From 284f655126ba0bbaf2c0c5d15131d4c72a176128 Mon Sep 17 00:00:00 2001 From: Silvio Fanzon Date: Sat, 18 Nov 2023 17:41:26 +0000 Subject: [PATCH] Signed-off-by: Silvio Fanzon --- .DS_Store | Bin 14340 -> 14340 bytes ._index_xref.json | 2 +- .../sections/chap_6/execute-results/html.json | 4 +- _quarto.yml | 3 +- docs/Numbers,-Sequences-and-Series.pdf | Bin 4487727 -> 4494056 bytes docs/index.html | 72 +- docs/search.json | 40 +- docs/sections/chap_1.html | 76 +- docs/sections/chap_2.html | 74 +- docs/sections/chap_3.html | 76 +- docs/sections/chap_4.html | 68 +- docs/sections/chap_5.html | 68 +- docs/sections/chap_6.html | 281 +- docs/sections/chap_7.html | 676 ++ docs/sections/chap_8.html | 676 ++ docs/sections/license.html | 86 +- docs/sections/references.html | 76 +- ...o Fanzon's conflicted copy 2023-11-18).log | 3723 ++++++++ list-of-mathstuff.qmd | 8 +- ... Fanzon's conflicted copy 2023-11-18).html | 2025 ++++ sections/chap_6.qmd | 212 +- sections/chap_7.qmd | 13 +- sections/chap_8.qmd | 13 + sections/list-of-mathstuff.qmd | 8204 +++++++++++++++++ 24 files changed, 16026 insertions(+), 450 deletions(-) create mode 100644 docs/sections/chap_7.html create mode 100644 docs/sections/chap_8.html create mode 100644 index (Silvio Fanzon's conflicted copy 2023-11-18).log create mode 100644 sections/chap_6 (Silvio Fanzon's conflicted copy 2023-11-18).html create mode 100644 sections/chap_8.qmd diff --git a/.DS_Store b/.DS_Store index 263589084175d52f1a12563f069b3f7638b5e386..a3a9c84df841ea1f8f8d0efb32a6f873d0f57912 100644 GIT binary patch delta 25 gcmZoEXerp>E6!nPV5*~FY-&DvqN@GoDdGhR0Bb7;`~Uy| delta 16 XcmZoEXerp>D?WLVqWk74;spu-JRJsz diff --git a/._index_xref.json b/._index_xref.json index 2dd860c..e33ab06 100644 --- a/._index_xref.json +++ b/._index_xref.json @@ -1 +1 @@ -[{"reftag":"1.1","label":"Definition","autoid":"Definition-1.1","title":"","refnum":"1.1","reflabel":"Definition","id":"Definition-1.1","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"","label":"Question","autoid":"Question*-1.1","title":"","refnum":"??","reflabel":"Question","id":"Question*-1.1","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"","label":"Question","autoid":"Question*-1.2","title":"","refnum":"??","reflabel":"Question","id":"Question*-1.2","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"","label":"Question","autoid":"Question*-1.3","title":"","refnum":"??","reflabel":"Question","id":"Question*-1.3","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"","label":"Question","autoid":"Question*-1.4","title":"","refnum":"??","reflabel":"Question","id":"Question*-1.4","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"1.5","label":"Conjecture","autoid":"Conjecture-id-conj-line","title":"","reflabel":"Conjecture","cls":"Conjecture","id":"conj-line","neu":true,"file":"index.tex","refnum":"1.5"},{"reftag":"1.6","label":"Theorem","autoid":"Theorem-id-theorem-root-2","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-root-2","neu":true,"file":"index.tex","refnum":"1.6"},{"reftag":"","label":"Proof","autoid":"Proof*-1.5","title":"Proof of Theorem 1.2","refnum":"??","reflabel":"Proof","id":"proof-of-theorem","neu":true,"file":"index.tex","cls":"Proof"},{"reftag":"1.3","label":"Theorem","autoid":"Theorem-1.3","title":"To keep in mind for the next lessons","refnum":"1.3","reflabel":"Theorem","id":"to-keep-in-mind-for-the-next-lessons","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"1.1","label":"Question","autoid":"Question-id-Question-1","title":"","reflabel":"Question","cls":"Question","id":"Question-1","neu":true,"file":"index.tex","refnum":"1.1"},{"reftag":"1.2","label":"Question","autoid":"Question-id-Question-2","title":"","reflabel":"Question","cls":"Question","id":"Question-2","neu":true,"file":"index.tex","refnum":"1.2"},{"reftag":"1.3","label":"Question","autoid":"Question-1.3","title":"","reflabel":"Question","cls":"Question","id":"Question-1.3","neu":true,"file":"index.tex","refnum":"1.3"},{"reftag":"1.4","label":"Question","autoid":"Question-1.4","title":"","reflabel":"Question","cls":"Question","id":"Question-1.4","neu":true,"file":"index.tex","refnum":"1.4"},{"reftag":"","label":"Proof","autoid":"Proof*-1.1","title":"Proof of Theorem 1.6","reflabel":"Proof","cls":"Proof","id":"proof-of-theorem","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"1.7","label":"Theorem","autoid":"Theorem-1.7","title":"To keep in mind for the next lessons","refnum":"1.7","reflabel":"Theorem","id":"to-keep-in-mind-for-the-next-lessons","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"1.7","label":"Remark","autoid":"Remark-1.7","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-1.7","neu":true,"file":"index.tex","refnum":"1.7"},{"reftag":"1.8","label":"Theorem","autoid":"Theorem-1.8","title":"We will prove this in the future","reflabel":"Theorem","cls":"Theorem","id":"we-will-prove-this-in-the-future","neu":true,"file":"index.tex","refnum":"1.8"},{"reftag":"1.9","label":"Theorem","autoid":"Theorem-1.9","title":"We will prove this in the future","reflabel":"Theorem","cls":"Theorem","id":"we-will-prove-this-in-the-future-1","neu":true,"file":"index.tex","refnum":"1.9"},{"reftag":"2.1","label":"Remark","autoid":"Remark-2.1","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-2.1","neu":true,"file":"index.tex","refnum":"2.1"},{"reftag":"2.2","label":"Example","autoid":"Example-2.2","title":"","reflabel":"Example","cls":"Example","id":"Example-2.2","neu":true,"file":"index.tex","refnum":"2.2"},{"reftag":"2.3","label":"Example","autoid":"Example-2.3","title":"","reflabel":"Example","cls":"Example","id":"Example-2.3","neu":true,"file":"index.tex","refnum":"2.3"},{"reftag":"2.4","label":"Example","autoid":"Example-2.4","title":"","reflabel":"Example","cls":"Example","id":"Example-2.4","neu":true,"file":"index.tex","refnum":"2.4"},{"reftag":"2.7","label":"Proposition","autoid":"Proposition-id-Proposition-Equality-Sets","title":"","reflabel":"Proposition","cls":"Proposition","id":"Proposition-Equality-Sets","neu":true,"file":"index.tex","refnum":"2.7"},{"reftag":"","label":"Proof","autoid":"Proof*-2.1","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-2.1","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"2.6","label":"Example","autoid":"Example-2.6","title":"","reflabel":"Example","cls":"Example","id":"Example-2.6","neu":true,"file":"index.tex","refnum":"2.6"},{"reftag":"2.7","label":"Remark","autoid":"Remark-2.7","title":"","refnum":"2.7","reflabel":"Remark","id":"Remark-2.7","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.8","label":"Example","autoid":"Example-2.8","title":"","reflabel":"Example","cls":"Example","id":"Example-2.8","neu":true,"file":"index.tex","refnum":"2.8"},{"reftag":"2.9","label":"Proposition","autoid":"Proposition-2.9","title":"De Morgan’s Laws","refnum":"2.9","reflabel":"Proposition","id":"de-morgans-laws","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"2.10","label":"Definition","autoid":"Definition-2.10","title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"2.10","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.11","label":"Definition","autoid":"Definition-2.11","title":"Equivalence classes","refnum":"2.11","reflabel":"Definition","id":"equivalence-classes","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.12","label":"Example","autoid":"Example-2.12","title":"Equality is an equivalence relation","refnum":"2.12","reflabel":"Example","id":"equality-is-an-equivalence-relation","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"2.13","label":"Definition","autoid":"Definition-2.13","title":"Equivalence