & =|x|^{n} \\\\\n & = \\left(\\frac{1}{1+u}\\right)^{n} \\\\\n & =\\frac{1}{(1+u)^{n}} \\\\\n & \\leq \\frac{1}{1+n u} \\\\\n & \\leq \\frac{1}{n u} \\\\\n & \\leq \\frac{1}{N u} \\\\\n & < \\e \\,,\n\\end{align*}\nwhere we used Bernoulli's inequality (@eq-bernoulli-inequality) in the first inequality.\n\n\n*Part 2. The case $|x|>1$*. \n\nTo prove that (a_n) does not converge, we prove that it is unbounded. \nThis means showing that\n$$\n\\forall \\, M > 0 \\,, \\, \\exists n \\in \\N \\st \\left| a_{n}\\right| >M \\,.\n$$\nLet $M > 0$. We have two cases: \n\n- $0 < M \\leq 1$: Choose $n=1$. Then\n$$\n\\left|a_{1}\\right|=|x|>1 \\geq M \\,.\n$$\n\n- $M>1$: Choose $n \\in \\N$ such that \n$$\nn> \\frac{\\log M}{\\log |x|} \\,.\n$$ \nNote that $\\log |x|>0$ since $|x|>1$. Therefore\n\\begin{align*}\nn>\\frac{\\log M}{\\log |x|} & \\iff n \\log |x|>\\log M \\\\\n & \\iff \\log |x|^n>\\log M \\\\\n & \\iff |x|^{n}>M \\,.\n\\end{align*}\nThen \n$$\n\\left|a_{n}\\right|=\\left|x^{n}\\right|=|x|^{n} > M \\,.\n$$\n\n\nHence $(a_n)$ is unbounded. By Corollary \\ref{corollary-convergent-bounded} we conclude that $(a_n)$ is divergent. \n\n\n:::\n\n\n\n\n\n\n::: Example \n\nWe can apply Theorem \\ref{theorem-geometric-sequence} to prove convergence\nor divergence for the following sequences.\n\n1. We have\n$$\n\\left(\\frac{1}{2}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|\\frac{1}{2}\\right|=\\frac{1}{2}<1 \\,.\n$$\n\n2. We have\n$$\n\\left(\\frac{-1}{2}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|\\frac{-1}{2}\\right|=\\frac{1}{2}<1 \\,.\n$$\n\n3. The sequence \n$$\na_n = \\left(\\frac{-3}{2}\\right)^{n}\n$$ \ndoes not converge, since \n$$\n\\left|\\frac{-3}{2}\\right|=\\frac{3}{2}>1 \\,.\n$$\n\n4. As $n \\rightarrow \\infty$,\n$$\n\\frac{3^{n}}{(-5)^{n}}=\\left(-\\frac{3}{5}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|-\\frac{3}{5}\\right|=\\frac{3}{5}<1 \\,.\n$$\n\n5. The sequence \n$$\na_{n}=\\frac{(-7)^{n}}{2^{2 n}}\n$$ \ndoes not converge, since\n$$\n\\frac{(-7)^{n}}{2^{2 n}}=\\frac{(-7)^{n}}{\\left(2^{2}\\right)^{n}}=\\left(-\\frac{7}{4}\\right)^{n}\n$$\nand \n$$\n\\left|-\\frac{7}{4}\\right|=\\frac{7}{4}>1 \\,.\n$$\n\n:::\n\n\n\n\n\n\n\n### Ratio Test\n\n\n\n::: Theorem \n### Ratio Test {#theorem-ratio-test}\n\nLet $\\left(a_{n}\\right)$ be a sequence in $\\R$ such that\n$$\na_{n} \\neq 0 \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$ \n\n\n1. Suppose that the following limit exists:\n$$\nL:=\\lim_{n \\to \\infty}\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\,.\n$$\nThen,\n\n - If $L<1$ we have\n $$\n \\lim_{n \\to\\infty} a_{n}=0 \\,.\n $$\n\n - If $L>1$, the sequence $\\left(a_{n}\\right)$ is unbounded, and hence does not converge.\n\n2. Suppose that there exists $N \\in \\N$ and $L>1$ such that\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\geq L \\,, \\quad \\forall \\, n \\geq N \\,. \n$$\nThen the sequence $\\left(a_{n}\\right)$ is unbounded, and hence does not converge.\n\n:::\n\n\n\n::: Proof\n\nDefine the sequence $b_{n}=\\left|a_{n}\\right|$. Then,\n\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right|=\\frac{\\left|a_{n+1}\\right|}{\\left|a_{n}\\right|}=\\frac{b_{n+1}}{b_{n}}\n$$\n\n\n*Part 1.* Suppose that there exists the limit\n$$\nL:=\\lim_{n \\to \\infty}\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\,.\n$$\nTherefore \n$$\n\\lim_{n \\to \\infty} \\frac{b_{n+1}}{b_{n}} = L \\,.\n$${#eq-ratio-test-proof}\n\n- $L<1$: Choose $r>0$ such that \n$$\nL1$: Choose $r>0$ such that \n$$\n1 0 \\,.\n$$\nBy the convergence (@eq-ratio-test-proof), there exists $N \\in \\N$ such that\n$$\n\\left|\\frac{b_{n+1}}{b_{n}}-L\\right| < \\e = L - r \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nIn particular,\n$$\n-(L-r) < \\frac{b_{n+1}}{b_{n}}-L \\,, \\quad \\forall \\, n \\geq N \\,,\n$$\nwhich implies\n$$\nb_{n+1} > r \\, b_{n} \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-ratio-test-proof-4}\nLet $n \\geq N$. Applying (@eq-ratio-test-proof-4) recursively we get\n$$\nb_{n} > r^{n-N} \\, b_{N} = r^{n} \\, \\frac{b_{N}}{r^{N}} \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-ratio-test-proof-5}\nSince $|r|>1$, by the Geometric Sequence Test we have that the sequence\n$$\n(r^n)\n$$\nis unbounded. Therefore also the right hand side of (@eq-ratio-test-proof-5) is unbounded, proving that $(b_n)$ is unbounded. Since\n$$\nb_n = |a_n|\\,,\n$$\nwe conclude that $(a_n)$ is unbounded. By Corollary \\ref{corollary-convergent-bounded} we conclude that $(a_n)$ does not converge.\n\n\n*Part 2.* Suppose that there exists $N \\in \\N$ and $M>1$ such that\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\geq M \\,, \\quad \\forall \\, n \\geq N \\,. \n$$\nSince $b_n = |a_n|$, we infer\n$$\nb_{n+1} \\geq L \\, b_n \\,, \\quad \\forall \\, n \\geq N \\,. \n$$\nArguing as above, we obtain\n$$\nb_n \\geq L^n \\, \\frac{b_N}{L^N} \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nSince $L>1$, we have that the sequence \n$$ \nL^n \\, \\frac{b_N}{L^N}\n$$\nis unbounded, by the Geometric Sequence Test. Hence also $(b_n)$ is unbounded, from which we conclude that $(a_n)$ is unbounded. By Corollary \\ref{corollary-convergent-bounded} we conclude that $(a_n)$ does not converge.\n\n\n:::\n\n\nLet us apply the Ratio Test to some concrete examples.\n\n\n\n::: Example\n\n\nLet \n$$\na_{n}=\\frac{3^{n}}{n !} \\,,\n$$\nwhere we recall that $n!$ (pronounced $n$ factorial) is defined by\n$$\nn! := n \\cdot (n-1) \\cdot (n-2) \\cdot \\ldots \\cdot 3 \\cdot 2 \\cdot 1 \\,. \n$$\nProve that\n$$\n\\lim_{n \\to \\infty} a_n = 0 \\,.\n$$\n\n> *Proof*. We have\n\\begin{align*}\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| & = \\dfrac{\\left( \\dfrac{3^{n+1}}{(n+1) !} \\right) }{ \\left( \\dfrac{3^{n}}{n !} \\right) } \\\\\n& = \\frac{3^{n+1}}{3^{n}} \\, \\frac{n !}{(n+1) !} \\\\\n& = \\frac{3 \\cdot 3^n}{3^n} \\, \\frac{n!}{(n+1) n!} \\\\\n& =\\frac{3}{n+1} \\longrightarrow L = 0 \\,.\n\\end{align*}\nHence, $L=0<1$ so $a_{n} \\to 0$ by the Ratio Test in Theorem \\ref{theorem-ratio-test}.\n\n:::\n\n\n::: Example\n\nConsider the sequence\n$$\na_{n}=\\frac{n ! \\cdot 3^{n}}{\\sqrt{(2 n) !}} \\,.\n$$\nProve that $(a_n)$ is divergent.\n\n> *Proof.* We have\n\\begin{align*}\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| & =\\frac{(n+1) ! \\cdot 3^{n+1}}{\\sqrt{(2(n+1)) !}} \\frac{\\sqrt{(2 n) !}}{n ! \\cdot 3^{n}} \\\\\n& =\\frac{(n+1) !}{n !} \\cdot \\frac{3^{n+1}}{3^{n}} \\cdot \\frac{\\sqrt{(2 n) !}}{\\sqrt{(2(n+1)) !}}\n\\end{align*}\nFor the first two fractions we have\n$$\n\\frac{(n+1) !}{n !} \\cdot \\frac{3^{n+1}}{3^{n}} = 3(n+1) \\,,\n$$\nwhile for the third fraction\n\\begin{align*}\n\\frac{\\sqrt{(2 n) !}}{\\sqrt{(2(n+1)) !}} & =\\sqrt{\\frac{(2 n) !}{(2 n+2) !}} \\\\\n& = \\sqrt{\\frac{ (2n)! }{ (2n+2) \\cdot (2n+1) \\cdot (2n)! }} \\\\\n& = \\frac{1}{\\sqrt{(2 n+1)(2 n+2)}} \\,.\n\\end{align*}\nTherefore, using the Algebra of Limits,\n\\begin{align*}\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| & = \\frac{3(n+1)}{\\sqrt{(2 n+1)(2 n+2)}}\\\\\n& = \\frac{3n \\left(1+ \\dfrac{1}{n} \\right)}{\\sqrt{n^2 \\left( 2 + \\dfrac{1}{n}\\right) \\left(2 + \\dfrac{2}{n} \\right)}} \\\\\n& = \\frac{3 \\left(1+ \\dfrac{1}{n} \\right)}{\\sqrt{ \\left( 2 + \\dfrac{1}{n}\\right) \\left(2 + \\dfrac{2}{n} \\right)}} \\longrightarrow \\frac{3}{\\sqrt{4}} = \\frac{3}{2} > 1 \\,.\n\\end{align*}\nBy the Ratio Test we conclude that $(a_n)$ is divergent.\n\n:::\n\n\n\n::: Example \n\nLet \n$$\na_{n}=\\frac{n !}{100^{n}} \\,.\n$$\nProve that $(a_n)$ is divergent.\n\n> *Proof.*\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \n= \\frac{100^{n}}{100^{n+1}} \\frac{(n+1) !}{n !}\n=\\frac{n+1}{100} \\,.\n$$\nChoose $N=101$. Then for all $n \\geq N$,\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\geq \\frac{101}{100}>1 \\,.\n$$\nHence $a_{n}$ is divergent by the Ratio Test.\n\n:::\n\n\n\n\n::: Warning\n\nThe Ratio Test in Theorem \\ref{theorem-ratio-test} does not address the case\n$$\nL=1 \\,.\n$$\nThis is because, in this case, the sequence $(a_n)$ \nmight converge or diverge. \n\nFor example:\n\n- Define the sequence\n$$\na_n = \\frac1n \\,.\n$$\nWe have\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| = \\frac{n}{n+1} \\rightarrow L = 1 \\,. \n$$\nHence we cannot apply the Ratio Test. However we know that \n$$\n\\lim_{n \\to \\infty} \\, \\frac1n = 0 \\,.\n$$\n\n\n- Consider the sequence\n$$\na_n = n \\,.\n$$\nWe have\n$$\n\\frac{|a_{n+1}|}{|a_n|} = \\frac{n+1}{n} \\rightarrow L = 1 \\,. \n$$\nHence we cannot apply the Ratio Test. However we know that $(a_n)$ is unbounded, and thus divergent.\n\n:::\n\n\n\nIf the sequence $(a_n)$ is geometric, the Ratio Test of Theorem \\ref{theorem-ratio-test} will give the same\nanswer as the Geometric Sequence Test of Theorem \\ref{theorem-geometric-sequence}. This is the content of the following remark.\n\n\n::: Remark\n\nLet $x \\in \\R$ and define the geometric sequence \n$$\na_{n}=x^{n} \\,.\n$$\nThen\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| = \\frac{\\left|x^{n+1}\\right|}{\\left|x^{n}\\right|} \n= \\frac{|x|^{n+1}}{|x|^{n}} \n =|x| \\rightarrow |x| \\,.\n$$\nHence: \n\n- If $|x|<1$, the sequence $(a_n)$ converges by the Ratio Test\n- If $|x|>1$, the sequence $(a_n)$ diverges by the Ratio Test. \n- If $|x|=1$, the sequence $(a_n)$ might be convergent or divergent.\n\nThese results are in agreement with the Geometric Sequence Test. \n\n:::\n\n\n\n\n\n\n## Monotone sequences\n\n\nWe showed in Theorem \\ref{theorem-convergent-bounded} that convergent sequences are bounded. We noted that the converse statement is not true. \nFor example the sequence\n$$\na_n = (-1)^n\n$$\nis bounded but not convergent, as shown in Theorem \\ref{theorem-1-minus-n}.\nOn the other hand, if a bounded sequence is **monotone**, then it is convergent.\n\n\n::: Definition\n### Monotone sequence\n\nLet $(a_n)$ be a real sequence. We say that:\n\n1. $(a_n)$ is **increasing** if \n$$\na_n \\leq a_{n+1} \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\n\n2. $(a_n)$ is **decreasing** if \n$$\na_n \\geq a_{n+1} \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\n\n3. $(a_n)$ is **monotone** if it is either increasing or decreasing.\n\n:::\n\n\n\n::: Example\n\n- The sequence \n$$\na_n = \\frac1n\n$$\nis decreasing.\n\n > We have\n $$\n a_n = \\frac1n > \\frac{1}{n+1} = a_{n+1} \\,.\n $$\n\n- The sequence \n$$\nb_n = \\frac{n-1}{n} \n$$\nis increasing. \n\n > We have\n $$\n b_{n+1} = \\frac{n}{n+1} > \\frac{n-1}{n} = b_n \\,,\n $$\n where the inequality holds because\n \\begin{align*}\n \\frac{n}{n+1} > \\frac{n-1}{n} \\quad & \\iff \\quad \n n^2 > (n-1)(n+1) \\quad \\\\\n & \\iff \\quad n^2 > n^2 - 1 \\\\\n & \\iff \\quad 0 > - 1\n \\end{align*}\n\n:::\n\n\nThe main result about monotone sequences is the Monotone Convergence\nTheorem.\n\n\n::: Theorem\n### Monotone Convergence Theorem {#theorem-monotone-convergence}\n\nIf a sequence is bounded and monotone, then it converges.\n\n:::\n\n\n::: Proof\n\nAssume $(a_n)$ is bounded and monotone. Since $(a_n)$ is bounded, the set \n$$\nA:=\\{ a_n \\divider n \\in \\N \\} \\subseteq \\R \n$$\nis bounded below and above. By the Axiom of Completeness of $\\R$ there exist $i,s \\in \\R$ such that\n$$\ni = \\inf A \\,, \\quad s = \\sup A \\,.\n$$\n\nWe have two cases:\n\n1. $(a_n)$ is increasing: We are going to prove that\n$$\n\\lim_{n \\to \\infty} a_n = s \\,.\n$$\nEquivalently, we need to prove that\n$$\n\\forall \\, \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\,\\,\n|a_n - s| < \\e \\,. \n$$\nLet $\\e > 0$. Since $s$ is the smallest upper bound for $A$, this means\n$$\ns - \\e\n$$\nis not an upper bound. Therefore there exists $N \\in \\N$ such that \n$$\ns - \\e < a_N \\,.\n$${#eq-monotone-convergence-proof-1}\nLet $n \\geq N$. Since $a_n$ is increasing, we have\n$$\na_N \\leq a_n \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-monotone-convergence-proof-2}\nMoreover $s$ is the supremum of $A$, so that\n$$\na_n \\leq s < s + \\e \\,, \\quad \\forall \\, n \\in \\N \\,.\n$${#eq-monotone-convergence-proof-3}\nPutting together estimates (@eq-monotone-convergence-proof-1)-(@eq-monotone-convergence-proof-2)-(@eq-monotone-convergence-proof-3)\nwe get\n$$\ns - \\e < a_N \\leq a_n \\leq s < s + \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTherefore, for all $n \\geq N$, we have\n$$\ns - \\e < a_n < s + \\e \\quad \\implies \\quad |a_n - s | < \\e \\,.\n$$\n\n\n\n\n2. $(a_n)$ is decreasing: With a similar proof, one can show that\n$$\n\\lim_{n \\to \\infty} a_n = i \\,.\n$$\nThis is left as an exercise.\n\n\n:::\n\n\n\n\n::: {.content-hidden}\n\n\n\n### Example: Euler's Number\n\n\nAs an application of the Monotone Convergence Theorem we can give\na formal definition for the Euler's Number\n$$\ne = 2.71828182845904523536 \\dots\n$$\n\n\n::: Theorem \n\nConsider the sequence\n$$\na_n = \\left( 1 + \\frac{1}{n} \\right)^n \\,.\n$$\n\nWe have that:\n\n1. $(a_n)$ is monotone increasing,\n2. $(a_n)$ is bounded.\n\nIn particular $(a_n)$ is convergent.\n\n:::\n\n\n::: Proof\n\nCopiala da Marcellini Sbordone, pagina 106\n\n:::\n\n\nThanks to Theorem \\ref{theorem-euler-number} we can define the Euler's Number $e$.\n\n\n::: Definition\n### Euler's Number\n\nThe Euler's number is defined as\n$$\ne := \\lim_{n \\to \\infty } \\, \\left( 1 + \\frac{1}{n} \\right)^n \\,.\n$$\n\n:::\n\n\nAlready for $n=1000$ we have a good approximation of $e$:\n$$\na_{1000} = 2.7169 \\,.\n$$\n\n\n\n\n\n\n\n\n\nUse abbot, marcellini, and analisi sapienza note. For next year remove integral test and add cauchy condensation test.\n\n\n## Divergence to infinity\n\nDo this from abbott or marcellini. For the moment we have only done\ndivergent as non-convergent. Would need definition of Divergence to $\\pm \\infty$. Vedi anche forme indeterminate a pagina 96 Marcellini.\n\n\n## Some notable limits\n\nMarcellini Page 101. Also see what is the english name for limiti notevoli.\n\n\n\n\n\n## Recurrence relations\n\nMarcellini Page 110\n\n\n\n## Example: Heron's Method\n\n\nThe first explicit algorithm for approximating \n$$\n\\sqrt{x}\n$$ \nfor $x > 0$ is known as **Heron's method**, after the first-century Greek mathematician [Heron of Alexandria](https://en.wikipedia.org/wiki/Hero_of_Alexandria) who described the method in his AD 60 work Metrica, see reference to\n[Wikipedia page](https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method).\n\nLet us see what is the idea of the algorithm:\n\n- Suppose that $a_1$ is an approximation of $\\sqrt{x}$ from above, that is,\n$$\n \\sqrt{x} < a_1 \\,.\n$$ {#eq-heron}\n- Multiplying (@eq-heron) by $\\sqrt{x}/a_1$ we obtain\n$$\n\\frac{x}{a_1} < \\sqrt{x} \\,,\n$${#eq-heron-1}\nobtaining an approximation of $\\sqrt{x}$ from below.\n- Therefore, putting together the above inequalities,\n$$\n\\frac{x}{a_1} < \\sqrt{x} < a_1 \n$$ {#eq-heron-2}\n- If we take the average of the points $x/a_1$ and $a_1$, it is reasonable to think that we find a better approximation of $\\sqrt{x}$. Thus our next approximation is\n$$\na_2 := \\frac{1}{2} \\left( a_1 + \\frac{x}{a_1} \\right) \\,,\n$$\nsee figure below.\n\n\n![Heron's Algorithm for approximating $\\sqrt{x}$](/images/heron.png){width=70%}\n\n\nIterating, we define by recurrence the sequence \n$$\na_{n+1} := \\frac12 \\left( a_n + \\frac{x}{a_n} \\right)\n$$\nfor all $n \\in \\N$, where the initial guess $a_1$ has to satisfy (@eq-heron). The aim of the section is to show that\n$$\n\\lim_{n \\to \\infty } \\ a_n = \\sqrt{x} \\,.\n$${#eq-heron-convergence}\nWe start by showing that (@eq-heron-2) holds for all $n \\in \\N$.\n\n::: {.Proposition #proposition-heron}\nWe have\n$$\n\\frac{x}{a_n} < \\sqrt{x} < a_n \n$${#eq-heron-3}\nfor all $n \\in \\N$.\n:::\n\n\n::: Proof\nWe prove it by induction:\n\n1. By (@eq-heron) and (@eq-heron-1) we know that (@eq-heron-3) holds for $n=1$. \n\n2. Suppose now that (@eq-heron-3) holds for $n$. Then\n\\begin{align}\na_{n+1} - \\sqrt{x} & = \\frac12 \\left( a_n + \\frac{x}{a_n} \\right) - \\sqrt{x} \\\\\n& = \\frac{1}{2 a_n} ( a_n^2 + x - 2 a_n \\sqrt{x} ) \\\\\n& = \\frac{1}{2 a_n} ( a_n - \\sqrt{x} )^2 > 0 \\,,\n\\end{align}\nsince we are assuming that $a_n > \\sqrt{x}$. Therefore\n$$\n\\sqrt{x} < a_{n+1} \\,.\n$${#eq-heron-proof-1}\nMultiplying the above by $\\sqrt{x}/a_{n+1}$ we get\n$$\n\\frac{x}{a_{n+1}} < \\sqrt{x} \\,.\n$${#eq-heron-proof-2}\nInequalities (@eq-heron-proof-1) and (@eq-heron-proof-2) show that (@eq-heron-3) holds for $n+1$.\n\nTherefore we conclude (@eq-heron-3) by the Principle of Induction.\n:::\n\n\nWe are now ready to prove error estimates, that is, estimating how far away $a_n$ is from $\\sqrt{x}$. \n\n\n::: Proposition\n### Error estimate {#proposition-heron-error}\nFor all $n \\in \\N$ we have\n$$\na_{n+1} - \\sqrt{x} < \\frac12 (a_{n} - \\sqrt{x}) \\,.\n$${#eq-heron-half}\n:::\n\n\n::: Proof\nBy Proposition \\ref{proposition-heron} we know that \n$$\n\\frac{x}{a_n} < \\sqrt{x}\n$$\nfor all $n \\in \\N$. Therefore\n\\begin{align}\na_{n+1} & = \\frac12 \\left( a_n + \\frac{x}{a_n} \\right) \\\\\n & < \\frac12 \\left( a_n + \\sqrt{x} \\right) \\,.\n\\end{align}\nSubtracting $\\sqrt{x}$ from both members in the above inequality we get the thesis.\n:::\n\n\nInequality (@eq-heron-half) is saying that the error halves at each step. Therefore we can prove that after $n$ steps the error is exponentially lower, as detailed in the following proposition.\n\n\n::: {.Proposition #proposition-heron-error-exp}\nFor all $n \\in \\N$ we have\n$$\na_{n+1} - \\sqrt{x} < \\frac{1}{2^n} (a_1 - \\sqrt{x})\n$$ {#eq-heron-error}\n:::\n\n\n\n::: Proof\nWe prove (@eq-heron-error) by induction:\n\n1. For $n=1$ we have that (@eq-heron-error) is satisfied, since it coincides with (@eq-heron-half) for $n=1$.\n2. Suppose that (@eq-heron-error) holds for $n$. By (@eq-heron-half) with $n$ replaced by $n+1$ we have\n\\begin{align}\na_{n+2} - \\sqrt{x} & < \\frac12 (a_{n+1} - \\sqrt{x}) \\\\\n& < \\frac12 \\,\\cdot \\, \\frac{1}{2^n} (a_{1} - \\sqrt{x}) \\\\\n& = \\frac{1}{2^{n+1}} (a_{1} - \\sqrt{x})\n\\end{align}\nwhere in the second inequality we used the induction hypothesis (@eq-heron-error). Hence (@eq-heron-error) holds for $n+1$.\n\nBy invoking the Induction Principle we conclude the proof.\n:::\n\nLet us comment estimate (@eq-heron-error). Denote the error at step $n$ by\n$$\ne_n := a_n - \\sqrt{x}\\,.\n$$\nThe initial error $e_1$ depends on how far the initial guess is from $\\sqrt{x}$. The estimate in (@eq-heron-error) is telling us that $e_n$ is a fraction of $e_1$, and actually\n$$\n\\lim_{n \\to \\infty} \\ e_n = 0\n$$\nexponentially fast. From this fact we are finally able to prove (@eq-heron-convergence).\n\n::: Theorem\n### Convergence of Heron's Algorithm\nWe have that \n$$\n\\lim_{n \\to \\infty} \\ a_n = \\sqrt{x} \\,.\n$$\n:::\n\n::: Proof\nBy Proposition \\ref{proposition-heron-error-exp} we have that\n$$\na_{n+1} - \\sqrt{x} < \\frac{1}{2^n} (a_1 - \\sqrt{x})\n$$\nMoreover Proposition \\ref{proposition-heron} tells us that\n$$\n\\sqrt{x} < a_{n+1} \\,.\n$$\nPutting together the two inequalities above we infer\n$$\n\\sqrt{x} < a_{n+1} < \\sqrt{x} + \\frac{1}{2^n} (a_1 - \\sqrt{x}) \\,.\n$${#eq-heron-final}\nNow note that\n$$\n\\lim_{n \\to \\infty} \\ \\frac{1}{2^n} =\n\\lim_{n \\to \\infty} \\ \\left( \\frac{1}{2} \\right)^n = 0 \\,.\n$$\nTherefore the RHS of (@eq-heron-final) converges to $\\sqrt{x}$ as $n \\to \\infty$. Applying the Squeeze Theorem to (@eq-heron-final) we conclude that $a_n \\to \\sqrt{x}$ as $n \\to \\infty$.\n:::\n\n\n\n### Coding the Algorithm\n\nHeron's Algorithm can be easily coded in Python. For example, see the function below:\n\n```python\n# x is the number for which to compute sqrt(x)\n# guess is the point a_1\n# a_1 must be strictly larger than sqrt(x)\n# n is the number of iterations\n# the function returns a_{n+1}\n\ndef herons_algorithm(x, guess, n):\n for i in range(n):\n guess = (guess + x / guess) / 2.0\n return guess\n```\n\nFor example let us use the Algorithm to compute $\\sqrt{2}$ after $3$ iterations. For initial guess we take $a_1 = 2$. \n\n```python\n# Calculate sqrt(2) with 3 iterations and guess 2\nsqrt_2 = herons_algorithm(2, 2, 3)\n\nprint(f\"The sqrt(2) is approximately {sqrt_2}\")\n```\n\n::: {.cell execution_count=1}\n\n::: {.cell-output .cell-output-stdout}\n```\nThe sqrt(2) is approximately 1.4142156862745097\n```\n:::\n:::\n\n\nThat is a pretty good approximation in just $3$ iterations!\n\n\n\n\n\n## Fibonacci Sequence\n\n\n\n\n:::\n\n", "supporting": [ "chap_6_files/figure-html" ], diff --git a/docs/Numbers,-Sequences-and-Series.pdf b/docs/Numbers,-Sequences-and-Series.pdf index bc9c339..7d1f4b4 100644 Binary files a/docs/Numbers,-Sequences-and-Series.pdf and b/docs/Numbers,-Sequences-and-Series.pdf differ diff --git a/docs/index.html b/docs/index.html index bb06752..52c12b0 100644 --- a/docs/index.html +++ b/docs/index.html @@ -86,71 +86,71 @@ } } diff --git a/docs/sections/chap_2.html b/docs/sections/chap_2.html index 5f23704..7612b48 100644 --- a/docs/sections/chap_2.html +++ b/docs/sections/chap_2.html @@ -66,11 +66,7 @@ } } diff --git a/docs/sections/chap_3.html b/docs/sections/chap_3.html index 63dfb67..97d9e3b 100644 --- a/docs/sections/chap_3.html +++ b/docs/sections/chap_3.html @@ -66,39 +66,39 @@ } } diff --git a/docs/sections/chap_4.html b/docs/sections/chap_4.html index 2a642f8..a07e637 100644 --- a/docs/sections/chap_4.html +++ b/docs/sections/chap_4.html @@ -66,6 +66,10 @@ } } diff --git a/docs/sections/chap_6.html b/docs/sections/chap_6.html index 199c0e8..2d8b38d 100644 --- a/docs/sections/chap_6.html +++ b/docs/sections/chap_6.html @@ -66,67 +66,51 @@ } } @@ -867,11 +867,10 @@

Let \(\varepsilon>0\) and set \[ \widetilde{\varepsilon} := \frac{\varepsilon}{2} \,. -\] Since \(a_{n} \rightarrow a\) and \(\widetilde{\varepsilon}>0\), there exists \(N_1 \in \mathbb{N}\) such that \[ -|a_n - a|< \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_1 \,. -\] Since \(b_{n} \rightarrow b\) and \(\widetilde{\varepsilon}>0\), there exists \(N_2 \in \mathbb{N}\) such that \[ -|b_n - b|< \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_2 \,. -\] Define \[ +\] Since \(a_{n} \rightarrow a, b_n \to b\), and \(\widetilde{\varepsilon}>0\), there exist \(N_1, N_2 \in \mathbb{N}\) such that \[\begin{align*} +|a_n - a| & < \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_1 \,, \\ +|b_n - b| & < \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_2 \,. +\end{align*}\] Define \[ N : = \max \{ N_1, N_2 \} \,. \] For all \(n \geq N\) we have, by the triangle inequality, \[\begin{align*} \left|\left(a_{n}+b_{n}\right)-(a+b)\right| @@ -889,11 +888,10 @@