classes","refnum":"2.13","reflabel":"Definition","id":"equivalence-classes","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.14","label":"Example","autoid":"Example-2.14","title":"Equality is an equivalence relation","refnum":"2.14","reflabel":"Example","id":"equality-is-an-equivalence-relation","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"2.15","label":"Definition","autoid":"Definition-2.15","title":"Equivalence classes","reflabel":"Definition","cls":"Definition","id":"equivalence-classes","neu":true,"file":"index.tex","refnum":"2.15"},{"reftag":"2.16","label":"Example","autoid":"Example-2.16","title":"Equality is an equivalence relation","reflabel":"Example","cls":"Example","id":"equality-is-an-equivalence-relation","neu":true,"file":"index.tex","refnum":"2.16"},{"reftag":"2.17","label":"Remark","autoid":"Remark-2.17","title":"","refnum":"2.17","reflabel":"Remark","id":"Remark-2.17","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.18","label":"Remark","autoid":"Remark-id-Remark-Absolute-Value-Sym","title":"","refnum":"2.18","reflabel":"Remark","id":"Remark-Absolute-Value-Sym","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.19","label":"Remark","autoid":"Remark-2.19","title":"Geometric interpretation of \\(|x|\\)","refnum":"2.19","reflabel":"Remark","id":"geometric-interpretation-of-x","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.18","label":"Remark","autoid":"Remark-id-remark-absolute-value-sym","title":"","refnum":"2.18","reflabel":"Remark","id":"remark-absolute-value-sym","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.30","label":"Remark","autoid":"Remark-id-rmk-absolute-value-sym","title":"","reflabel":"Remark","cls":"Remark","id":"rmk-absolute-value-sym","neu":true,"file":"index.tex","refnum":"2.30"},{"reftag":"2.20","label":"Remark","autoid":"Remark-2.20","title":"","refnum":"2.20","reflabel":"Remark","id":"Remark-2.20","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.21","label":"Lemma","autoid":"Lemma-2.21","title":"","refnum":"2.21","reflabel":"Lemma","id":"Lemma-2.21","neu":true,"file":"index.tex","cls":"Lemma"},{"reftag":"2.5","label":"Example","autoid":"Example-2.5","title":"","reflabel":"Example","cls":"Example","id":"Example-2.5","neu":true,"file":"index.tex","refnum":"2.5"},{"reftag":"2.9","label":"Remark","autoid":"Remark-2.9","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-2.9","neu":true,"file":"index.tex","refnum":"2.9"},{"reftag":"2.10","label":"Example","autoid":"Example-2.10","title":"","reflabel":"Example","cls":"Example","id":"Example-2.10","neu":true,"file":"index.tex","refnum":"2.10"},{"reftag":"2.11","label":"Proposition","autoid":"Proposition-2.11","title":"De Morgan’s Laws","reflabel":"Proposition","cls":"Proposition","id":"de-morgans-laws","neu":true,"file":"index.tex","refnum":"2.11"},{"reftag":"2.12","label":"Definition","autoid":"Definition-2.12","title":"Equivalence relation","refnum":"2.12","reflabel":"Definition","id":"equivalence-relation-1","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.17","label":"Definition","autoid":"Definition-2.17","title":"","refnum":"2.17","reflabel":"Definition","id":"Definition-2.17","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.18","label":"Definition","autoid":"Definition-2.18","title":"Partial order","reflabel":"Definition","cls":"Definition","id":"partial-order","neu":true,"file":"index.tex","refnum":"2.18"},{"reftag":"2.19","label":"Example","autoid":"Example-2.19","title":"","refnum":"2.19","reflabel":"Example","id":"Example-2.19","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"2.22","label":"Remark","autoid":"Remark-2.22","title":"Geometric interpretation of \\(|x|\\)","refnum":"2.22","reflabel":"Remark","id":"geometric-interpretation-of-x","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.23","label":"Remark","autoid":"Remark-2.23","title":"Geometric interpretation of \\(|x|\\)","refnum":"2.23","reflabel":"Remark","id":"geometric-interpretation-of-x","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.33","label":"Lemma","autoid":"Lemma-id-lemma-absolute-value","title":"","reflabel":"Lemma","cls":"Lemma","id":"lemma-absolute-value","neu":true,"file":"index.tex","refnum":"2.33"},{"reftag":"","label":"Proof","autoid":"Proof*-2.2","title":"Proof of Lemma 2.30","refnum":"??","reflabel":"Proof","id":"proof-of-lemma","neu":true,"file":"index.tex","cls":"Proof"},{"reftag":"2.25","label":"Lemma","autoid":"Lemma-2.25","title":"","refnum":"2.25","reflabel":"Lemma","id":"Lemma-2.25","neu":true,"file":"index.tex","cls":"Lemma"},{"reftag":"2.26","label":"Theorem","autoid":"Theorem-2.26","title":"Triangle inequality","refnum":"2.26","reflabel":"Theorem","id":"theorem-triangle-inequality","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-2.3","title":"Proof of Lemma 2.33","reflabel":"Proof","cls":"Proof","id":"proof-of-lemma","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"2.27","label":"Remark","autoid":"Remark-2.27","title":"Geometric meaning of triangle inequality","refnum":"2.27","reflabel":"Remark","id":"geometric-meaning-of-triangle-inequality","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.28","label":"Remark","autoid":"Remark-2.28","title":"Geometric interpretation of \\(|x|\\)","refnum":"2.28","reflabel":"Remark","id":"geometric-interpretation-of-x","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.15","label":"Example","autoid":"Example-2.15","title":"","refnum":"2.15","reflabel":"Example","id":"Example-2.15","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"2.16","label":"Definition","autoid":"Definition-2.16","title":"Order relation","refnum":"2.16","reflabel":"Definition","id":"order-relation-1","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.17","label":"Example","autoid":"Example-2.17","title":"","reflabel":"Example","cls":"Example","id":"Example-2.17","neu":true,"file":"index.tex","refnum":"2.17"},{"reftag":"2.19","label":"Definition","autoid":"Definition-2.19","title":"Total order","reflabel":"Definition","cls":"Definition","id":"total-order","neu":true,"file":"index.tex","refnum":"2.19"},{"reftag":"2.20","label":"Example","autoid":"Example-2.20","title":"Set inclusion is a partial order","reflabel":"Example","cls":"Example","id":"set-inclusion-is-a-partial-order","neu":true,"file":"index.tex","refnum":"2.20"},{"reftag":"2.21","label":"Remark","autoid":"Remark-2.21","title":"","refnum":"2.21","reflabel":"Remark","id":"Remark-2.21","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.24","label":"Remark","autoid":"Remark-2.24","title":"Geometric interpretation of \\(|x-y|\\)","refnum":"2.24","reflabel":"Remark","id":"geometric-interpretation-of-x-y","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.26","label":"Lemma","autoid":"Lemma-2.26","title":"","refnum":"2.26","reflabel":"Lemma","id":"Lemma-2.26","neu":true,"file":"index.tex","cls":"Lemma"},{"reftag":"2.27","label":"Theorem","autoid":"Theorem-2.27","title":"Triangle inequality","refnum":"2.27","reflabel":"Theorem","id":"theorem-triangle-inequality","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"2.29","label":"Remark","autoid":"Remark-2.29","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-2.29","neu":true,"file":"index.tex","refnum":"2.29"},{"reftag":"2.38","label":"Proposition","autoid":"Proposition-id-proposition-easy","title":"","reflabel":"Proposition","cls":"Proposition","id":"proposition-easy","neu":true,"file":"index.tex","refnum":"2.38"},{"reftag":"","label":"Proof","autoid":"Proof*-2.4","title":"Proof of Theorem 2.32","reflabel":"Proof","cls":"Proof","id":"proof-of-theorem-1","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"2.31","label":"Axiom","autoid":"Axiom-2.31","title":"Principle of Induction","refnum":"2.31","reflabel":"Axiom","id":"principle-of-induction","neu":true,"file":"index.tex","cls":"Axiom"},{"reftag":"","label":"Important","autoid":"Important*-2.5","title":"","refnum":"??","reflabel":"Important","id":"Important*-2.5","neu":true,"file":"index.tex","cls":"Important"},{"reftag":"2.32","label":"Remark","autoid":"Remark-2.32","title":"Geometric interpretation of \\(|x-y|\\)","reflabel":"Remark","cls":"Remark","id":"geometric-interpretation-of-x-y","neu":true,"file":"index.tex","refnum":"2.32"},{"reftag":"2.33","label":"Corollary","autoid":"Corollary-2.33","title":"Principle of Inducion - Alternative formulation","refnum":"2.33","reflabel":"Corollary","id":"principle-of-inducion---alternative-formulation","neu":true,"file":"index.tex","cls":"Corollary"},{"reftag":"","label":"Proof","autoid":"Proof*-2.6","title":"","refnum":"??","reflabel":"Proof","id":"Proof*-2.6","neu":true,"file":"index.tex","cls":"Proof"},{"reftag":"2.34","label":"Example","autoid":"Example-2.34","title":"Formula for summing first \\(n\\) natural numbers","refnum":"2.34","reflabel":"Example","id":"formula-for-summing-first-n-natural-numbers","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"2.35","label":"Example","autoid":"Example-2.35","title":"Statements about sequences of numbers","refnum":"2.35","reflabel":"Example","id":"statements-about-sequences-of-numbers","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"6.1","label":"Proposition","autoid":"Proposition-id-proposition-heron","title":"","refnum":"6.1","reflabel":"Proposition","id":"proposition-heron","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-4.1","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.1","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.2","label":"Proposition","autoid":"Proposition-4.2","title":"Error estimate","refnum":"4.2","reflabel":"Proposition","id":"proposition-heron-error","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-4.2","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.2","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.3","label":"Proposition","autoid":"Proposition-id-proposition-heron-error-exp","title":"","refnum":"6.3","reflabel":"Proposition","id":"proposition-heron-error-exp","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-4.3","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.3","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.4","label":"Theorem","autoid":"Theorem-4.4","title":"Convergence of Heron’s Algorithm","refnum":"4.4","reflabel":"Theorem","id":"convergence-of-herons-algorithm","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-4.4","title":"","refnum":"??","reflabel":"Proof","id":"Proof*-4.4","neu":true,"file":"index.tex","cls":"Proof"},{"reftag":"3.1","label":"Definition","autoid":"Definition-3.1","title":"Binary operation","reflabel":"Definition","cls":"Definition","id":"binary-operation","neu":true,"file":"index.tex","refnum":"3.1"},{"reftag":"2.12","label":"Remark","autoid":"Remark-2.12","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-2.12","neu":true,"file":"index.tex","refnum":"2.12"},{"reftag":"2.13","label":"Example","autoid":"Example-2.13","title":"","reflabel":"Example","cls":"Example","id":"Example-2.13","neu":true,"file":"index.tex","refnum":"2.13"},{"reftag":"2.14","label":"Definition","autoid":"Definition-2.14","title":"Equivalence relation","reflabel":"Definition","cls":"Definition","id":"equivalence-relation-1","neu":true,"file":"index.tex","refnum":"2.14"},{"reftag":"2.21","label":"Example","autoid":"Example-2.21","title":"Inequality is a total order","reflabel":"Example","cls":"Example","id":"inequality-is-a-total-order","neu":true,"file":"index.tex","refnum":"2.21"},{"reftag":"2.22","label":"Notation","autoid":"Notation-2.22","title":"","reflabel":"Notation","cls":"Notation","id":"Notation-2.22","neu":true,"file":"index.tex","refnum":"2.22"},{"reftag":"2.23","label":"Definition","autoid":"Definition-2.23","title":"","reflabel":"Definition","cls":"Definition","id":"Definition-2.23","neu":true,"file":"index.tex","refnum":"2.23"},{"reftag":"2.24","label":"Definition","autoid":"Definition-2.24","title":"Functions","reflabel":"Definition","cls":"Definition","id":"definition-function","neu":true,"file":"index.tex","refnum":"2.24"},{"reftag":"","label":"Warning","autoid":"Warning*-2.2","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-2.2","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"2.25","label":"Example","autoid":"Example-2.25","title":"","reflabel":"Example","cls":"Example","id":"Example-2.25","neu":true,"file":"index.tex","refnum":"2.25"},{"reftag":"2.26","label":"Example","autoid":"Example-2.26","title":"","reflabel":"Example","cls":"Example","id":"Example-2.26","neu":true,"file":"index.tex","refnum":"2.26"},{"reftag":"2.27","label":"Definition","autoid":"Definition-2.27","title":"Absolute value","reflabel":"Definition","cls":"Definition","id":"absolute-value","neu":true,"file":"index.tex","refnum":"2.27"},{"reftag":"2.28","label":"Example","autoid":"Example-2.28","title":"","reflabel":"Example","cls":"Example","id":"Example-2.28","neu":true,"file":"index.tex","refnum":"2.28"},{"reftag":"2.31","label":"Remark","autoid":"Remark-2.31","title":"Geometric interpretation of \\(|x|\\)","reflabel":"Remark","cls":"Remark","id":"geometric-interpretation-of-x","neu":true,"file":"index.tex","refnum":"2.31"},{"reftag":"2.34","label":"Lemma","autoid":"Lemma-2.34","title":"","reflabel":"Lemma","cls":"Lemma","id":"Lemma-2.34","neu":true,"file":"index.tex","refnum":"2.34"},{"reftag":"2.35","label":"Theorem","autoid":"Theorem-2.35","title":"Triangle inequality","reflabel":"Theorem","cls":"Theorem","id":"theorem-triangle-inequality","neu":true,"file":"index.tex","refnum":"2.35"},{"reftag":"2.36","label":"Remark","autoid":"Remark-2.36","title":"Geometric meaning of triangle inequality","reflabel":"Remark","cls":"Remark","id":"geometric-meaning-of-triangle-inequality","neu":true,"file":"index.tex","refnum":"2.36"},{"reftag":"2.37","label":"Remark","autoid":"Remark-2.37","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-2.37","neu":true,"file":"index.tex","refnum":"2.37"},{"reftag":"","label":"Proof","autoid":"Proof*-2.5","title":"of Proposition 2.38","reflabel":"Proof","cls":"Proof","id":"of-proposition","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"2.39","label":"Axiom","autoid":"Axiom-2.39","title":"Principle of Induction","reflabel":"Axiom","cls":"Axiom","id":"principle-of-induction","neu":true,"file":"index.tex","refnum":"2.39"},{"reftag":"","label":"Important","autoid":"Important*-2.6","title":"","reflabel":"Important","cls":"Important","id":"Important*-2.6","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"2.40","label":"Remark","autoid":"Remark-2.40","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-2.40","neu":true,"file":"index.tex","refnum":"2.40"},{"reftag":"2.41","label":"Corollary","autoid":"Corollary-2.41","title":"Principle of Inducion - Alternative formulation","reflabel":"Corollary","cls":"Corollary","id":"principle-of-inducion---alternative-formulation","neu":true,"file":"index.tex","refnum":"2.41"},{"reftag":"","label":"Proof","autoid":"Proof*-2.7","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-2.7","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"2.42","label":"Example","autoid":"Example-2.42","title":"Formula for summing first \\(n\\) natural