Define \[ \widetilde{\varepsilon} = \frac{\varepsilon}{ M + |b| } \,. -\] Since \(a_{n} \rightarrow a\) and \(\widetilde{\varepsilon} > 0\), there exists \(N_1 \in \mathbb{N}\) such that \[ -| a_n - a | < \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_1 \,. -\] Since \(b_{n} \rightarrow b\) and \(\widetilde{\varepsilon} > 0\), there exists \(N_2 \in \mathbb{N}\) such that \[ -| b_n - b | < \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_2 \,. -\] Let \[ +\] Since \(a_{n} \rightarrow a, b_n \to b\), and \(\widetilde{\varepsilon} > 0\), there exist \(N_1, N_2 \in \mathbb{N}\) such that \[\begin{align*} +| a_n - a | & < \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_1 \,. \\ +| b_n - b | & < \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_2 \,. +\end{align*}\] Let \[ N:= \max\{ N_1, N_2 \} \,. \] For all \(n \geq N\) we have \[\begin{align*} \left|a_{n}b_{n}-a b\right| @@ -909,7 +907,7 @@

which is equivalent to \[ \forall \, \varepsilon> 0 \,, \, \exists \, N \in \mathbb{N}\, \text{ s.t. } \, \forall \, n \geq N \,, \, \left|\frac{a_{n}}{ b_{n}} - \frac{a}{b} \right| < \varepsilon\,. -\] We suppose in addition that \(b>0\). The proof is very similar for the case \(b <0\). Let \(\varepsilon> 0\). Set \[ +\] We suppose in addition that \(b>0\). The proof is very similar for the case \(b <0\), and is hence omitted. Let \(\varepsilon> 0\). Set \[ \delta := \frac{b}{2} \,. \] Since \(b_n \to b\) and \(\delta>0\), there exists \(N_1 \in \mathbb{N}\) such that \[ |b_n - b| < \delta \, \quad \forall \, n \geq N_1 \,. @@ -917,11 +915,10 @@

Define \[ \widetilde{\varepsilon} := \frac{ b^2 }{ 2 (b + |a|)} \, \varepsilon\,. -\] Since \(\widetilde{\varepsilon}>0\) and \(a_n \to a\), there exists \(N_2 \in \mathbb{N}\) such that \[ -|a_n - a |< \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_2 \,. -\] Since \(\widetilde{\varepsilon}>0\) and \(b_n \to b\), there exists \(N_3 \in \mathbb{N}\) such that \[ -|b_n - b |< \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_3 \,. -\] Define \[ +\] Since \(\widetilde{\varepsilon}>0\) and \(a_n \to a, b_n \to b\), there exist \(N_2, N_3 \in \mathbb{N}\) such that \[\begin{align*} +|a_n - a | & < \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_2 \,, \\ +|b_n - b | & < \widetilde{\varepsilon} \,, \quad \forall \, n \geq N_3 \,. +\end{align*}\] Define \[ N:= \max\{ N_1, N_2, N_3 \} \,. \] For all \(n \geq N\) we have \[\begin{align*} \left|\frac{a_{n}}{ b_{n}} - \frac{a}{b} \right| & = diff --git a/docs/sections/chap_7.html b/docs/sections/chap_7.html index 021eb11..ca0a082 100644 --- a/docs/sections/chap_7.html +++ b/docs/sections/chap_7.html @@ -66,43 +66,27 @@ } } diff --git a/docs/sections/chap_8.html b/docs/sections/chap_8.html index b536551..4dd7ca4 100644 --- a/docs/sections/chap_8.html +++ b/docs/sections/chap_8.html @@ -66,23 +66,47 @@ } } diff --git a/sections/chap_6.qmd b/sections/chap_6.qmd index bd6fb28..eacde3a 100644 --- a/sections/chap_6.qmd +++ b/sections/chap_6.qmd @@ -974,14 +974,11 @@ Let $\e>0$ and set $$ \widetilde{\e} := \frac{\e}{2} \,. $$ -Since $a_{n} \rightarrow a$ and $\widetilde{\e}>0$, there exists $N_1 \in \N$ such that -$$ -|a_n - a|< \widetilde{\e} \,, \quad \forall \, n \geq N_1 \,. -$$ -Since $b_{n} \rightarrow b$ and $\widetilde{\e}>0$, there exists $N_2 \in \N$ such that -$$ -|b_n - b|< \widetilde{\e} \,, \quad \forall \, n \geq N_2 \,. -$$ +Since $a_{n} \rightarrow a, b_n \to b$, and $\widetilde{\e}>0$, there exist $N_1, N_2 \in \N$ such that +\begin{align*} +|a_n - a| & < \widetilde{\e} \,, \quad \forall \, n \geq N_1 \,, \\ +|b_n - b| & < \widetilde{\e} \,, \quad \forall \, n \geq N_2 \,. +\end{align*} Define $$ N : = \max \{ N_1, N_2 \} \,. @@ -1016,16 +1013,12 @@ Define $$ \widetilde{\e} = \frac{\e}{ M + |b| } \,. $$ -Since $a_{n} \rightarrow a$ and $\widetilde{\e} > 0$, there exists -$N_1 \in \N$ such that -$$ -| a_n - a | < \widetilde{\e} \,, \quad \forall \, n \geq N_1 \,. -$$ -Since $b_{n} \rightarrow b$ and $\widetilde{\e} > 0$, there exists -$N_2 \in \N$ such that -$$ -| b_n - b | < \widetilde{\e} \,, \quad \forall \, n \geq N_2 \,. -$$ +Since $a_{n} \rightarrow a, b_n \to b$, and $\widetilde{\e} > 0$, there exist +$N_1, N_2 \in \N$ such that +\begin{align*} +| a_n - a | & < \widetilde{\e} \,, \quad \forall \, n \geq N_1 \,. \\ +| b_n - b | & < \widetilde{\e} \,, \quad \forall \, n \geq N_2 \,. +\end{align*} Let $$ N:= \max\{ N_1, N_2 \} \,. @@ -1052,7 +1045,7 @@ which is equivalent to $$ \forall \, \e > 0 \,, \, \exists \, N \in \N \st \forall \, n \geq N \,, \, \left|\frac{a_{n}}{ b_{n}} - \frac{a}{b} \right| < \e \,. $$ -We suppose in addition that $b>0$. The proof is very similar for the case $b <0$. Let $\e > 0$. Set +We suppose in addition that $b>0$. The proof is very similar for the case $b <0$, and is hence omitted. Let $\e > 0$. Set $$ \delta := \frac{b}{2} \,. $$ @@ -1068,14 +1061,11 @@ Define $$ \widetilde{\e} := \frac{ b^2 }{ 2 (b + |a|)} \, \e \,. $$ -Since $\widetilde{\e}>0$ and $a_n \to a$, there exists $N_2 \in \N$ such that -$$ -|a_n - a |< \widetilde{\e} \,, \quad \forall \, n \geq N_2 \,. -$$ -Since $\widetilde{\e}>0$ and $b_n \to b$, there exists $N_3 \in \N$ such that -$$ -|b_n - b |< \widetilde{\e} \,, \quad \forall \, n \geq N_3 \,. -$$ +Since $\widetilde{\e}>0$ and $a_n \to a, b_n \to b$, there exist $N_2, N_3 \in \N$ such that +\begin{align*} +|a_n - a | & < \widetilde{\e} \,, \quad \forall \, n \geq N_2 \,, \\ +|b_n - b | & < \widetilde{\e} \,, \quad \forall \, n \geq N_3 \,. +\end{align*} Define $$ N:= \max\{ N_1, N_2, N_3 \} \,. diff --git a/sections/list-of-mathstuff.qmd b/sections/list-of-mathstuff.qmd index 51731b6..89d7772 100644 --- a/sections/list-of-mathstuff.qmd +++ b/sections/list-of-mathstuff.qmd @@ -249124,3 +249124,1593 @@ [**Remark 11**](chap_8.qmd#Remark-11)\Pageref{Remark-11} [**Example 12**](chap_8.qmd#Example-12)\Pageref{Example-12} + + [**Definition 1**](chap_8.qmd#partial-sums): Partial sums\Pageref{partial-sums} + + [**Definition 2**](chap_8.qmd#convergent-series-1): Convergent series\Pageref{convergent-series-1} + + [**Definition 3**](chap_8.qmd#divergent-series): Divergent series\Pageref{divergent-series} + + [**Example 4**](chap_8.qmd#Example-4)\Pageref{Example-4} + + [**Example 5**](chap_8.qmd#Example-5)\Pageref{Example-5} + + [**Theorem 6**](chap_8.qmd#theorem-series-necessary)\Pageref{theorem-series-necessary} + + [**Proof**](chap_8.qmd#Proof*-1)\Pageref{Proof*-1} + + [**Theorem 7**](chap_8.qmd#theorem-series-necessary-1)\Pageref{theorem-series-necessary-1} + + [**Example 8**](chap_8.qmd#Example-8)\Pageref{Example-8} + + [**Example 9**](chap_8.qmd#Example-9)\Pageref{Example-9} + + [**Important**](chap_8.qmd#Important*-2)\Pageref{Important*-2} + + [**Example 10**](chap_8.qmd#Example-10)\Pageref{Example-10} + + [**Remark 11**](chap_8.qmd#Remark-11)\Pageref{Remark-11} + + [**Example 12**](chap_8.qmd#Example-12)\Pageref{Example-12} + + [**Remark 1**](chap_6.qmd#Remark-1)\Pageref{Remark-1} + + [**Definition 2**](chap_6.qmd#sequence-of-real-numbers): Sequence of Real numbers\Pageref{sequence-of-real-numbers} + + [**Notation 3**](chap_6.qmd#Notation-3)\Pageref{Notation-3} + + [**Example 4**](chap_6.qmd#Example-4)\Pageref{Example-4} + + [**Definition 5**](chap_6.qmd#definition-convergent-sequence): Convergent sequence\Pageref{definition-convergent-sequence} + + [**Notation 6**](chap_6.qmd#Notation-6)\Pageref{Notation-6} + + [**Remark 7**](chap_6.qmd#Remark-7)\Pageref{Remark-7} + + [**Theorem 8**](chap_6.qmd#theorem-one-over-n)\Pageref{theorem-one-over-n} + + [**Proof**](chap_6.qmd#proof-of-theorem-long-version): Proof of Theorem 8 (Long version)\Pageref{proof-of-theorem-long-version} + + [**Proof**](chap_6.qmd#proof-of-theorem-short-version): Proof of Theorem 8 (Short version)\Pageref{proof-of-theorem-short-version} + + [**Theorem 9**](chap_6.qmd#theorem-one-over-np)\Pageref{theorem-one-over-np} + + [**Proof**](chap_6.qmd#Proof*-3)\Pageref{Proof*-3} + + [**Question 10**](chap_6.qmd#Question-10)\Pageref{Question-10} + + [**Important**](chap_6.qmd#Important*-4)\Pageref{Important*-4} + + [**Example 11**](chap_6.qmd#Example-11)\Pageref{Example-11} + + [**Theorem 12**](chap_6.qmd#theorem-constant-sequence)\Pageref{theorem-constant-sequence} + + [**Proof**](chap_6.qmd#Proof*-5)\Pageref{Proof*-5} + + [**Definition 13**](chap_6.qmd#divergent-sequence): Divergent sequence\Pageref{divergent-sequence} + + [**Remark 14**](chap_6.qmd#Remark-14)\Pageref{Remark-14} + + [**Theorem 15**](chap_6.qmd#theorem-1-minus-n)\Pageref{theorem-1-minus-n} + + [**Proof**](chap_6.qmd#Proof*-6)\Pageref{Proof*-6} + + [**Theorem 16**](chap_6.qmd#theorem-uniqueness-limit): Uniqueness of limit\Pageref{theorem-uniqueness-limit} + + [**Proof**](chap_6.qmd#Proof*-7)\Pageref{Proof*-7} + + [**Example 17**](chap_6.qmd#Example-17)\Pageref{Example-17} + + [**Definition 18**](chap_6.qmd#definition-bounded-sequence): Bounded sequence\Pageref{definition-bounded-sequence} + + [**Theorem 19**](chap_6.qmd#theorem-convergent-bounded)\Pageref{theorem-convergent-bounded} + + [**Proof**](chap_6.qmd#Proof*-8)\Pageref{Proof*-8} + + [**Example 20**](chap_6.qmd#Example-20)\Pageref{Example-20} + + [**Warning**](chap_6.qmd#Warning*-9)\Pageref{Warning*-9} + + [**Example 21**](chap_6.qmd#Example-21)\Pageref{Example-21} + + [**Corollary 22**](chap_6.qmd#corollary-convergent-bounded)\Pageref{corollary-convergent-bounded} + + [**Remark 23**](chap_6.qmd#Remark-23)\Pageref{Remark-23} + + [**Theorem 24**](chap_6.qmd#Theorem-24)\Pageref{Theorem-24} + + [**Proof**](chap_6.qmd#Proof*-10)\Pageref{Proof*-10} + + [**Theorem 25**](chap_6.qmd#Theorem-25)\Pageref{Theorem-25} + + [**Proof**](chap_6.qmd#Proof*-11)\Pageref{Proof*-11} + + [**Theorem 26**](chap_6.qmd#theorem-algebra-limits): Algebra of limits\Pageref{theorem-algebra-limits} + + [**Proof**](chap_6.qmd#Proof*-12)\Pageref{Proof*-12} + + [**Example 27**](chap_6.qmd#example-limit-ploynomial)\Pageref{example-limit-ploynomial} + + [**Important**](chap_6.qmd#Important*-13)\Pageref{Important*-13} + + [**Example 28**](chap_6.qmd#example-algebra-of-limits-2)\Pageref{example-algebra-of-limits-2} + + [**Example 29**](chap_6.qmd#Example-29)\Pageref{Example-29} + + [**Warning**](chap_6.qmd#Warning*-14)\Pageref{Warning*-14} + + [**Example 30**](chap_6.qmd#Example-30)\Pageref{Example-30} + + [**Example 31**](chap_6.qmd#Example-31)\Pageref{Example-31} + + [**Theorem 32**](chap_6.qmd#theorem-square-root-limit)\Pageref{theorem-square-root-limit} + + [**Proof**](chap_6.qmd#Proof*-15)\Pageref{Proof*-15} + + [**Example 33**](chap_6.qmd#Example-33)\Pageref{Example-33} + + [**Example 34**](chap_6.qmd#Example-34)\Pageref{Example-34} + + [**Theorem 35**](chap_6.qmd#theorem-squeeze): Squeeze theorem\Pageref{theorem-squeeze} + + [**Proof**](chap_6.qmd#Proof*-16)\Pageref{Proof*-16} + + [**Example 36**](chap_6.qmd#Example-36)\Pageref{Example-36} + + [**Example 37**](chap_6.qmd#example-squeeze)\Pageref{example-squeeze} + + [**Warning**](chap_6.qmd#Warning*-17)\Pageref{Warning*-17} + + [**Example 38**](chap_6.qmd#Example-38)\Pageref{Example-38} + + [**Definition 39**](chap_6.qmd#Definition-39)\Pageref{Definition-39} + + [**Theorem 40**](chap_6.qmd#theorem-geometric-sequence): Geometric Sequence Test\Pageref{theorem-geometric-sequence} + + [**Warning**](chap_6.qmd#Warning*-18)\Pageref{Warning*-18} + + [**Lemma 41**](chap_6.qmd#lemma-bernoulli): Bernoulli’s inequality\Pageref{lemma-bernoulli} + + [**Proof**](chap_6.qmd#Proof*-19)\Pageref{Proof*-19} + + [**Proof**](chap_6.qmd#proof-of-theorem): Proof of Theorem 40\Pageref{proof-of-theorem} + + [**Example 