numbers","reflabel":"Example","cls":"Example","id":"formula-for-summing-first-n-natural-numbers","neu":true,"file":"index.tex","refnum":"2.42"},{"reftag":"2.43","label":"Example","autoid":"Example-2.43","title":"Statements about sequences of numbers","reflabel":"Example","cls":"Example","id":"statements-about-sequences-of-numbers","neu":true,"file":"index.tex","refnum":"2.43"},{"reftag":"3.2","label":"Definition","autoid":"Definition-3.2","title":"","refnum":"3.2","reflabel":"Definition","id":"Definition-3.2","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.3","label":"Definition","autoid":"Definition-3.3","title":"","refnum":"3.3","reflabel":"Definition","id":"Definition-3.3","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.4","label":"Example","autoid":"Example-3.4","title":"","refnum":"3.4","reflabel":"Example","id":"Example-3.4","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"3.5","label":"Question","autoid":"Question-3.5","title":"","refnum":"3.5","reflabel":"Question","id":"Question-3.5","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"3.6","label":"Theorem","autoid":"Theorem-3.6","title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.6","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-3.1","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.1","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.7","label":"Remark","autoid":"Remark-3.7","title":"","refnum":"3.7","reflabel":"Remark","id":"Remark-3.7","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.8","label":"Definition","autoid":"Definition-3.8","title":"Subtraction and division","refnum":"3.8","reflabel":"Definition","id":"subtraction-and-division","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.9","label":"Definition","autoid":"Definition-3.9","title":"Subtraction and division","reflabel":"Definition","cls":"Definition","id":"subtraction-and-division","neu":true,"file":"index.tex","refnum":"3.9"},{"reftag":"3.10","label":"Definition","autoid":"Definition-3.10","title":"Partition of a set","refnum":"3.10","reflabel":"Definition","id":"partition-of-a-set","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.11","label":"Remark","autoid":"Remark-3.11","title":"","refnum":"3.11","reflabel":"Remark","id":"Remark-3.11","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.26","label":"Remark","autoid":"Remark-2.26","title":"","refnum":"2.26","reflabel":"Remark","id":"Remark-2.26","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.31","label":"Lemma","autoid":"Lemma-2.31","title":"","refnum":"2.31","reflabel":"Lemma","id":"Lemma-2.31","neu":true,"file":"index.tex","cls":"Lemma"},{"reftag":"2.32","label":"Theorem","autoid":"Theorem-2.32","title":"Triangle inequality","refnum":"2.32","reflabel":"Theorem","id":"theorem-triangle-inequality","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"2.33","label":"Remark","autoid":"Remark-2.33","title":"Geometric meaning of triangle inequality","refnum":"2.33","reflabel":"Remark","id":"geometric-meaning-of-triangle-inequality","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.34","label":"Remark","autoid":"Remark-2.34","title":"","refnum":"2.34","reflabel":"Remark","id":"Remark-2.34","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"2.36","label":"Axiom","autoid":"Axiom-2.36","title":"Principle of Induction","refnum":"2.36","reflabel":"Axiom","id":"principle-of-induction","neu":true,"file":"index.tex","cls":"Axiom"},{"reftag":"2.38","label":"Corollary","autoid":"Corollary-2.38","title":"Principle of Inducion - Alternative formulation","refnum":"2.38","reflabel":"Corollary","id":"principle-of-inducion---alternative-formulation","neu":true,"file":"index.tex","cls":"Corollary"},{"reftag":"2.39","label":"Example","autoid":"Example-2.39","title":"Formula for summing first \\(n\\) natural numbers","refnum":"2.39","reflabel":"Example","id":"formula-for-summing-first-n-natural-numbers","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"2.40","label":"Example","autoid":"Example-2.40","title":"Statements about sequences of numbers","refnum":"2.40","reflabel":"Example","id":"statements-about-sequences-of-numbers","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"2.1","label":"Definition","autoid":"Definition-2.1","title":"Partition of a set","refnum":"2.1","reflabel":"Definition","id":"partition-of-a-set","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.2","label":"Definition","autoid":"Definition-2.2","title":"Cut of a set","refnum":"2.2","reflabel":"Definition","id":"cut-of-a-set","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.3","label":"Definition","autoid":"Definition-2.3","title":"Cut property","refnum":"2.3","reflabel":"Definition","id":"cut-property-1","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.5","label":"Question","autoid":"Question-2.5","title":"","refnum":"2.5","reflabel":"Question","id":"Question-2.5","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"2.6","label":"Theorem","autoid":"Theorem-2.6","title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"2.6","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"2.8","label":"Definition","autoid":"Definition-2.8","title":"Binary operation","refnum":"2.8","reflabel":"Definition","id":"binary-operation","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.9","label":"Definition","autoid":"Definition-2.9","title":"Field","refnum":"2.9","reflabel":"Definition","id":"field","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"2.11","label":"Remark","autoid":"Remark-2.11","title":"","refnum":"2.11","reflabel":"Remark","id":"Remark-2.11","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.2","label":"Proposition","autoid":"Proposition-3.2","title":"Error estimate","refnum":"3.2","reflabel":"Proposition","id":"proposition-heron-error","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-3.2","title":"Proof of Theorem 3.20","reflabel":"Proof","cls":"Proof","id":"proof-of-theorem-2","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"","label":"Proof","autoid":"Proof*-3.3","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.3","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.4","label":"Theorem","autoid":"Theorem-3.4","title":"Convergence of Heron’s Algorithm","refnum":"3.4","reflabel":"Theorem","id":"convergence-of-herons-algorithm","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-3.4","title":"","refnum":"??","reflabel":"Proof","id":"Proof*-3.4","neu":true,"file":"index.tex","cls":"Proof"},{"reftag":"3.2","label":"Example","autoid":"Example-3.2","title":"of binary operation","refnum":"3.2","reflabel":"Example","id":"example-binary-operation","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"3.5","label":"Example","autoid":"Example-id-example-binary-operation-2","title":"","reflabel":"Example","cls":"Example","id":"example-binary-operation-2","neu":true,"file":"index.tex","refnum":"3.5"},{"reftag":"3.5","label":"Example","autoid":"Example-3.5","title":"","refnum":"3.5","reflabel":"Example","id":"Example-3.5","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"3.6","label":"Definition","autoid":"Definition-3.6","title":"Subtraction and division","refnum":"3.6","reflabel":"Definition","id":"subtraction-and-division","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.7","label":"Example","autoid":"Example-3.7","title":"","refnum":"3.7","reflabel":"Example","id":"Example-3.7","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"3.9","label":"Proposition","autoid":"Proposition-3.9","title":"Properties of field operations","refnum":"3.9","reflabel":"Proposition","id":"properties-of-field-operations","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"3.10","label":"Proposition","autoid":"Proposition-3.10","title":"Uniqueness of neutral elements and inverses","reflabel":"Proposition","cls":"Proposition","id":"uniqueness-of-neutral-elements-and-inverses","neu":true,"file":"index.tex","refnum":"3.10"},{"reftag":"3.11","label":"Theorem","autoid":"Theorem-3.11","title":"","refnum":"3.11","reflabel":"Theorem","id":"Theorem-3.11","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"3.12","label":"Definition","autoid":"Definition-3.12","title":"Cut of a set","refnum":"3.12","reflabel":"Definition","id":"cut-of-a-set","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.13","label":"Definition","autoid":"Definition-3.13","title":"","reflabel":"Definition","cls":"Definition","id":"Definition-3.13","neu":true,"file":"index.tex","refnum":"3.13"},{"reftag":"3.14","label":"Definition","autoid":"Definition-3.14","title":"Cut of a set","refnum":"3.14","reflabel":"Definition","id":"cut-of-a-set","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.15","label":"Example","autoid":"Example-3.15","title":"","refnum":"3.15","reflabel":"Example","id":"Example-3.15","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"3.16","label":"Question","autoid":"Question-3.16","title":"","refnum":"3.16","reflabel":"Question","id":"Question-3.16","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"3.17","label":"Theorem","autoid":"Theorem-3.17","title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.17","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"3.18","label":"Remark","autoid":"Remark-3.18","title":"","refnum":"3.18","reflabel":"Remark","id":"Remark-3.18","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.19","label":"Definition","autoid":"Definition-3.19","title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.19","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.11","label":"Definition","autoid":"Definition-3.11","title":"Partition of a set","refnum":"3.11","reflabel":"Definition","id":"partition-of-a-set","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.14","label":"Example","autoid":"Example-3.14","title":"","reflabel":"Example","cls":"Example","id":"Example-3.14","neu":true,"file":"index.tex","refnum":"3.14"},{"reftag":"3.15","label":"Question","autoid":"Question-3.15","title":"","refnum":"3.15","reflabel":"Question","id":"Question-3.15","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"3.16","label":"Theorem","autoid":"Theorem-3.16","title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.16","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"3.17","label":"Remark","autoid":"Remark-3.17","title":"","refnum":"3.17","reflabel":"Remark","id":"Remark-3.17","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.18","label":"Definition","autoid":"Definition-3.18","title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.18","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.9","label":"Theorem","autoid":"Theorem-3.9","title":"","refnum":"3.9","reflabel":"Theorem","id":"Theorem-3.9","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"3.13","label":"Example","autoid":"Example-3.13","title":"","refnum":"3.13","reflabel":"Example","id":"Example-3.13","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"3.14","label":"Question","autoid":"Question-3.14","title":"","refnum":"3.14","reflabel":"Question","id":"Question-3.14","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"3.15","label":"Theorem","autoid":"Theorem-3.15","title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.15","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"3.16","label":"Remark","autoid":"Remark-3.16","title":"","refnum":"3.16","reflabel":"Remark","id":"Remark-3.16","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.17","label":"Definition","autoid":"Definition-3.17","title":"Cut property","reflabel":"Definition","cls":"Definition","id":"cut-property-1","neu":true,"file":"index.tex","refnum":"3.17"},{"reftag":"3.7","label":"Proposition","autoid":"Proposition-3.7","title":"Uniqueness of neutral elements and inverses","refnum":"3.7","reflabel":"Proposition","id":"uniqueness-of-neutral-elements-and-inverses","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"3.8","label":"Proposition","autoid":"Proposition-3.8","title":"Uniqueness of neutral elements and inverses","refnum":"3.8","reflabel":"Proposition","id":"uniqueness-of-neutral-elements-and-inverses","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"3.5","label":"Definition","autoid":"Definition-3.5","title":"Field","refnum":"3.5","reflabel":"Definition","id":"field","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.6","label":"Example","autoid":"Example-3.6","title":"","reflabel":"Example","cls":"Example","id":"Example-3.6","neu":true,"file":"index.tex","refnum":"3.6"},{"reftag":"3.7","label":"Definition","autoid":"Definition-3.7","title":"Field","reflabel":"Definition","cls":"Definition","id":"field","neu":true,"file":"index.tex","refnum":"3.7"},{"reftag":"3.10","label":"Theorem","autoid":"Theorem-3.10","title":"","refnum":"3.10","reflabel":"Theorem","id":"Theorem-3.10","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"3.3","label":"Example","autoid":"Example-3.3","title":"of binary operation","reflabel":"Example","cls":"Example","id":"example-binary-operation","neu":true,"file":"index.tex","refnum":"3.3"},{"reftag":"3.4","label":"Definition","autoid":"Definition-3.4","title":"","reflabel":"Definition","cls":"Definition","id":"Definition-3.4","neu":true,"file":"index.tex","refnum":"3.4"},{"reftag":"3.1","label":"Example","autoid":"Example-3.1","title":"of binary operation","refnum":"3.1","reflabel":"Example","id":"example-binary-operation","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"3.2","label":"Notation","autoid":"Notation-3.2","title":"","reflabel":"Notation","cls":"Notation","id":"Notation-3.2","neu":true,"file":"index.tex","refnum":"3.2"},{"reftag":"3.8","label":"Example","autoid":"Example-3.8","title":"","reflabel":"Example","cls":"Example","id":"Example-3.8","neu":true,"file":"index.tex","refnum":"3.8"},{"reftag":"3.11","label":"Proposition","autoid":"Proposition-3.11","title":"Properties of field operations","reflabel":"Proposition","cls":"Proposition","id":"properties-of-field-operations","neu":true,"file":"index.tex","refnum":"3.11"},{"reftag":"3.12","label":"Theorem","autoid":"Theorem-3.12","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-3.12","neu":true,"file":"index.tex","refnum":"3.12"},{"reftag":"3.15","label":"Definition","autoid":"Definition-3.15","title":"Partition of a set","reflabel":"Definition","cls":"Definition","id":"partition-of-a-set","neu":true,"file":"index.tex","refnum":"3.15"},{"reftag":"3.16","label":"Example","autoid":"Example-3.16","title":"","refnum":"3.16","reflabel":"Example","id":"Example-3.16","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"3.17","label":"Question","autoid":"Question-3.17","title":"","refnum":"3.17","reflabel":"Question","id":"Question-3.17","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"3.18","label":"Theorem","autoid":"Theorem-3.18","title":"\\(\\mathbb{Q}\\) does not have the cut property.","refnum":"3.18","reflabel":"Theorem","id":"mathbbq-does-not-have-the-cut-property.","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"3.19","label":"Remark","autoid":"Remark-3.19","title":"","refnum":"3.19","reflabel":"Remark","id":"Remark-3.19","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.20","label":"Definition","autoid":"Definition-3.20","title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.20","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.16","label":"Definition","autoid":"Definition-3.16","title":"Cut