42**](chap_6.qmd#Example-42)\Pageref{Example-42} + + [**Theorem 43**](chap_6.qmd#theorem-ratio-test): Ratio Test\Pageref{theorem-ratio-test} + + [**Proof**](chap_6.qmd#Proof*-21)\Pageref{Proof*-21} + + [**Example 44**](chap_6.qmd#Example-44)\Pageref{Example-44} + + [**Example 45**](chap_6.qmd#Example-45)\Pageref{Example-45} + + [**Example 46**](chap_6.qmd#Example-46)\Pageref{Example-46} + + [**Warning**](chap_6.qmd#Warning*-22)\Pageref{Warning*-22} + + [**Remark 47**](chap_6.qmd#Remark-47)\Pageref{Remark-47} + + [**Definition 48**](chap_6.qmd#monotone-sequence): Monotone sequence\Pageref{monotone-sequence} + + [**Example 49**](chap_6.qmd#Example-49)\Pageref{Example-49} + + [**Theorem 50**](chap_6.qmd#theorem-monotone-convergence): Monotone Convergence Theorem\Pageref{theorem-monotone-convergence} + + [**Proof**](chap_6.qmd#Proof*-23)\Pageref{Proof*-23} + + [**Remark 1**](chap_6.qmd#Remark-1)\Pageref{Remark-1} + + [**Definition 2**](chap_6.qmd#sequence-of-real-numbers): Sequence of Real numbers\Pageref{sequence-of-real-numbers} + + [**Notation 3**](chap_6.qmd#Notation-3)\Pageref{Notation-3} + + [**Example 4**](chap_6.qmd#Example-4)\Pageref{Example-4} + + [**Definition 5**](chap_6.qmd#definition-convergent-sequence): Convergent sequence\Pageref{definition-convergent-sequence} + + [**Notation 6**](chap_6.qmd#Notation-6)\Pageref{Notation-6} + + [**Remark 7**](chap_6.qmd#Remark-7)\Pageref{Remark-7} + + [**Theorem 8**](chap_6.qmd#theorem-one-over-n)\Pageref{theorem-one-over-n} + + [**Proof**](chap_6.qmd#proof-of-theorem-long-version): Proof of Theorem 8 (Long version)\Pageref{proof-of-theorem-long-version} + + [**Proof**](chap_6.qmd#proof-of-theorem-short-version): Proof of Theorem 8 (Short version)\Pageref{proof-of-theorem-short-version} + + [**Theorem 9**](chap_6.qmd#theorem-one-over-np)\Pageref{theorem-one-over-np} + + [**Proof**](chap_6.qmd#Proof*-3)\Pageref{Proof*-3} + + [**Question 10**](chap_6.qmd#Question-10)\Pageref{Question-10} + + [**Important**](chap_6.qmd#Important*-4)\Pageref{Important*-4} + + [**Example 11**](chap_6.qmd#Example-11)\Pageref{Example-11} + + [**Theorem 12**](chap_6.qmd#theorem-constant-sequence)\Pageref{theorem-constant-sequence} + + [**Proof**](chap_6.qmd#Proof*-5)\Pageref{Proof*-5} + + [**Definition 13**](chap_6.qmd#divergent-sequence): Divergent sequence\Pageref{divergent-sequence} + + [**Remark 14**](chap_6.qmd#Remark-14)\Pageref{Remark-14} + + [**Theorem 15**](chap_6.qmd#theorem-1-minus-n)\Pageref{theorem-1-minus-n} + + [**Proof**](chap_6.qmd#Proof*-6)\Pageref{Proof*-6} + + [**Theorem 16**](chap_6.qmd#theorem-uniqueness-limit): Uniqueness of limit\Pageref{theorem-uniqueness-limit} + + [**Proof**](chap_6.qmd#Proof*-7)\Pageref{Proof*-7} + + [**Example 17**](chap_6.qmd#Example-17)\Pageref{Example-17} + + [**Definition 18**](chap_6.qmd#definition-bounded-sequence): Bounded sequence\Pageref{definition-bounded-sequence} + + [**Theorem 19**](chap_6.qmd#theorem-convergent-bounded)\Pageref{theorem-convergent-bounded} + + [**Proof**](chap_6.qmd#Proof*-8)\Pageref{Proof*-8} + + [**Example 20**](chap_6.qmd#Example-20)\Pageref{Example-20} + + [**Warning**](chap_6.qmd#Warning*-9)\Pageref{Warning*-9} + + [**Example 21**](chap_6.qmd#Example-21)\Pageref{Example-21} + + [**Corollary 22**](chap_6.qmd#corollary-convergent-bounded)\Pageref{corollary-convergent-bounded} + + [**Remark 23**](chap_6.qmd#Remark-23)\Pageref{Remark-23} + + [**Theorem 24**](chap_6.qmd#Theorem-24)\Pageref{Theorem-24} + + [**Proof**](chap_6.qmd#Proof*-10)\Pageref{Proof*-10} + + [**Theorem 25**](chap_6.qmd#Theorem-25)\Pageref{Theorem-25} + + [**Proof**](chap_6.qmd#Proof*-11)\Pageref{Proof*-11} + + [**Theorem 26**](chap_6.qmd#theorem-algebra-limits): Algebra of limits\Pageref{theorem-algebra-limits} + + [**Proof**](chap_6.qmd#Proof*-12)\Pageref{Proof*-12} + + [**Example 27**](chap_6.qmd#example-limit-ploynomial)\Pageref{example-limit-ploynomial} + + [**Important**](chap_6.qmd#Important*-13)\Pageref{Important*-13} + + [**Example 28**](chap_6.qmd#example-algebra-of-limits-2)\Pageref{example-algebra-of-limits-2} + + [**Example 29**](chap_6.qmd#Example-29)\Pageref{Example-29} + + [**Warning**](chap_6.qmd#Warning*-14)\Pageref{Warning*-14} + + [**Example 30**](chap_6.qmd#Example-30)\Pageref{Example-30} + + [**Example 31**](chap_6.qmd#Example-31)\Pageref{Example-31} + + [**Theorem 32**](chap_6.qmd#theorem-square-root-limit)\Pageref{theorem-square-root-limit} + + [**Proof**](chap_6.qmd#Proof*-15)\Pageref{Proof*-15} + + [**Example 33**](chap_6.qmd#Example-33)\Pageref{Example-33} + + [**Example 34**](chap_6.qmd#Example-34)\Pageref{Example-34} + + [**Theorem 35**](chap_6.qmd#theorem-squeeze): Squeeze theorem\Pageref{theorem-squeeze} + + [**Proof**](chap_6.qmd#Proof*-16)\Pageref{Proof*-16} + + [**Example 36**](chap_6.qmd#Example-36)\Pageref{Example-36} + + [**Example 37**](chap_6.qmd#example-squeeze)\Pageref{example-squeeze} + + [**Warning**](chap_6.qmd#Warning*-17)\Pageref{Warning*-17} + + [**Example 38**](chap_6.qmd#Example-38)\Pageref{Example-38} + + [**Definition 39**](chap_6.qmd#Definition-39)\Pageref{Definition-39} + + [**Theorem 40**](chap_6.qmd#theorem-geometric-sequence): Geometric Sequence Test\Pageref{theorem-geometric-sequence} + + [**Warning**](chap_6.qmd#Warning*-18)\Pageref{Warning*-18} + + [**Lemma 41**](chap_6.qmd#lemma-bernoulli): Bernoulli’s inequality\Pageref{lemma-bernoulli} + + [**Proof**](chap_6.qmd#Proof*-19)\Pageref{Proof*-19} + + [**Proof**](chap_6.qmd#proof-of-theorem): Proof of Theorem 40\Pageref{proof-of-theorem} + + [**Example 42**](chap_6.qmd#Example-42)\Pageref{Example-42} + + [**Theorem 43**](chap_6.qmd#theorem-ratio-test): Ratio Test\Pageref{theorem-ratio-test} + + [**Proof**](chap_6.qmd#Proof*-21)\Pageref{Proof*-21} + + [**Example 44**](chap_6.qmd#Example-44)\Pageref{Example-44} + + [**Example 45**](chap_6.qmd#Example-45)\Pageref{Example-45} + + [**Example 46**](chap_6.qmd#Example-46)\Pageref{Example-46} + + [**Warning**](chap_6.qmd#Warning*-22)\Pageref{Warning*-22} + + [**Remark 47**](chap_6.qmd#Remark-47)\Pageref{Remark-47} + + [**Definition 48**](chap_6.qmd#monotone-sequence): Monotone sequence\Pageref{monotone-sequence} + + [**Example 49**](chap_6.qmd#Example-49)\Pageref{Example-49} + + [**Theorem 50**](chap_6.qmd#theorem-monotone-convergence): Monotone Convergence Theorem\Pageref{theorem-monotone-convergence} + + [**Proof**](chap_6.qmd#Proof*-23)\Pageref{Proof*-23} + + [**Remark 1**](chap_6.qmd#Remark-1)\Pageref{Remark-1} + + [**Definition 2**](chap_6.qmd#sequence-of-real-numbers): Sequence of Real numbers\Pageref{sequence-of-real-numbers} + + [**Notation 3**](chap_6.qmd#Notation-3)\Pageref{Notation-3} + + [**Example 4**](chap_6.qmd#Example-4)\Pageref{Example-4} + + [**Definition 5**](chap_6.qmd#definition-convergent-sequence): Convergent sequence\Pageref{definition-convergent-sequence} + + [**Notation 6**](chap_6.qmd#Notation-6)\Pageref{Notation-6} + + [**Remark 7**](chap_6.qmd#Remark-7)\Pageref{Remark-7} + + [**Theorem 8**](chap_6.qmd#theorem-one-over-n)\Pageref{theorem-one-over-n} + + [**Proof**](chap_6.qmd#proof-of-theorem-long-version): Proof of Theorem 8 (Long version)\Pageref{proof-of-theorem-long-version} + + [**Proof**](chap_6.qmd#proof-of-theorem-short-version): Proof of Theorem 8 (Short version)\Pageref{proof-of-theorem-short-version} + + [**Theorem 9**](chap_6.qmd#theorem-one-over-np)\Pageref{theorem-one-over-np} + + [**Proof**](chap_6.qmd#Proof*-3)\Pageref{Proof*-3} + + [**Question 10**](chap_6.qmd#Question-10)\Pageref{Question-10} + + [**Important**](chap_6.qmd#Important*-4)\Pageref{Important*-4} + + [**Example 11**](chap_6.qmd#Example-11)\Pageref{Example-11} + + [**Theorem 12**](chap_6.qmd#theorem-constant-sequence)\Pageref{theorem-constant-sequence} + + [**Proof**](chap_6.qmd#Proof*-5)\Pageref{Proof*-5} + + [**Definition 13**](chap_6.qmd#divergent-sequence): Divergent sequence\Pageref{divergent-sequence} + + [**Remark 14**](chap_6.qmd#Remark-14)\Pageref{Remark-14} + + [**Theorem 15**](chap_6.qmd#theorem-1-minus-n)\Pageref{theorem-1-minus-n} + + [**Proof**](chap_6.qmd#Proof*-6)\Pageref{Proof*-6} + + [**Theorem 16**](chap_6.qmd#theorem-uniqueness-limit): Uniqueness of limit\Pageref{theorem-uniqueness-limit} + + [**Proof**](chap_6.qmd#Proof*-7)\Pageref{Proof*-7} + + [**Example 17**](chap_6.qmd#Example-17)\Pageref{Example-17} + + [**Definition 18**](chap_6.qmd#definition-bounded-sequence): Bounded sequence\Pageref{definition-bounded-sequence} + + [**Theorem 19**](chap_6.qmd#theorem-convergent-bounded)\Pageref{theorem-convergent-bounded} + + [**Proof**](chap_6.qmd#Proof*-8)\Pageref{Proof*-8} + + [**Example 20**](chap_6.qmd#Example-20)\Pageref{Example-20} + + [**Warning**](chap_6.qmd#Warning*-9)\Pageref{Warning*-9} + + [**Example 21**](chap_6.qmd#Example-21)\Pageref{Example-21} + + [**Corollary 22**](chap_6.qmd#corollary-convergent-bounded)\Pageref{corollary-convergent-bounded} + + [**Remark 23**](chap_6.qmd#Remark-23)\Pageref{Remark-23} + + [**Theorem 24**](chap_6.qmd#Theorem-24)\Pageref{Theorem-24} + + [**Proof**](chap_6.qmd#Proof*-10)\Pageref{Proof*-10} + + [**Theorem 25**](chap_6.qmd#Theorem-25)\Pageref{Theorem-25} + + [**Proof**](chap_6.qmd#Proof*-11)\Pageref{Proof*-11} + + [**Theorem 26**](chap_6.qmd#theorem-algebra-limits): Algebra of limits\Pageref{theorem-algebra-limits} + + [**Proof**](chap_6.qmd#Proof*-12)\Pageref{Proof*-12} + + [**Example 27**](chap_6.qmd#example-limit-ploynomial)\Pageref{example-limit-ploynomial} + + [**Important**](chap_6.qmd#Important*-13)\Pageref{Important*-13} + + [**Example 28**](chap_6.qmd#example-algebra-of-limits-2)\Pageref{example-algebra-of-limits-2} + + [**Example 29**](chap_6.qmd#Example-29)\Pageref{Example-29} + + [**Warning**](chap_6.qmd#Warning*-14)\Pageref{Warning*-14} + + [**Example 30**](chap_6.qmd#Example-30)\Pageref{Example-30} + + [**Example 31**](chap_6.qmd#Example-31)\Pageref{Example-31} + + [**Theorem 32**](chap_6.qmd#theorem-square-root-limit)\Pageref{theorem-square-root-limit} + + [**Proof**](chap_6.qmd#Proof*-15)\Pageref{Proof*-15} + + [**Example 33**](chap_6.qmd#Example-33)\Pageref{Example-33} + + [**Example 34**](chap_6.qmd#Example-34)\Pageref{Example-34} + + [**Theorem 35**](chap_6.qmd#theorem-squeeze): Squeeze theorem\Pageref{theorem-squeeze} + + [**Proof**](chap_6.qmd#Proof*-16)\Pageref{Proof*-16} + + [**Example 36**](chap_6.qmd#Example-36)\Pageref{Example-36} + + [**Example 37**](chap_6.qmd#example-squeeze)\Pageref{example-squeeze} + + [**Warning**](chap_6.qmd#Warning*-17)\Pageref{Warning*-17} + + [**Example 38**](chap_6.qmd#Example-38)\Pageref{Example-38} + + [**Definition 39**](chap_6.qmd#Definition-39)\Pageref{Definition-39} + + [**Theorem 40**](chap_6.qmd#theorem-geometric-sequence): Geometric Sequence Test\Pageref{theorem-geometric-sequence} + + [**Warning**](chap_6.qmd#Warning*-18)\Pageref{Warning*-18} + + [**Lemma 41**](chap_6.qmd#lemma-bernoulli): Bernoulli’s inequality\Pageref{lemma-bernoulli} + + [**Proof**](chap_6.qmd#Proof*-19)\Pageref{Proof*-19} + + [**Proof**](chap_6.qmd#proof-of-theorem): Proof of Theorem 40\Pageref{proof-of-theorem} + + [**Example 42**](chap_6.qmd#Example-42)\Pageref{Example-42} + + [**Theorem 43**](chap_6.qmd#theorem-ratio-test): Ratio Test\Pageref{theorem-ratio-test} + + [**Proof**](chap_6.qmd#Proof*-21)\Pageref{Proof*-21} + + [**Example 44**](chap_6.qmd#Example-44)\Pageref{Example-44} + + [**Example 45**](chap_6.qmd#Example-45)\Pageref{Example-45} + + [**Example 