of a set","reflabel":"Definition","cls":"Definition","id":"cut-of-a-set","neu":true,"file":"index.tex","refnum":"3.16"},{"reftag":"3.18","label":"Example","autoid":"Example-3.18","title":"","reflabel":"Example","cls":"Example","id":"Example-3.18","neu":true,"file":"index.tex","refnum":"3.18"},{"reftag":"3.19","label":"Question","autoid":"Question-3.19","title":"","reflabel":"Question","cls":"Question","id":"Question-3.19","neu":true,"file":"index.tex","refnum":"3.19"},{"reftag":"3.20","label":"Theorem","autoid":"Theorem-3.20","title":"\\(\\mathbb{Q}\\) does not have the cut property.","reflabel":"Theorem","cls":"Theorem","id":"theorem-Q-cut","neu":true,"file":"index.tex","refnum":"3.20"},{"reftag":"3.21","label":"Remark","autoid":"Remark-3.21","title":"Ideas for the proof of Theorem 3.20","reflabel":"Remark","cls":"Remark","id":"remark-idea-proof-cut","neu":true,"file":"index.tex","refnum":"3.21"},{"reftag":"3.22","label":"Definition","autoid":"Definition-3.22","title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.22","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.23","label":"Notation","autoid":"Notation-3.23","title":"","refnum":"3.23","reflabel":"Notation","id":"Notation-3.23","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"3.24","label":"Remark","autoid":"Remark-3.24","title":"","refnum":"3.24","reflabel":"Remark","id":"Remark-3.24","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.25","label":"Remark","autoid":"Remark-3.25","title":"","refnum":"3.25","reflabel":"Remark","id":"Remark-3.25","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.22","label":"Example","autoid":"Example-3.22","title":"Intuition about supremum and infimum","refnum":"3.22","reflabel":"Example","id":"intuition-about-supremum-and-infimum","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"3.23","label":"Definition","autoid":"Definition-3.23","title":"Upper bound and bounded above","refnum":"3.23","reflabel":"Definition","id":"upper-bound-and-bounded-above","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.24","label":"Definition","autoid":"Definition-3.24","title":"Upper bound and bounded above","reflabel":"Definition","cls":"Definition","id":"upper-bound-and-bounded-above","neu":true,"file":"index.tex","refnum":"3.24"},{"reftag":"3.25","label":"Notation","autoid":"Notation-3.25","title":"","refnum":"3.25","reflabel":"Notation","id":"Notation-3.25","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"3.26","label":"Proposition","autoid":"Proposition-3.26","title":"","refnum":"3.26","reflabel":"Proposition","id":"Proposition-3.26","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Warning","autoid":"Warning*-3.4","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-3.4","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"","label":"Warning","autoid":"Warning*-3.5","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-3.5","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.27","label":"Definition","autoid":"Definition-3.27","title":"Maximum","refnum":"3.27","reflabel":"Definition","id":"maximum","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.28","label":"Proposition","autoid":"Proposition-3.28","title":"","reflabel":"Proposition","cls":"Proposition","id":"Proposition-3.28","neu":true,"file":"index.tex","refnum":"3.28"},{"reftag":"","label":"Proof","autoid":"Proof*-3.6","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.6","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"","label":"Warning","autoid":"Warning*-3.7","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-3.7","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.29","label":"Definition","autoid":"Definition-3.29","title":"Maximum","reflabel":"Definition","cls":"Definition","id":"maximum","neu":true,"file":"index.tex","refnum":"3.29"},{"reftag":"3.30","label":"Proposition","autoid":"Proposition-3.30","title":"","reflabel":"Proposition","cls":"Proposition","id":"Proposition-3.30","neu":true,"file":"index.tex","refnum":"3.30"},{"reftag":"","label":"Warning","autoid":"Warning*-3.8","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-3.8","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"","label":"Warning","autoid":"Warning*-3.9","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-3.9","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"","label":"Warning","autoid":"Warning*-3.10","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-3.10","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.31","label":"Proposition","autoid":"Proposition-3.31","title":"","refnum":"3.31","reflabel":"Proposition","id":"Proposition-3.31","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"3.32","label":"Proposition","autoid":"Proposition-3.32","title":"","reflabel":"Proposition","cls":"Proposition","id":"Proposition-3.32","neu":true,"file":"index.tex","refnum":"3.32"},{"reftag":"3.33","label":"Definition","autoid":"Definition-3.33","title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.33","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.34","label":"Notation","autoid":"Notation-3.34","title":"","refnum":"3.34","reflabel":"Notation","id":"Notation-3.34","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"3.35","label":"Remark","autoid":"Remark-3.35","title":"","refnum":"3.35","reflabel":"Remark","id":"Remark-3.35","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.36","label":"Remark","autoid":"Remark-3.36","title":"","refnum":"3.36","reflabel":"Remark","id":"Remark-3.36","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.26","label":"Remark","autoid":"Remark-3.26","title":"","refnum":"3.26","reflabel":"Remark","id":"Remark-3.26","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.27","label":"Proposition","autoid":"Proposition-3.27","title":"","refnum":"3.27","reflabel":"Proposition","id":"Proposition-3.27","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"3.28","label":"Definition","autoid":"Definition-3.28","title":"Maximum","refnum":"3.28","reflabel":"Definition","id":"maximum","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.29","label":"Proposition","autoid":"Proposition-3.29","title":"","refnum":"3.29","reflabel":"Proposition","id":"Proposition-3.29","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"3.30","label":"Definition","autoid":"Definition-3.30","title":"Upper bound, bounded below, infimum, minimum","refnum":"3.30","reflabel":"Definition","id":"upper-bound-bounded-below-infimum-minimum","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.33","label":"Proposition","autoid":"Proposition-3.33","title":"","reflabel":"Proposition","cls":"Proposition","id":"Proposition-3.33","neu":true,"file":"index.tex","refnum":"3.33"},{"reftag":"3.34","label":"Question","autoid":"Question-3.34","title":"","refnum":"3.34","reflabel":"Question","id":"Question-3.34","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"3.36","label":"Theorem","autoid":"Theorem-id-theorem-Q-not-complete","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-Q-not-complete","neu":true,"file":"index.tex","refnum":"3.36"},{"reftag":"","label":"Proof","autoid":"Proof*-3.11","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.11","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.36","label":"Question","autoid":"Question-3.36","title":"","refnum":"3.36","reflabel":"Question","id":"Question-3.36","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"3.37","label":"Definition","autoid":"Definition-3.37","title":"Completeness","refnum":"3.37","reflabel":"Definition","id":"completeness-1","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.38","label":"Notation","autoid":"Notation-3.38","title":"","refnum":"3.38","reflabel":"Notation","id":"Notation-3.38","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"3.39","label":"Proposition","autoid":"Proposition-3.39","title":"","refnum":"3.39","reflabel":"Proposition","id":"Proposition-3.39","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-3.12","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.12","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.40","label":"Theorem","autoid":"Theorem-3.40","title":"Equivalence of Cut Property and Completeness","refnum":"3.40","reflabel":"Theorem","id":"theorem-cut-complete","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-3.13","title":"Proof of Theorem 3.41","reflabel":"Proof","cls":"Proof","id":"proof-of-theorem-3","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.41","label":"Definition","autoid":"Definition-3.41","title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.41","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.42","label":"Remark","autoid":"Remark-3.42","title":"Ideas for proving Theorem 3.41","reflabel":"Remark","cls":"Remark","id":"ideas-for-proving-theorem","neu":true,"file":"index.tex","refnum":"3.42"},{"reftag":"3.43","label":"Notation","autoid":"Notation-3.43","title":"","refnum":"3.43","reflabel":"Notation","id":"Notation-3.43","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"3.44","label":"Remark","autoid":"Remark-3.44","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-3.44","neu":true,"file":"index.tex","refnum":"3.44"},{"reftag":"","label":"Important","autoid":"Important*-3.14","title":"","reflabel":"Important","cls":"Important","id":"Important*-3.14","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.45","label":"Question","autoid":"Question-3.45","title":"","refnum":"3.45","reflabel":"Question","id":"Question-3.45","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"3.22","label":"Remark","autoid":"Remark-3.22","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-3.22","neu":true,"file":"index.tex","refnum":"3.22"},{"reftag":"3.23","label":"Example","autoid":"Example-3.23","title":"Intuition about supremum and infimum","reflabel":"Example","cls":"Example","id":"intuition-about-supremum-and-infimum","neu":true,"file":"index.tex","refnum":"3.23"},{"reftag":"3.25","label":"Definition","autoid":"Definition-3.25","title":"Supremum","reflabel":"Definition","cls":"Definition","id":"supremum","neu":true,"file":"index.tex","refnum":"3.25"},{"reftag":"3.26","label":"Notation","autoid":"Notation-3.26","title":"","reflabel":"Notation","cls":"Notation","id":"Notation-3.26","neu":true,"file":"index.tex","refnum":"3.26"},{"reftag":"3.27","label":"Remark","autoid":"Remark-3.27","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-3.27","neu":true,"file":"index.tex","refnum":"3.27"},{"reftag":"3.31","label":"Definition","autoid":"Definition-3.31","title":"Upper bound, bounded below, infimum, minimum","reflabel":"Definition","cls":"Definition","id":"upper-bound-bounded-below-infimum-minimum","neu":true,"file":"index.tex","refnum":"3.31"},{"reftag":"3.34","label":"Proposition","autoid":"Proposition-3.34","title":"Relationship between sup and inf","reflabel":"Proposition","cls":"Proposition","id":"proposition-inf-sup","neu":true,"file":"index.tex","refnum":"3.34"},{"reftag":"3.35","label":"Question","autoid":"Question-3.35","title":"","reflabel":"Question","cls":"Question","id":"Question-3.35","neu":true,"file":"index.tex","refnum":"3.35"},{"reftag":"3.37","label":"Question","autoid":"Question-3.37","title":"","reflabel":"Question","cls":"Question","id":"Question-3.37","neu":true,"file":"index.tex","refnum":"3.37"},{"reftag":"3.38","label":"Definition","autoid":"Definition-3.38","title":"Completeness","reflabel":"Definition","cls":"Definition","id":"completeness-1","neu":true,"file":"index.tex","refnum":"3.38"},{"reftag":"3.39","label":"Notation","autoid":"Notation-3.39","title":"","reflabel":"Notation","cls":"Notation","id":"Notation-3.39","neu":true,"file":"index.tex","refnum":"3.39"},{"reftag":"3.40","label":"Proposition","autoid":"Proposition-3.40","title":"","reflabel":"Proposition","cls":"Proposition","id":"Proposition-3.40","neu":true,"file":"index.tex","refnum":"3.40"},{"reftag":"3.41","label":"Theorem","autoid":"Theorem-3.41","title":"Equivalence of Cut Property and Completeness","reflabel":"Theorem","cls":"Theorem","id":"theorem-cut-complete","neu":true,"file":"index.tex","refnum":"3.41"},{"reftag":"3.42","label":"Definition","autoid":"Definition-3.42","title":"System of Real Numbers \\(\\mathbb{R}\\)","refnum":"3.42","reflabel":"Definition","id":"system-of-real-numbers-mathbbr","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"3.43","label":"Remark","autoid":"Remark-3.43","title":"","refnum":"3.43","reflabel":"Remark","id":"Remark-3.43","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.44","label":"Notation","autoid":"Notation-3.44","title":"","refnum":"3.44","reflabel":"Notation","id":"Notation-3.44","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"3.45","label":"Remark","autoid":"Remark-3.45","title":"","refnum":"3.45","reflabel":"Remark","id":"Remark-3.45","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"3.46","label":"Question","autoid":"Question-3.46","title":"","refnum":"3.46","reflabel":"Question","id":"Question-3.46","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"","label":"Proof","autoid":"Proof*-6.1","title":"Proof of Theorem 6.7 (Long version)","reflabel":"Proof","cls":"Proof","id":"proof-of-theorem-long-version","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.2","label":"Proposition","autoid":"Proposition-6.2","title":"Error estimate","refnum":"6.2","reflabel":"Proposition","id":"proposition-heron-error","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-6.2","title":"Proof of Theorem 6.7 (Short version)","reflabel":"Proof","cls":"Proof","id":"proof-of-theorem-short-version","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"","label":"Proof","autoid":"Proof*-6.3","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.3","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.4","label":"Theorem","autoid":"Theorem-6.4","title":"Convergence of Heron’s Algorithm","refnum":"6.4","reflabel":"Theorem","id":"convergence-of-herons-algorithm","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-6.4","title":"","refnum":"??","reflabel":"Proof","id":"Proof*-6.4","neu":true,"file":"index.tex","cls":"Proof"},{"reftag":"4.1","label":"Remark","autoid":"Remark-4.1","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-4.1","neu":true,"file":"index.tex","refnum":"4.1"},{"reftag":"4.2","label":"Theorem","autoid":"Theorem-4.2","title":"Archimedean Property","reflabel":"Theorem","cls":"Theorem","id":"theorem-archimedean","neu":true,"file":"index.tex","refnum":"4.2"},{"reftag":"4.3","label":"Theorem","autoid":"Theorem-4.3","title":"Archimedean Property (Alternative formulation)","reflabel":"Theorem","cls":"Theorem","id":"theorem-archimedean-alternative","neu":true,"file":"index.tex","refnum":"4.3"},{"reftag":"4.4","label":"Question","autoid":"Question-4.4","title":"","reflabel":"Question","cls":"Question","id":"Question-4.4","neu":true,"file":"index.tex","refnum":"4.4"},{"reftag":"4.5","label":"Theorem","autoid":"Theorem-4.5","title":"Nested Interval