46**](chap_6.qmd#Example-46)\Pageref{Example-46} + + [**Warning**](chap_6.qmd#Warning*-22)\Pageref{Warning*-22} + + [**Remark 47**](chap_6.qmd#Remark-47)\Pageref{Remark-47} + + [**Definition 48**](chap_6.qmd#monotone-sequence): Monotone sequence\Pageref{monotone-sequence} + + [**Example 49**](chap_6.qmd#Example-49)\Pageref{Example-49} + + [**Theorem 50**](chap_6.qmd#theorem-monotone-convergence): Monotone Convergence Theorem\Pageref{theorem-monotone-convergence} + + [**Proof**](chap_6.qmd#Proof*-23)\Pageref{Proof*-23} + + [**Remark 1**](chap_6.qmd#Remark-1)\Pageref{Remark-1} + + [**Definition 2**](chap_6.qmd#sequence-of-real-numbers): Sequence of Real numbers\Pageref{sequence-of-real-numbers} + + [**Notation 3**](chap_6.qmd#Notation-3)\Pageref{Notation-3} + + [**Example 4**](chap_6.qmd#Example-4)\Pageref{Example-4} + + [**Definition 5**](chap_6.qmd#definition-convergent-sequence): Convergent sequence\Pageref{definition-convergent-sequence} + + [**Notation 6**](chap_6.qmd#Notation-6)\Pageref{Notation-6} + + [**Remark 7**](chap_6.qmd#Remark-7)\Pageref{Remark-7} + + [**Theorem 8**](chap_6.qmd#theorem-one-over-n)\Pageref{theorem-one-over-n} + + [**Proof**](chap_6.qmd#proof-of-theorem-long-version): Proof of Theorem 8 (Long version)\Pageref{proof-of-theorem-long-version} + + [**Proof**](chap_6.qmd#proof-of-theorem-short-version): Proof of Theorem 8 (Short version)\Pageref{proof-of-theorem-short-version} + + [**Theorem 9**](chap_6.qmd#theorem-one-over-np)\Pageref{theorem-one-over-np} + + [**Proof**](chap_6.qmd#Proof*-3)\Pageref{Proof*-3} + + [**Question 10**](chap_6.qmd#Question-10)\Pageref{Question-10} + + [**Important**](chap_6.qmd#Important*-4)\Pageref{Important*-4} + + [**Example 11**](chap_6.qmd#Example-11)\Pageref{Example-11} + + [**Theorem 12**](chap_6.qmd#theorem-constant-sequence)\Pageref{theorem-constant-sequence} + + [**Proof**](chap_6.qmd#Proof*-5)\Pageref{Proof*-5} + + [**Definition 13**](chap_6.qmd#divergent-sequence): Divergent sequence\Pageref{divergent-sequence} + + [**Remark 14**](chap_6.qmd#Remark-14)\Pageref{Remark-14} + + [**Theorem 15**](chap_6.qmd#theorem-1-minus-n)\Pageref{theorem-1-minus-n} + + [**Proof**](chap_6.qmd#Proof*-6)\Pageref{Proof*-6} + + [**Theorem 16**](chap_6.qmd#theorem-uniqueness-limit): Uniqueness of limit\Pageref{theorem-uniqueness-limit} + + [**Proof**](chap_6.qmd#Proof*-7)\Pageref{Proof*-7} + + [**Example 17**](chap_6.qmd#Example-17)\Pageref{Example-17} + + [**Definition 18**](chap_6.qmd#definition-bounded-sequence): Bounded sequence\Pageref{definition-bounded-sequence} + + [**Theorem 19**](chap_6.qmd#theorem-convergent-bounded)\Pageref{theorem-convergent-bounded} + + [**Proof**](chap_6.qmd#Proof*-8)\Pageref{Proof*-8} + + [**Example 20**](chap_6.qmd#Example-20)\Pageref{Example-20} + + [**Warning**](chap_6.qmd#Warning*-9)\Pageref{Warning*-9} + + [**Example 21**](chap_6.qmd#Example-21)\Pageref{Example-21} + + [**Corollary 22**](chap_6.qmd#corollary-convergent-bounded)\Pageref{corollary-convergent-bounded} + + [**Remark 23**](chap_6.qmd#Remark-23)\Pageref{Remark-23} + + [**Theorem 24**](chap_6.qmd#Theorem-24)\Pageref{Theorem-24} + + [**Proof**](chap_6.qmd#Proof*-10)\Pageref{Proof*-10} + + [**Theorem 25**](chap_6.qmd#Theorem-25)\Pageref{Theorem-25} + + [**Proof**](chap_6.qmd#Proof*-11)\Pageref{Proof*-11} + + [**Theorem 26**](chap_6.qmd#theorem-algebra-limits): Algebra of limits\Pageref{theorem-algebra-limits} + + [**Proof**](chap_6.qmd#Proof*-12)\Pageref{Proof*-12} + + [**Example 27**](chap_6.qmd#example-limit-ploynomial)\Pageref{example-limit-ploynomial} + + [**Important**](chap_6.qmd#Important*-13)\Pageref{Important*-13} + + [**Example 28**](chap_6.qmd#example-algebra-of-limits-2)\Pageref{example-algebra-of-limits-2} + + [**Example 29**](chap_6.qmd#Example-29)\Pageref{Example-29} + + [**Warning**](chap_6.qmd#Warning*-14)\Pageref{Warning*-14} + + [**Example 30**](chap_6.qmd#Example-30)\Pageref{Example-30} + + [**Example 31**](chap_6.qmd#Example-31)\Pageref{Example-31} + + [**Theorem 32**](chap_6.qmd#theorem-square-root-limit)\Pageref{theorem-square-root-limit} + + [**Proof**](chap_6.qmd#Proof*-15)\Pageref{Proof*-15} + + [**Example 33**](chap_6.qmd#Example-33)\Pageref{Example-33} + + [**Example 34**](chap_6.qmd#Example-34)\Pageref{Example-34} + + [**Theorem 35**](chap_6.qmd#theorem-squeeze): Squeeze theorem\Pageref{theorem-squeeze} + + [**Proof**](chap_6.qmd#Proof*-16)\Pageref{Proof*-16} + + [**Example 36**](chap_6.qmd#Example-36)\Pageref{Example-36} + + [**Example 37**](chap_6.qmd#example-squeeze)\Pageref{example-squeeze} + + [**Warning**](chap_6.qmd#Warning*-17)\Pageref{Warning*-17} + + [**Example 38**](chap_6.qmd#Example-38)\Pageref{Example-38} + + [**Definition 39**](chap_6.qmd#Definition-39)\Pageref{Definition-39} + + [**Theorem 40**](chap_6.qmd#theorem-geometric-sequence): Geometric Sequence Test\Pageref{theorem-geometric-sequence} + + [**Warning**](chap_6.qmd#Warning*-18)\Pageref{Warning*-18} + + [**Lemma 41**](chap_6.qmd#lemma-bernoulli): Bernoulli’s inequality\Pageref{lemma-bernoulli} + + [**Proof**](chap_6.qmd#Proof*-19)\Pageref{Proof*-19} + + [**Proof**](chap_6.qmd#proof-of-theorem): Proof of Theorem 40\Pageref{proof-of-theorem} + + [**Example 42**](chap_6.qmd#Example-42)\Pageref{Example-42} + + [**Theorem 43**](chap_6.qmd#theorem-ratio-test): Ratio Test\Pageref{theorem-ratio-test} + + [**Proof**](chap_6.qmd#Proof*-21)\Pageref{Proof*-21} + + [**Example 44**](chap_6.qmd#Example-44)\Pageref{Example-44} + + [**Example 45**](chap_6.qmd#Example-45)\Pageref{Example-45} + + [**Example 46**](chap_6.qmd#Example-46)\Pageref{Example-46} + + [**Warning**](chap_6.qmd#Warning*-22)\Pageref{Warning*-22} + + [**Remark 47**](chap_6.qmd#Remark-47)\Pageref{Remark-47} + + [**Definition 48**](chap_6.qmd#monotone-sequence): Monotone sequence\Pageref{monotone-sequence} + + [**Example 49**](chap_6.qmd#Example-49)\Pageref{Example-49} + + [**Theorem 50**](chap_6.qmd#theorem-monotone-convergence): Monotone Convergence Theorem\Pageref{theorem-monotone-convergence} + + [**Proof**](chap_6.qmd#Proof*-23)\Pageref{Proof*-23} + + [**Remark 1**](chap_6.qmd#Remark-1)\Pageref{Remark-1} + + [**Definition 2**](chap_6.qmd#sequence-of-real-numbers): Sequence of Real numbers\Pageref{sequence-of-real-numbers} + + [**Notation 3**](chap_6.qmd#Notation-3)\Pageref{Notation-3} + + [**Example 4**](chap_6.qmd#Example-4)\Pageref{Example-4} + + [**Definition 5**](chap_6.qmd#definition-convergent-sequence): Convergent sequence\Pageref{definition-convergent-sequence} + + [**Notation 6**](chap_6.qmd#Notation-6)\Pageref{Notation-6} + + [**Remark 7**](chap_6.qmd#Remark-7)\Pageref{Remark-7} + + [**Theorem 8**](chap_6.qmd#theorem-one-over-n)\Pageref{theorem-one-over-n} + + [**Proof**](chap_6.qmd#proof-of-theorem-long-version): Proof of Theorem 8 (Long version)\Pageref{proof-of-theorem-long-version} + + [**Proof**](chap_6.qmd#proof-of-theorem-short-version): Proof of Theorem 8 (Short version)\Pageref{proof-of-theorem-short-version} + + [**Theorem 9**](chap_6.qmd#theorem-one-over-np)\Pageref{theorem-one-over-np} + + [**Proof**](chap_6.qmd#Proof*-3)\Pageref{Proof*-3} + + [**Question 10**](chap_6.qmd#Question-10)\Pageref{Question-10} + + [**Important**](chap_6.qmd#Important*-4)\Pageref{Important*-4} + + [**Example 11**](chap_6.qmd#Example-11)\Pageref{Example-11} + + [**Theorem 12**](chap_6.qmd#theorem-constant-sequence)\Pageref{theorem-constant-sequence} + + [**Proof**](chap_6.qmd#Proof*-5)\Pageref{Proof*-5} + + [**Definition 13**](chap_6.qmd#divergent-sequence): Divergent sequence\Pageref{divergent-sequence} + + [**Remark 14**](chap_6.qmd#Remark-14)\Pageref{Remark-14} + + [**Theorem 15**](chap_6.qmd#theorem-1-minus-n)\Pageref{theorem-1-minus-n} + + [**Proof**](chap_6.qmd#Proof*-6)\Pageref{Proof*-6} + + [**Theorem 16**](chap_6.qmd#theorem-uniqueness-limit): Uniqueness of limit\Pageref{theorem-uniqueness-limit} + + [**Proof**](chap_6.qmd#Proof*-7)\Pageref{Proof*-7} + + [**Example 17**](chap_6.qmd#Example-17)\Pageref{Example-17} + + [**Definition 18**](chap_6.qmd#definition-bounded-sequence): Bounded sequence\Pageref{definition-bounded-sequence} + + [**Theorem 19**](chap_6.qmd#theorem-convergent-bounded)\Pageref{theorem-convergent-bounded} + + [**Proof**](chap_6.qmd#Proof*-8)\Pageref{Proof*-8} + + [**Example 20**](chap_6.qmd#Example-20)\Pageref{Example-20} + + [**Warning**](chap_6.qmd#Warning*-9)\Pageref{Warning*-9} + + [**Example 21**](chap_6.qmd#Example-21)\Pageref{Example-21} + + [**Corollary 22**](chap_6.qmd#corollary-convergent-bounded)\Pageref{corollary-convergent-bounded} + + [**Remark 23**](chap_6.qmd#Remark-23)\Pageref{Remark-23} + + [**Theorem 24**](chap_6.qmd#Theorem-24)\Pageref{Theorem-24} + + [**Proof**](chap_6.qmd#Proof*-10)\Pageref{Proof*-10} + + [**Theorem 25**](chap_6.qmd#Theorem-25)\Pageref{Theorem-25} + + [**Proof**](chap_6.qmd#Proof*-11)\Pageref{Proof*-11} + + [**Theorem 26**](chap_6.qmd#theorem-algebra-limits): Algebra of limits\Pageref{theorem-algebra-limits} + + [**Proof**](chap_6.qmd#Proof*-12)\Pageref{Proof*-12} + + [**Example 27**](chap_6.qmd#example-limit-ploynomial)\Pageref{example-limit-ploynomial} + + [**Important**](chap_6.qmd#Important*-13)\Pageref{Important*-13} + + [**Example 28**](chap_6.qmd#example-algebra-of-limits-2)\Pageref{example-algebra-of-limits-2} + + [**Example 29**](chap_6.qmd#Example-29)\Pageref{Example-29} + + [**Warning**](chap_6.qmd#Warning*-14)\Pageref{Warning*-14} + + [**Example 30**](chap_6.qmd#Example-30)\Pageref{Example-30} + + [**Example 31**](chap_6.qmd#Example-31)\Pageref{Example-31} + + [**Theorem 32**](chap_6.qmd#theorem-square-root-limit)\Pageref{theorem-square-root-limit} + + [**Proof**](chap_6.qmd#Proof*-15)\Pageref{Proof*-15} + + [**Example 33**](chap_6.qmd#Example-33)\Pageref{Example-33} + + [**Example 34**](chap_6.qmd#Example-34)\Pageref{Example-34} + + [**Theorem 35**](chap_6.qmd#theorem-squeeze): Squeeze theorem\Pageref{theorem-squeeze} + + [**Proof**](chap_6.qmd#Proof*-16)\Pageref{Proof*-16} + + [**Example 36**](chap_6.qmd#Example-36)\Pageref{Example-36} + + [**Example 37**](chap_6.qmd#example-squeeze)\Pageref{example-squeeze} + + [**Warning**](chap_6.qmd#Warning*-17)\Pageref{Warning*-17} + + [**Example 38**](chap_6.qmd#Example-38)\Pageref{Example-38} + + [**Definition 39**](chap_6.qmd#Definition-39)\Pageref{Definition-39} + + [**Theorem 40**](chap_6.qmd#theorem-geometric-sequence): Geometric Sequence Test\Pageref{theorem-geometric-sequence} + + [**Warning**](chap_6.qmd#Warning*-18)\Pageref{Warning*-18} + + [**Lemma 41**](chap_6.qmd#lemma-bernoulli): Bernoulli’s inequality\Pageref{lemma-bernoulli} + + [**Proof**](chap_6.qmd#Proof*-19)\Pageref{Proof*-19} + + [**Proof**](chap_6.qmd#proof-of-theorem): Proof of Theorem 40\Pageref{proof-of-theorem} + + [**Example 42**](chap_6.qmd#Example-42)\Pageref{Example-42} + + [**Theorem 43**](chap_6.qmd#theorem-ratio-test): Ratio Test\Pageref{theorem-ratio-test} + + [**Proof**](chap_6.qmd#Proof*-21)\Pageref{Proof*-21} + + [**Example 44**](chap_6.qmd#Example-44)\Pageref{Example-44} + + [**Example 45**](chap_6.qmd#Example-45)\Pageref{Example-45} + + [**Example 46**](chap_6.qmd#Example-46)\Pageref{Example-46} + + [**Warning**](chap_6.qmd#Warning*-22)\Pageref{Warning*-22} + + [**Remark 47**](chap_6.qmd#Remark-47)\Pageref{Remark-47} + + [**Definition 48**](chap_6.qmd#monotone-sequence): Monotone sequence\Pageref{monotone-sequence} + + [**Example 49**](chap_6.qmd#Example-49)\Pageref{Example-49} + + [**Theorem 50**](chap_6.qmd#theorem-monotone-convergence): Monotone Convergence Theorem\Pageref{theorem-monotone-convergence} + + [**Proof**](chap_6.qmd#Proof*-23)\Pageref{Proof*-23} + + [**Definition 1**](chap_7.qmd#sequence-of-complex-numbers): Sequence of Complex numbers\Pageref{sequence-of-complex-numbers} + + [**Definition 2**](chap_7.qmd#definition-convergent-sequence-C): Convergent sequence in $\mathbb{C}$\Pageref{definition-convergent-sequence-C} + + [**Important**](chap_7.qmd#Important*-1)\Pageref{Important*-1} + + [**Example 3**](chap_7.qmd#Example-3)\Pageref{Example-3} + + [**Definition 4**](chap_7.qmd#bounded-sequence-in-mathbbc): Bounded sequence in $\mathbb{C}$\Pageref{bounded-sequence-in-mathbbc} + + [**Theorem 5**](chap_7.qmd#theorem-convergent-bounded-C)\Pageref{theorem-convergent-bounded-C} + + [**Definition 6**](chap_7.qmd#divergent-sequences-in-mathbbc): Divergent sequences in $\mathbb{C}$\Pageref{divergent-sequences-in-mathbbc} + + [**Corollary 7**](chap_7.qmd#Corollary-7)\Pageref{Corollary-7} + + [**Theorem 8**](chap_7.qmd#theorem-algebra-limits-C): Algebra of limits in $\mathbb{C}$\Pageref{theorem-algebra-limits-C} + + [**Example 9**](chap_7.qmd#Example-9)\Pageref{Example-9} + + [**Theorem 10**](chap_7.qmd#theorem-convergence-zero-C)\Pageref{theorem-convergence-zero-C} + + [**Proof**](chap_7.qmd#Proof*-2)\Pageref{Proof*-2} + + [**Example 11**](chap_7.qmd#Example-11)\Pageref{Example-11} + + [**Example 12**](chap_7.qmd#Example-12)\Pageref{Example-12} + + [**Theorem 13**](chap_7.qmd#geometric-sequence-test-in-mathbbc): Geometric sequence Test in $\mathbb{C}$\Pageref{geometric-sequence-test-in-mathbbc} + + [**Example 14**](chap_7.qmd#Example-14)\Pageref{Example-14} + + [**Theorem 15**](chap_7.qmd#theorem-ratop-test-C): Ratio Test in \Pageref{theorem-ratop-test-C} + + [**Example 16**](chap_7.qmd#Example-16)\Pageref{Example-16} + + [**Theorem 17**](chap_7.qmd#theorem-convergence-real-imaginary)\Pageref{theorem-convergence-real-imaginary} + + [**Proof**](chap_7.qmd#Proof*-3)\Pageref{Proof*-3} + + [**Example 18**](chap_7.qmd#Example-18)\Pageref{Example-18} + + [**Question 1**](chap_1.qmd#Question-1)\Pageref{Question-1} + + [**Question 2**](chap_1.qmd#Question-2)\Pageref{Question-2} + + [**Question 3**](chap_1.qmd#Question-3)\Pageref{Question-3} + + [**Question 4**](chap_1.qmd#Question-4)\Pageref{Question-4} + + [**Conjecture 5**](chap_1.qmd#conj-line)\Pageref{conj-line} + + [**Theorem 6**](chap_1.qmd#theorem-root-2)\Pageref{theorem-root-2} + + [**Proof**](chap_1.qmd#proof-of-theorem): Proof of Theorem 6\Pageref{proof-of-theorem} + + [**Remark 7**](chap_1.qmd#Remark-7)\Pageref{Remark-7} + + [**Theorem 8**](chap_1.qmd#we-will-prove-this-in-the-future): We will prove this in the future\Pageref{we-will-prove-this-in-the-future} + + [**Theorem 9**](chap_1.qmd#we-will-prove-this-in-the-future-1): We will prove this in the future\Pageref{we-will-prove-this-in-the-future-1} + + [**Remark 1**](chap_2.qmd#Remark-1)\Pageref{Remark-1} + + [**Example 2**](chap_2.qmd#Example-2)\Pageref{Example-2} + + [**Example 3**](chap_2.qmd#Example-3)\Pageref{Example-3} + + [**Example 4**](chap_2.qmd#Example-4)\Pageref{Example-4} + + [**Example 5**](chap_2.qmd#Example-5)\Pageref{Example-5} + + [**Example 6**](chap_2.qmd#Example-6)\Pageref{Example-6} + + [**Proposition 7**](chap_2.qmd#Proposition-Equality-Sets)\Pageref{Proposition-Equality-Sets} + + [**Proof**](chap_2.qmd#Proof*-1)\Pageref{Proof*-1} + + [**Example 8**](chap_2.qmd#Example-8)\Pageref{Example-8} + + [**Remark 9**](chap_2.qmd#Remark-9)\Pageref{Remark-9} + + [**Example 10**](chap_2.qmd#Example-10)\Pageref{Example-10} + + [**Proposition 11**](chap_2.qmd#de-morgans-laws): De Morgan’s Laws\Pageref{de-morgans-laws} + + [**Remark 12**](chap_2.qmd#Remark-12)\Pageref{Remark-12} + + [**Example 13**](chap_2.qmd#Example-13)\Pageref{Example-13} + + [**Definition 14**](chap_2.qmd#equivalence-relation-1): Equivalence relation\Pageref{equivalence-relation-1} + + [**Definition 15**](chap_2.qmd#equivalence-classes): Equivalence classes\Pageref{equivalence-classes} + + [**Example 16**](chap_2.qmd#equality-is-an-equivalence-relation): Equality is an equivalence relation\Pageref{equality-is-an-equivalence-relation} + + [**Example 17**](chap_2.qmd#Example-17)\Pageref{Example-17} + + [**Definition 18**](chap_2.qmd#partial-order): Partial order\Pageref{partial-order} + + [**Definition 19**](chap_2.qmd#total-order): Total order\Pageref{total-order} + + [**Example 20**](chap_2.qmd#set-inclusion-is-a-partial-order): Set inclusion is a partial order\Pageref{set-inclusion-is-a-partial-order} + + [**Example 21**](chap_2.qmd#inequality-is-a-total-order): Inequality is a total order\Pageref{inequality-is-a-total-order} + + [**Notation 22**](chap_2.qmd#Notation-22)\Pageref{Notation-22} + + [**Definition 23**](chap_2.qmd#Definition-23)\Pageref{Definition-23} + + [**Definition 24**](chap_2.qmd#definition-function): Functions\Pageref{definition-function} + + [**Warning**](chap_2.qmd#Warning*-2)\Pageref{Warning*-2} + + [**Example 25**](chap_2.qmd#Example-25)\Pageref{Example-25} + + [**Example 26**](chap_2.qmd#Example-26)\Pageref{Example-26} + + [**Definition 27**](chap_2.qmd#absolute-value): Absolute value\Pageref{absolute-value} + + [**Example 28**](chap_2.qmd#Example-28)\Pageref{Example-28} + + [**Remark 29**](chap_2.qmd#Remark-29)\Pageref{Remark-29} + + [**Remark 30**](chap_2.qmd#rmk-absolute-value-sym)\Pageref{rmk-absolute-value-sym} + + [**Remark 31**](chap_2.qmd#geometric-interpretation-of-x): Geometric interpretation of $|x|$\Pageref{geometric-interpretation-of-x} + + [**Remark 32**](chap_2.qmd#geometric-interpretation-of-x-y): Geometric interpretation of $|x-y|$\Pageref{geometric-interpretation-of-x-y} + + [**Lemma 33**](chap_2.qmd#lemma-absolute-value)\Pageref{lemma-absolute-value} + + [**Proof**](chap_2.qmd#proof-of-lemma): Proof of Lemma 33\Pageref{proof-of-lemma} + + [**Lemma 34**](chap_2.qmd#Lemma-34)\Pageref{Lemma-34} + + [**Theorem 35**](chap_2.qmd#theorem-triangle-inequality): Triangle inequality\Pageref{theorem-triangle-inequality} + + [**Remark 36**](chap_2.qmd#geometric-meaning-of-triangle-inequality): Geometric meaning of triangle inequality\Pageref{geometric-meaning-of-triangle-inequality} + + [**Proof**](chap_2.qmd#proof-of-theorem): Proof of Theorem 35\Pageref{proof-of-theorem} + + [**Remark 37**](chap_2.qmd#Remark-37)\Pageref{Remark-37} + + [**Proposition 38**](chap_2.qmd#proposition-easy)\Pageref{proposition-easy} + + [**Proof**](chap_2.qmd#of-proposition): of Proposition 38\Pageref{of-proposition} + + [**Axiom 39**](chap_2.qmd#principle-of-induction): Principle of Induction\Pageref{principle-of-induction} + + [**Important**](chap_2.qmd#Important*-6)\Pageref{Important*-6} + + [**Remark 40**](chap_2.qmd#Remark-40)\Pageref{Remark-40} + + [**Corollary 41**](chap_2.qmd#principle-of-inducion---alternative-formulation): Principle of Inducion - Alternative formulation\Pageref{principle-of-inducion---alternative-formulation} + + [**Proof**](chap_2.qmd#Proof*-7)\Pageref{Proof*-7} + + [**Example 42**](chap_2.qmd#formula-for-summing-first-n-natural-numbers): Formula for summing first $n$ natural numbers\Pageref{formula-for-summing-first-n-natural-numbers} + + [**Example 43**](chap_2.qmd#statements-about-sequences-of-numbers): Statements about sequences of numbers\Pageref{statements-about-sequences-of-numbers} + + [**Definition 1**](chap_3.qmd#binary-operation): Binary operation\Pageref{binary-operation} + + [**Notation 2**](chap_3.qmd#Notation-2)\Pageref{Notation-2} + + [**Example 3**](chap_3.qmd#example-binary-operation): of binary operation\Pageref{example-binary-operation} + + [**Definition 4**](chap_3.qmd#Definition-4)\Pageref{Definition-4} + + [**Example 5**](chap_3.qmd#example-binary-operation-2)\Pageref{example-binary-operation-2} + + [**Example 6**](chap_3.qmd#Example-6)\Pageref{Example-6} + + [**Definition 7**](chap_3.qmd#field): Field\Pageref{field} + + [**Example 8**](chap_3.qmd#Example-8)\Pageref{Example-8} + + [**Definition 9**](chap_3.qmd#subtraction-and-division): Subtraction and division\Pageref{subtraction-and-division} + + [**Proposition 10**](chap_3.qmd#uniqueness-of-neutral-elements-and-inverses): Uniqueness of neutral elements and inverses\Pageref{uniqueness-of-neutral-elements-and-inverses} + + [**Proof**](chap_3.qmd#Proof*-1)\Pageref{Proof*-1} + + [**Proposition 11**](chap_3.qmd#properties-of-field-operations): Properties of field operations\Pageref{properties-of-field-operations} + + [**Theorem 12**](chap_3.qmd#Theorem-12)\Pageref{Theorem-12} + + [**Definition 13**](chap_3.qmd#Definition-13)\Pageref{Definition-13} + + [**Example 14**](chap_3.qmd#Example-14)\Pageref{Example-14} + + [**Definition 15**](chap_3.qmd#partition-of-a-set): Partition of a set\Pageref{partition-of-a-set} + + [**Definition 16**](chap_3.qmd#cut-of-a-set): Cut of a set\Pageref{cut-of-a-set} + + [**Definition 17**](chap_3.qmd#cut-property-1): Cut property\Pageref{cut-property-1} + + [**Example 18**](chap_3.qmd#Example-18)\Pageref{Example-18} + + [**Question 19**](chap_3.qmd#Question-19)\Pageref{Question-19} + + [**Theorem 20**](chap_3.qmd#theorem-Q-cut): $\mathbb{Q}$ does not have the cut property.\Pageref{theorem-Q-cut} + + [**Remark 21**](chap_3.qmd#remark-idea-proof-cut): Ideas for the proof of Theorem 20\Pageref{remark-idea-proof-cut} + + [**Proof**](chap_3.qmd#proof-of-theorem): Proof of Theorem 20\Pageref{proof-of-theorem} + + [**Remark 22**](chap_3.qmd#Remark-22)\Pageref{Remark-22} + + [**Example 23**](chap_3.qmd#intuition-about-supremum-and-infimum): Intuition about supremum and infimum\Pageref{intuition-about-supremum-and-infimum} + + [**Definition 24**](chap_3.qmd#upper-bound-and-bounded-above): Upper bound and bounded above\Pageref{upper-bound-and-bounded-above} + + [**Definition 25**](chap_3.qmd#supremum): Supremum\Pageref{supremum} + + [**Notation 26**](chap_3.qmd#Notation-26)\Pageref{Notation-26} + + [**Remark 27**](chap_3.qmd#Remark-27)\Pageref{Remark-27} + + [**Proposition 28**](chap_3.qmd#Proposition-28)\Pageref{Proposition-28} + + [**Proof**](chap_3.qmd#Proof*-3)\Pageref{Proof*-3} + + [**Warning**](chap_3.qmd#Warning*-4)\Pageref{Warning*-4} + + [**Warning**](chap_3.qmd#Warning*-5)\Pageref{Warning*-5} + + [**Definition 29**](chap_3.qmd#maximum): Maximum\Pageref{maximum} + + [**Proposition 30**](chap_3.qmd#Proposition-30)\Pageref{Proposition-30} + + [**Proof**](chap_3.qmd#Proof*-6)\Pageref{Proof*-6} + + [**Warning**](chap_3.qmd#Warning*-7)\Pageref{Warning*-7} + + [**Definition 31**](chap_3.qmd#upper-bound-bounded-below-infimum-minimum): Upper bound, bounded below, infimum, minimum\Pageref{upper-bound-bounded-below-infimum-minimum} + + [**Proposition 32**](chap_3.qmd#Proposition-32)\Pageref{Proposition-32} + + [**Warning**](chap_3.qmd#Warning*-8)\Pageref{Warning*-8} + + [**Warning**](chap_3.qmd#Warning*-9)\Pageref{Warning*-9} + + [**Warning**](chap_3.qmd#Warning*-10)\Pageref{Warning*-10} + + [**Proposition 33**](chap_3.qmd#Proposition-33)\Pageref{Proposition-33} + + [**Proposition 34**](chap_3.qmd#proposition-inf-sup): Relationship between sup and inf\Pageref{proposition-inf-sup} + + [**Question 35**](chap_3.qmd#Question-35)\Pageref{Question-35} + + [**Theorem 36**](chap_3.qmd#theorem-Q-not-complete)\Pageref{theorem-Q-not-complete} + + [**Proof**](chap_3.qmd#Proof*-11)\Pageref{Proof*-11} + + [**Question 37**](chap_3.qmd#Question-37)\Pageref{Question-37} + + [**Definition 38**](chap_3.qmd#completeness-1): Completeness\Pageref{completeness-1} + + [**Notation 39**](chap_3.qmd#Notation-39)\Pageref{Notation-39} + + [**Proposition 40**](chap_3.qmd#Proposition-40)\Pageref{Proposition-40} + + [**Proof**](chap_3.qmd#Proof*-12)\Pageref{Proof*-12} + + [**Theorem 41**](chap_3.qmd#theorem-cut-complete): Equivalence of Cut Property and Completeness\Pageref{theorem-cut-complete} + + [**Remark 42**](chap_3.qmd#ideas-for-proving-theorem): Ideas for proving Theorem 41\Pageref{ideas-for-proving-theorem} + + [**Proof**](chap_3.qmd#proof-of-theorem-1): Proof of Theorem 41\Pageref{proof-of-theorem-1} + + [**Definition 43**](chap_3.qmd#definition-R): System of Real Numbers $\mathbb{R}$\Pageref{definition-R} + + [**Remark 44**](chap_3.qmd#Remark-44)\Pageref{Remark-44} + + [**Notation 45**](chap_3.qmd#Notation-45)\Pageref{Notation-45} + + [**Remark 46**](chap_3.qmd#Remark-46)\Pageref{Remark-46} + + [**Important**](chap_3.qmd#Important*-14)\Pageref{Important*-14} + + [**Question 47**](chap_3.qmd#Question-47)\Pageref{Question-47} + + [**Definition 48**](chap_3.qmd#inductive-set): Inductive set\Pageref{inductive-set} + + [**Example 49**](chap_3.qmd#Example-49)\Pageref{Example-49} + + [**Proposition 50**](chap_3.qmd#Proposition-50)\Pageref{Proposition-50} + + [**Proof**](chap_3.qmd#Proof*-15)\Pageref{Proof*-15} + + [**Definition 51**](chap_3.qmd#definition-natural-numbers): Set of Natural Numbers\Pageref{definition-natural-numbers} + + [**Proposition 52**](chap_3.qmd#proposition-smallest-inductive): ${\mathbb{N}}_{\mathbb{R}}$ is the smallest inductive subset of $\mathbb{R}$\Pageref{proposition-smallest-inductive} + + [**Proof**](chap_3.qmd#Proof*-16)\Pageref{Proof*-16} + + [**Theorem 53**](chap_3.qmd#theorem-n-1)\Pageref{theorem-n-1} + + [**Proof**](chap_3.qmd#Proof*-17)\Pageref{Proof*-17} + + [**Notation 54**](chap_3.qmd#Notation-54)\Pageref{Notation-54} + + [**Theorem 55**](chap_3.qmd#theorem-induction-new): Principle of Induction\Pageref{theorem-induction-new} + + [**Proof**](chap_3.qmd#Proof*-18)\Pageref{Proof*-18} + + [**Theorem 56**](chap_3.qmd#theorem-N-closed)\Pageref{theorem-N-closed} + + [**Proof**](chap_3.qmd#Proof*-19)\Pageref{Proof*-19} + + [**Theorem 57**](chap_3.qmd#Theorem-57)\Pageref{Theorem-57} + + [**Definition 58**](chap_3.qmd#set-of-integers): Set of Integers\Pageref{set-of-integers} + + [**Theorem 59**](chap_3.qmd#theorem-equivalent-Z)\Pageref{theorem-equivalent-Z} + + [**Proof**](chap_3.qmd#Proof*-20)\Pageref{Proof*-20} + + [**Theorem 60**](chap_3.qmd#theorem-Z-closed)\Pageref{theorem-Z-closed} + + [**Theorem 61**](chap_3.qmd#theorem-Z-axioms)\Pageref{theorem-Z-axioms} + + [**Proof**](chap_3.qmd#Proof*-21)\Pageref{Proof*-21} + + [**Remark 62**](chap_3.qmd#remark-Z-axioms)\Pageref{remark-Z-axioms} + + [**Definition 63**](chap_3.qmd#set-of-rational-numbers): Set of Rational Numbers\Pageref{set-of-rational-numbers} + + [**Theorem 64**](chap_3.qmd#Theorem-64)\Pageref{Theorem-64} + + [**Proof**](chap_3.qmd#Proof*-22)\Pageref{Proof*-22} + + [**Theorem 65**](chap_3.qmd#Theorem-65)\Pageref{Theorem-65} + + [**Notation 66**](chap_3.qmd#Notation-66)\Pageref{Notation-66} + + [**Remark 1**](chap_4.qmd#Remark-1)\Pageref{Remark-1} + + [**Theorem 2**](chap_4.qmd#theorem-archimedean): Archimedean Property\Pageref{theorem-archimedean} + + [**Proof**](chap_4.qmd#Proof*-1)\Pageref{Proof*-1} + + [**Theorem 3**](chap_4.qmd#theorem-archimedean-alternative): Archimedean Property (Alternative formulation)\Pageref{theorem-archimedean-alternative} + + [**Proof**](chap_4.qmd#Proof*-2)\Pageref{Proof*-2} + + [**Question 4**](chap_4.qmd#Question-4)\Pageref{Question-4} + + [**Theorem 5**](chap_4.qmd#theorem-nested): Nested Interval Property\Pageref{theorem-nested} + + [**Proof**](chap_4.qmd#Proof*-3)\Pageref{Proof*-3} + + [**Important**](chap_4.qmd#Important*-4)\Pageref{Important*-4} + + [**Example 6**](chap_4.qmd#example-nested-open)\Pageref{example-nested-open} + + [**Proposition 7**](chap_4.qmd#proposition-supremum-characterization): Characterization of Supremum\Pageref{proposition-supremum-characterization} + + [**Proof**](chap_4.qmd#proof-of-proposition): Proof of Proposition 7\Pageref{proof-of-proposition} + + [**Proposition 8**](chap_4.qmd#prop-supremum-infimum): Characterization of Infimum\Pageref{prop-supremum-infimum} + + [**Proposition 9**](chap_4.qmd#proposition-interval-inf-sup)\Pageref{proposition-interval-inf-sup} + + [**Proof**](chap_4.qmd#Proof*-6)\Pageref{Proof*-6} + + [**Corollary 10**](chap_4.qmd#Corollary-10)\Pageref{Corollary-10} + + [**Proof**](chap_4.qmd#Proof*-7)\Pageref{Proof*-7} + + [**Corollary 11**](chap_4.qmd#Corollary-11)\Pageref{Corollary-11} + + [**Proposition 12**](chap_4.qmd#Proposition-12)\Pageref{Proposition-12} + + [**Proof**](chap_4.qmd#Proof*-8)\Pageref{Proof*-8} + + [**Definition 13**](chap_4.qmd#dense-set): Dense set\Pageref{dense-set} + + [**Remark 14**](chap_4.qmd#Remark-14)\Pageref{Remark-14} + + [**Theorem 15**](chap_4.qmd#theorem-density): Density of $\mathbb{Q}$ in $\mathbb{R}$\Pageref{theorem-density} + + [**Proof**](chap_4.qmd#Proof*-9)\Pageref{Proof*-9} + + [**Definition 16**](chap_4.qmd#irrational-numbers): Irrational numbers\Pageref{irrational-numbers} + + [**Question 17**](chap_4.qmd#Question-17)\Pageref{Question-17} + + [**Corollary 18**](chap_4.qmd#Corollary-18)\Pageref{Corollary-18} + + [**Proof**](chap_4.qmd#Proof*-10)\Pageref{Proof*-10} + + [**Theorem 19**](chap_4.qmd#theorem_existence_root): Existence of $k$-th roots\Pageref{theorem_existence_root} + + [**Proof**](chap_4.qmd#proof-of-theorem): Proof of Theorem 19\Pageref{proof-of-theorem} + + [**Definition 20**](chap_4.qmd#k-th-root-of-a-number): $k$-th root of a number\Pageref{k-th-root-of-a-number} + + [**Definition 21**](chap_4.qmd#bijective-function): Bijective function\Pageref{bijective-function} + + [**Example 22**](chap_4.qmd#injectivity): Injectivity\Pageref{injectivity} + + [**Example 23**](chap_4.qmd#surjectivity): Surjectivity\Pageref{surjectivity} + + [**Example 24**](chap_4.qmd#bijectivity): Bijectivity\Pageref{bijectivity} + + [**Definition 25**](chap_4.qmd#cardinality-finite-countable-uncountable): Cardinality, finite, countable, uncountable\Pageref{cardinality-finite-countable-uncountable} + + [**Question 26**](chap_4.qmd#Question-26)\Pageref{Question-26} + + [**Proposition 27**](chap_4.qmd#proposition-countable-subset)\Pageref{proposition-countable-subset} + + [**Proof**](chap_4.qmd#Proof*-12)\Pageref{Proof*-12} + + [**Example 28**](chap_4.qmd#Example-28)\Pageref{Example-28} + + [**Proposition 29**](chap_4.qmd#proposition-countable-union)\Pageref{proposition-countable-union} + + [**Proof**](chap_4.qmd#Proof*-13)\Pageref{Proof*-13} + + [**Theorem 30**](chap_4.qmd#theorem-Q-countable): $\mathbb{Q}$ is countable\Pageref{theorem-Q-countable} + + [**Proof**](chap_4.qmd#Proof*-14)\Pageref{Proof*-14} + + [**Theorem 31**](chap_4.qmd#theorem-R-uncountable): $\mathbb{R}$ is uncountable\Pageref{theorem-R-uncountable} + + [**Proof**](chap_4.qmd#Proof*-15)\Pageref{Proof*-15} + + [**Theorem 32**](chap_4.qmd#Theorem-32)\Pageref{Theorem-32} + + [**Proof**](chap_4.qmd#Proof*-16)\Pageref{Proof*-16} + + [**Question 1**](chap_5.qmd#Question-1)\Pageref{Question-1} + + [**Definition 2**](chap_5.qmd#complex-numbers): Complex Numbers\Pageref{complex-numbers} + + [**Definition 3**](chap_5.qmd#Definition-3)\Pageref{Definition-3} + + [**Definition 4**](chap_5.qmd#definition-addition-C): Addition in $\mathbb{C}$\Pageref{definition-addition-C} + + [**Notation 5**](chap_5.qmd#Notation-5)\Pageref{Notation-5} + + [**Remark 6**](chap_5.qmd#remark-formal-multiplication): Formal calculation for multiplication in $\mathbb{C}$\Pageref{remark-formal-multiplication} + + [**Definition 7**](chap_5.qmd#definition-multiplication-C): Multiplication in $\mathbb{C}$\Pageref{definition-multiplication-C} + + [**Remark 8**](chap_5.qmd#remark-complex-i)\Pageref{remark-complex-i} + + [**Important**](chap_5.qmd#Important*-1)\Pageref{Important*-1} + + [**Example 9**](chap_5.qmd#Example-9)\Pageref{Example-9} + + [**Proposition 10**](chap_5.qmd#proposition-C-additive-inverse): Additive inverse in $\mathbb{C}$\Pageref{proposition-C-additive-inverse} + + [**Remark 11**](chap_5.qmd#remark-formal-inverse): Formal calculation for multiplicative inverse\Pageref{remark-formal-inverse} + + [**Proposition 12**](chap_5.qmd#proposition-C-multiplicative-inverse): Multiplicative inverse in $\mathbb{C}$\Pageref{proposition-C-multiplicative-inverse} + + [**Proof**](chap_5.qmd#Proof*-2)\Pageref{Proof*-2} + + [**Important**](chap_5.qmd#Important*-3)\Pageref{Important*-3} + + [**Example 13**](chap_5.qmd#Example-13)\Pageref{Example-13} + + [**Theorem 14**](chap_5.qmd#Theorem-14)\Pageref{Theorem-14} + + [**Proof**](chap_5.qmd#Proof*-4)\Pageref{Proof*-4} + + [**Example 15**](chap_5.qmd#Example-15)\Pageref{Example-15} + + [**Theorem 16**](chap_5.qmd#theorem-C-order)\Pageref{theorem-C-order} + + [**Proof**](chap_5.qmd#Proof*-5)\Pageref{Proof*-5} + + [**Definition 17**](chap_5.qmd#complex-conjugate): Complex conjugate\Pageref{complex-conjugate} + + [**Example 18**](chap_5.qmd#Example-18)\Pageref{Example-18} + + [**Theorem 19**](chap_5.qmd#Theorem-19)\Pageref{Theorem-19} + + [**Proof**](chap_5.qmd#Proof*-6)\Pageref{Proof*-6} + + [**Example 20**](chap_5.qmd#Example-20)\Pageref{Example-20} + + [**Definition 21**](chap_5.qmd#modulus): Modulus\Pageref{modulus} + + [**Remark 22**](chap_5.qmd#modulus-of-real-numbers): Modulus of Real numbers\Pageref{modulus-of-real-numbers} + + [**Definition 23**](chap_5.qmd#distance-in-mathbbc): Distance in $\mathbb{C}$\Pageref{distance-in-mathbbc} + + [**Theorem 24**](chap_5.qmd#Theorem-24)\Pageref{Theorem-24} + + [**Proof**](chap_5.qmd#Proof*-7)\Pageref{Proof*-7} + + [**Example 25**](chap_5.qmd#Example-25)\Pageref{Example-25} + + [**Theorem 26**](chap_5.qmd#Theorem-26)\Pageref{Theorem-26} + + [**Proof**](chap_5.qmd#Proof*-8)\Pageref{Proof*-8} + + [**Theorem 27**](chap_5.qmd#triangle-inequality-in-mathbbc): Triangle inequality in $\mathbb{C}$\Pageref{triangle-inequality-in-mathbbc} + + [**Proof**](chap_5.qmd#Proof*-9)\Pageref{Proof*-9} + + [**Remark 28**](chap_5.qmd#geometric-interpretation-of-triangle-inequality): Geometric interpretation of triangle inequality\Pageref{geometric-interpretation-of-triangle-inequality} + + [**Definition 29**](chap_5.qmd#argument): Argument\Pageref{argument} + + [**Warning**](chap_5.qmd#Warning*-10)\Pageref{Warning*-10} + + [**Remark 30**](chap_5.qmd#principal-value): Principal Value\Pageref{principal-value} + + [**Example 31**](chap_5.qmd#Example-31)\Pageref{Example-31} + + [**Theorem 32**](chap_5.qmd#theorem-polar-coordinates): Polar coordinates\Pageref{theorem-polar-coordinates} + + [**Definition 33**](chap_5.qmd#trigonometric-form): Trigonometric form\Pageref{trigonometric-form} + + [**Example 34**](chap_5.qmd#example-trigonometric-form)\Pageref{example-trigonometric-form} + + [**Corollary 35**](chap_5.qmd#corollary-arg): Computing $\arg(z)$\Pageref{corollary-arg} + + [**Proof**](chap_5.qmd#Proof*-11)\Pageref{Proof*-11} + + [**Example 36**](chap_5.qmd#Example-36)\Pageref{Example-36} + + [**Theorem 37**](chap_5.qmd#theorem-euler-identity): Euler’s identity\Pageref{theorem-euler-identity} + + [**Proof**](chap_5.qmd#Proof*-12)\Pageref{Proof*-12} + + [**Theorem 38**](chap_5.qmd#Theorem-38)\Pageref{Theorem-38} + + [**Proof**](chap_5.qmd#Proof*-13)\Pageref{Proof*-13} + + [**Theorem 39**](chap_5.qmd#Theorem-39)\Pageref{Theorem-39} + + [**Proof**](chap_5.qmd#Proof*-14)\Pageref{Proof*-14} + + [**Definition 40**](chap_5.qmd#exponential-form-1): Exponential form\Pageref{exponential-form-1} + + [**Example 41**](chap_5.qmd#example-exponential-form)\Pageref{example-exponential-form} + + [**Remark 42**](chap_5.qmd#periodicity-of-exponential): Periodicity of exponential\Pageref{periodicity-of-exponential} + + [**Proposition 43**](chap_5.qmd#proposition-complex-exponential)\Pageref{proposition-complex-exponential} + + [**Example 44**](chap_5.qmd#Example-44)\Pageref{Example-44} + + [**Example 45**](chap_5.qmd#Example-45)\Pageref{Example-45} + + [**Question 46**](chap_5.qmd#Question-46)\Pageref{Question-46} + + [**Theorem 47**](chap_5.qmd#theorem-fta): Fundamental theorem of algebra\Pageref{theorem-fta} + + [**Example 48**](chap_5.qmd#Example-48)\Pageref{Example-48} + + [**Example 49**](chap_5.qmd#example-degree-4)\Pageref{example-degree-4} + + [**Definition 50**](chap_5.qmd#Definition-50)\Pageref{Definition-50} + + [**Example 51**](chap_5.qmd#example-multiplicity)\Pageref{example-multiplicity} + + [**Question 52**](chap_5.qmd#Question-52)\Pageref{Question-52} + + [**Theorem 53**](chap_5.qmd#theorem-abel-ruffini): Abel-Ruffini\Pageref{theorem-abel-ruffini} + + [**Proposition 54**](chap_5.qmd#proposition-quadratic-formula): Quadratic formula\Pageref{proposition-quadratic-formula} + + [**Example 55**](chap_5.qmd#Example-55)\Pageref{Example-55} + + [**Example 56**](chap_5.qmd#Example-56)\Pageref{Example-56} + + [**Example 57**](chap_5.qmd#Example-57)\Pageref{Example-57} + + [**Question 58**](chap_5.qmd#Question-58)\Pageref{Question-58} + + [**Proposition 59**](chap_5.qmd#proposition-quadratic-formula-C): Generalization of quadratci formula\Pageref{proposition-quadratic-formula-C} + + [**Remark 60**](chap_5.qmd#Remark-60)\Pageref{Remark-60} + + [**Example 61**](chap_5.qmd#Example-61)\Pageref{Example-61} + + [**Remark 62**](chap_5.qmd#polynomial-equations-of-order-n34): Polynomial equations of order $n=3,4$\Pageref{polynomial-equations-of-order-n34} + + [**Example 63**](chap_5.qmd#Example-63)\Pageref{Example-63} + + [**Example 64**](chap_5.qmd#Example-64)\Pageref{Example-64} + + [**Problem**](chap_5.qmd#Problem*-15)\Pageref{Problem*-15} + + [**Question 65**](chap_5.qmd#Question-65)\Pageref{Question-65} + + [**Example 66**](chap_5.qmd#Example-66)\Pageref{Example-66} + + [**Theorem 67**](chap_5.qmd#Theorem-67)\Pageref{Theorem-67} + + [**Proof**](chap_5.qmd#Proof*-16)\Pageref{Proof*-16} + + [**Definition 68**](chap_5.qmd#Definition-68)\Pageref{Definition-68} + + [**Example 69**](chap_5.qmd#Example-69)\Pageref{Example-69} + + [**Example 70**](chap_5.qmd#Example-70)\Pageref{Example-70} + + [**Problem**](chap_5.qmd#Problem*-17)\Pageref{Problem*-17} + + [**Theorem 71**](chap_5.qmd#Theorem-71)\Pageref{Theorem-71} + + [**Proof**](chap_5.qmd#Proof*-18)\Pageref{Proof*-18} + + [**Example 72**](chap_5.qmd#Example-72)\Pageref{Example-72} + + [**Example 73**](chap_5.qmd#Example-73)\Pageref{Example-73} + + [**Remark 1**](chap_6.qmd#Remark-1)\Pageref{Remark-1} + + [**Definition 2**](chap_6.qmd#sequence-of-real-numbers): Sequence of Real numbers\Pageref{sequence-of-real-numbers} + + [**Notation 3**](chap_6.qmd#Notation-3)\Pageref{Notation-3} + + [**Example 4**](chap_6.qmd#Example-4)\Pageref{Example-4} + + [**Definition 5**](chap_6.qmd#definition-convergent-sequence): Convergent sequence\Pageref{definition-convergent-sequence} + + [**Notation 6**](chap_6.qmd#Notation-6)\Pageref{Notation-6} + + [**Remark 7**](chap_6.qmd#Remark-7)\Pageref{Remark-7} + + [**Theorem 8**](chap_6.qmd#theorem-one-over-n)\Pageref{theorem-one-over-n} + + [**Proof**](chap_6.qmd#proof-of-theorem-long-version): Proof of Theorem 8 (Long version)\Pageref{proof-of-theorem-long-version} + + [**Proof**](chap_6.qmd#proof-of-theorem-short-version): Proof of Theorem 8 (Short version)\Pageref{proof-of-theorem-short-version} + + [**Theorem 9**](chap_6.qmd#theorem-one-over-np)\Pageref{theorem-one-over-np} + + [**Proof**](chap_6.qmd#Proof*-3)\Pageref{Proof*-3} + + [**Question 10**](chap_6.qmd#Question-10)\Pageref{Question-10} + + [**Important**](chap_6.qmd#Important*-4)\Pageref{Important*-4} + + [**Example 11**](chap_6.qmd#Example-11)\Pageref{Example-11} + + [**Theorem 12**](chap_6.qmd#theorem-constant-sequence)\Pageref{theorem-constant-sequence} + + [**Proof**](chap_6.qmd#Proof*-5)\Pageref{Proof*-5} + + [**Definition 13**](chap_6.qmd#divergent-sequence): Divergent sequence\Pageref{divergent-sequence} + + [**Remark 14**](chap_6.qmd#Remark-14)\Pageref{Remark-14} + + [**Theorem 15**](chap_6.qmd#theorem-1-minus-n)\Pageref{theorem-1-minus-n} + + [**Proof**](chap_6.qmd#Proof*-6)\Pageref{Proof*-6} + + [**Theorem 16**](chap_6.qmd#theorem-uniqueness-limit): Uniqueness of limit\Pageref{theorem-uniqueness-limit} + + [**Proof**](chap_6.qmd#Proof*-7)\Pageref{Proof*-7} + + [**Example 17**](chap_6.qmd#Example-17)\Pageref{Example-17} + + [**Definition 18**](chap_6.qmd#definition-bounded-sequence): Bounded sequence\Pageref{definition-bounded-sequence} + + [**Theorem 19**](chap_6.qmd#theorem-convergent-bounded)\Pageref{theorem-convergent-bounded} + + [**Proof**](chap_6.qmd#Proof*-8)\Pageref{Proof*-8} + + [**Example 20**](chap_6.qmd#Example-20)\Pageref{Example-20} + + [**Warning**](chap_6.qmd#Warning*-9)\Pageref{Warning*-9} + + [**Example 21**](chap_6.qmd#Example-21)\Pageref{Example-21} + + [**Corollary 22**](chap_6.qmd#corollary-convergent-bounded)\Pageref{corollary-convergent-bounded} + + [**Remark 23**](chap_6.qmd#Remark-23)\Pageref{Remark-23} + + [**Theorem 24**](chap_6.qmd#Theorem-24)\Pageref{Theorem-24} + + [**Proof**](chap_6.qmd#Proof*-10)\Pageref{Proof*-10} + + [**Theorem 25**](chap_6.qmd#Theorem-25)\Pageref{Theorem-25} + + [**Proof**](chap_6.qmd#Proof*-11)\Pageref{Proof*-11} + + [**Theorem 26**](chap_6.qmd#theorem-algebra-limits): Algebra of limits\Pageref{theorem-algebra-limits} + + [**Proof**](chap_6.qmd#Proof*-12)\Pageref{Proof*-12} + + [**Example 27**](chap_6.qmd#example-limit-ploynomial)\Pageref{example-limit-ploynomial} + + [**Important**](chap_6.qmd#Important*-13)\Pageref{Important*-13} + + [**Example 28**](chap_6.qmd#example-algebra-of-limits-2)\Pageref{example-algebra-of-limits-2} + + [**Example 29**](chap_6.qmd#Example-29)\Pageref{Example-29} + + [**Warning**](chap_6.qmd#Warning*-14)\Pageref{Warning*-14} + + [**Example 30**](chap_6.qmd#Example-30)\Pageref{Example-30} + + [**Example 31**](chap_6.qmd#Example-31)\Pageref{Example-31} + + [**Theorem 32**](chap_6.qmd#theorem-square-root-limit)\Pageref{theorem-square-root-limit} + + [**Proof**](chap_6.qmd#Proof*-15)\Pageref{Proof*-15} + + [**Example 33**](chap_6.qmd#Example-33)\Pageref{Example-33} + + [**Example 34**](chap_6.qmd#Example-34)\Pageref{Example-34} + + [**Theorem 35**](chap_6.qmd#theorem-squeeze): Squeeze theorem\Pageref{theorem-squeeze} + + [**Proof**](chap_6.qmd#Proof*-16)\Pageref{Proof*-16} + + [**Example 36**](chap_6.qmd#Example-36)\Pageref{Example-36} + + [**Example 37**](chap_6.qmd#example-squeeze)\Pageref{example-squeeze} + + [**Warning**](chap_6.qmd#Warning*-17)\Pageref{Warning*-17} + + [**Example 38**](chap_6.qmd#Example-38)\Pageref{Example-38} + + [**Definition 39**](chap_6.qmd#Definition-39)\Pageref{Definition-39} + + [**Theorem 40**](chap_6.qmd#theorem-geometric-sequence): Geometric Sequence Test\Pageref{theorem-geometric-sequence} + + [**Warning**](chap_6.qmd#Warning*-18)\Pageref{Warning*-18} + + [**Lemma 41**](chap_6.qmd#lemma-bernoulli): Bernoulli’s inequality\Pageref{lemma-bernoulli} + + [**Proof**](chap_6.qmd#Proof*-19)\Pageref{Proof*-19} + + [**Proof**](chap_6.qmd#proof-of-theorem): Proof of Theorem 40\Pageref{proof-of-theorem} + + [**Example 42**](chap_6.qmd#Example-42)\Pageref{Example-42} + + [**Theorem 43**](chap_6.qmd#theorem-ratio-test): Ratio Test\Pageref{theorem-ratio-test} + + [**Proof**](chap_6.qmd#Proof*-21)\Pageref{Proof*-21} + + [**Example 44**](chap_6.qmd#Example-44)\Pageref{Example-44} + + [**Example 45**](chap_6.qmd#Example-45)\Pageref{Example-45} + + [**Example 46**](chap_6.qmd#Example-46)\Pageref{Example-46} + + [**Warning**](chap_6.qmd#Warning*-22)\Pageref{Warning*-22} + + [**Remark 47**](chap_6.qmd#Remark-47)\Pageref{Remark-47} + + [**Definition 48**](chap_6.qmd#monotone-sequence): Monotone sequence\Pageref{monotone-sequence} + + [**Example 49**](chap_6.qmd#Example-49)\Pageref{Example-49} + + [**Theorem 50**](chap_6.qmd#theorem-monotone-convergence): Monotone Convergence Theorem\Pageref{theorem-monotone-convergence} + + [**Proof**](chap_6.qmd#Proof*-23)\Pageref{Proof*-23} + + [**Definition 1**](chap_7.qmd#sequence-of-complex-numbers): Sequence of Complex numbers\Pageref{sequence-of-complex-numbers} + + [**Definition 2**](chap_7.qmd#definition-convergent-sequence-C): Convergent sequence in $\mathbb{C}$\Pageref{definition-convergent-sequence-C} + + [**Important**](chap_7.qmd#Important*-1)\Pageref{Important*-1} + + [**Example 3**](chap_7.qmd#Example-3)\Pageref{Example-3} + + [**Definition 4**](chap_7.qmd#bounded-sequence-in-mathbbc): Bounded sequence in $\mathbb{C}$\Pageref{bounded-sequence-in-mathbbc} + + [**Theorem 5**](chap_7.qmd#theorem-convergent-bounded-C)\Pageref{theorem-convergent-bounded-C} + + [**Definition 6**](chap_7.qmd#divergent-sequences-in-mathbbc): Divergent sequences in $\mathbb{C}$\Pageref{divergent-sequences-in-mathbbc} + + [**Corollary 7**](chap_7.qmd#Corollary-7)\Pageref{Corollary-7} + + [**Theorem 8**](chap_7.qmd#theorem-algebra-limits-C): Algebra of limits in $\mathbb{C}$\Pageref{theorem-algebra-limits-C} + + [**Example 9**](chap_7.qmd#Example-9)\Pageref{Example-9} + + [**Theorem 10**](chap_7.qmd#theorem-convergence-zero-C)\Pageref{theorem-convergence-zero-C} + + [**Proof**](chap_7.qmd#Proof*-2)\Pageref{Proof*-2} + + [**Example 11**](chap_7.qmd#Example-11)\Pageref{Example-11} + + [**Example 12**](chap_7.qmd#Example-12)\Pageref{Example-12} + + [**Theorem 13**](chap_7.qmd#geometric-sequence-test-in-mathbbc): Geometric sequence Test in $\mathbb{C}$\Pageref{geometric-sequence-test-in-mathbbc} + + [**Example 14**](chap_7.qmd#Example-14)\Pageref{Example-14} + + [**Theorem 15**](chap_7.qmd#theorem-ratop-test-C): Ratio Test in \Pageref{theorem-ratop-test-C} + + [**Example 16**](chap_7.qmd#Example-16)\Pageref{Example-16} + + [**Theorem 17**](chap_7.qmd#theorem-convergence-real-imaginary)\Pageref{theorem-convergence-real-imaginary} + + [**Proof**](chap_7.qmd#Proof*-3)\Pageref{Proof*-3} + + [**Example 18**](chap_7.qmd#Example-18)\Pageref{Example-18} + + [**Definition 1**](chap_8.qmd#partial-sums): Partial sums\Pageref{partial-sums} + + [**Definition 2**](chap_8.qmd#convergent-series-1): Convergent series\Pageref{convergent-series-1} + + [**Definition 3**](chap_8.qmd#divergent-series): Divergent series\Pageref{divergent-series} + + [**Example 4**](chap_8.qmd#Example-4)\Pageref{Example-4} + + [**Example 5**](chap_8.qmd#Example-5)\Pageref{Example-5} + + [**Theorem 6**](chap_8.qmd#theorem-series-necessary)\Pageref{theorem-series-necessary} + + [**Proof**](chap_8.qmd#Proof*-1)\Pageref{Proof*-1} + + [**Theorem 7**](chap_8.qmd#theorem-series-necessary-1)\Pageref{theorem-series-necessary-1} + + [**Example 8**](chap_8.qmd#Example-8)\Pageref{Example-8} + + [**Example 9**](chap_8.qmd#Example-9)\Pageref{Example-9} + + [**Important**](chap_8.qmd#Important*-2)\Pageref{Important*-2} + + [**Example 10**](chap_8.qmd#Example-10)\Pageref{Example-10} + + [**Remark 11**](chap_8.qmd#Remark-11)\Pageref{Remark-11} + + [**Example 12**](chap_8.qmd#Example-12)\Pageref{Example-12}