Property","reflabel":"Theorem","cls":"Theorem","id":"theorem-nested","neu":true,"file":"index.tex","refnum":"4.5"},{"reftag":"","label":"Important","autoid":"Important*-4.4","title":"","reflabel":"Important","cls":"Important","id":"Important*-4.4","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.6","label":"Example","autoid":"Example-id-example-nested-open","title":"","reflabel":"Example","cls":"Example","id":"example-nested-open","neu":true,"file":"index.tex","refnum":"4.6"},{"reftag":"4.7","label":"Proposition","autoid":"Proposition-4.7","title":"Characterization of Supremum","reflabel":"Proposition","cls":"Proposition","id":"proposition-supremum-characterization","neu":true,"file":"index.tex","refnum":"4.7"},{"reftag":"","label":"Proof","autoid":"Proof*-4.5","title":"Proof of Proposition 4.16","reflabel":"Proof","cls":"Proof","id":"proof-of-proposition","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.8","label":"Proposition","autoid":"Proposition-4.8","title":"Characterization of Infimum","reflabel":"Proposition","cls":"Proposition","id":"prop-supremum-infimum","neu":true,"file":"index.tex","refnum":"4.8"},{"reftag":"4.9","label":"Proposition","autoid":"Proposition-4.9","title":"","refnum":"4.9","reflabel":"Proposition","id":"Proposition-4.9","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-4.6","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.6","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.10","label":"Proposition","autoid":"Proposition-4.10","title":"","refnum":"4.10","reflabel":"Proposition","id":"Proposition-4.10","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-4.7","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.7","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.11","label":"Theorem","autoid":"Theorem-4.11","title":"Archimedean Property","refnum":"4.11","reflabel":"Theorem","id":"theorem-archimedean","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"4.12","label":"Question","autoid":"Question-4.12","title":"","refnum":"4.12","reflabel":"Question","id":"Question-4.12","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"4.13","label":"Corollary","autoid":"Corollary-4.13","title":"","refnum":"4.13","reflabel":"Corollary","id":"Corollary-4.13","neu":true,"file":"index.tex","cls":"Corollary"},{"reftag":"","label":"Proof","autoid":"Proof*-4.8","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.8","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.9","label":"Proposition","autoid":"Proposition-id-proposition-interval-inf-sup","title":"","reflabel":"Proposition","cls":"Proposition","id":"proposition-interval-inf-sup","neu":true,"file":"index.tex","refnum":"4.9"},{"reftag":"4.10","label":"Corollary","autoid":"Corollary-4.10","title":"","reflabel":"Corollary","cls":"Corollary","id":"Corollary-4.10","neu":true,"file":"index.tex","refnum":"4.10"},{"reftag":"4.11","label":"Corollary","autoid":"Corollary-4.11","title":"","reflabel":"Corollary","cls":"Corollary","id":"Corollary-4.11","neu":true,"file":"index.tex","refnum":"4.11"},{"reftag":"4.12","label":"Proposition","autoid":"Proposition-4.12","title":"","reflabel":"Proposition","cls":"Proposition","id":"Proposition-4.12","neu":true,"file":"index.tex","refnum":"4.12"},{"reftag":"4.13","label":"Theorem","autoid":"Theorem-4.13","title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)","refnum":"4.13","reflabel":"Theorem","id":"theorem-density","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"4.14","label":"Question","autoid":"Question-4.14","title":"","refnum":"4.14","reflabel":"Question","id":"Question-4.14","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"4.15","label":"Corollary","autoid":"Corollary-4.15","title":"","refnum":"4.15","reflabel":"Corollary","id":"Corollary-4.15","neu":true,"file":"index.tex","cls":"Corollary"},{"reftag":"","label":"Proof","autoid":"Proof*-4.9","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.9","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.43","label":"Definition","autoid":"Definition-3.43","title":"System of Real Numbers \\(\\mathbb{R}\\)","reflabel":"Definition","cls":"Definition","id":"definition-R","neu":true,"file":"index.tex","refnum":"3.43"},{"reftag":"3.45","label":"Notation","autoid":"Notation-3.45","title":"","reflabel":"Notation","cls":"Notation","id":"Notation-3.45","neu":true,"file":"index.tex","refnum":"3.45"},{"reftag":"3.46","label":"Remark","autoid":"Remark-3.46","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-3.46","neu":true,"file":"index.tex","refnum":"3.46"},{"reftag":"3.47","label":"Question","autoid":"Question-3.47","title":"","reflabel":"Question","cls":"Question","id":"Question-3.47","neu":true,"file":"index.tex","refnum":"3.47"},{"reftag":"4.1","label":"Definition","autoid":"Definition-4.1","title":"Inductive set","refnum":"4.1","reflabel":"Definition","id":"inductive-set","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"4.2","label":"Example","autoid":"Example-4.2","title":"","refnum":"4.2","reflabel":"Example","id":"Example-4.2","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"4.3","label":"Proposition","autoid":"Proposition-4.3","title":"","refnum":"4.3","reflabel":"Proposition","id":"Proposition-4.3","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"4.4","label":"Definition","autoid":"Definition-4.4","title":"Set of Natural Numbers","refnum":"4.4","reflabel":"Definition","id":"set-of-natural-numbers","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"4.6","label":"Theorem","autoid":"Theorem-4.6","title":"","refnum":"4.6","reflabel":"Theorem","id":"Theorem-4.6","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"4.7","label":"Notation","autoid":"Notation-4.7","title":"","refnum":"4.7","reflabel":"Notation","id":"Notation-4.7","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"4.8","label":"Theorem","autoid":"Theorem-4.8","title":"Principle of Induction","refnum":"4.8","reflabel":"Theorem","id":"principle-of-induction-1","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"4.9","label":"Notation","autoid":"Notation-4.9","title":"","refnum":"4.9","reflabel":"Notation","id":"Notation-4.9","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"4.10","label":"Remark","autoid":"Remark-4.10","title":"","refnum":"4.10","reflabel":"Remark","id":"Remark-4.10","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"4.12","label":"Theorem","autoid":"Theorem-4.12","title":"Archimedean Property (Alternative formulation)","refnum":"4.12","reflabel":"Theorem","id":"theorem-archimedean-alternative","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"4.13","label":"Question","autoid":"Question-4.13","title":"","refnum":"4.13","reflabel":"Question","id":"Question-4.13","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"4.14","label":"Theorem","autoid":"Theorem-4.14","title":"Nested Interval Property","refnum":"4.14","reflabel":"Theorem","id":"theorem-nested","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Important","autoid":"Important*-4.8","title":"","refnum":"??","reflabel":"Important","id":"Important*-4.8","neu":true,"file":"index.tex","cls":"Important"},{"reftag":"4.16","label":"Proposition","autoid":"Proposition-4.16","title":"Characterization of Supremum","refnum":"4.16","reflabel":"Proposition","id":"proposition-supremum-characterization","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"4.17","label":"Proposition","autoid":"Proposition-4.17","title":"Characterization of Infimum","refnum":"4.17","reflabel":"Proposition","id":"prop-supremum-infimum","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-4.10","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.10","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.19","label":"Corollary","autoid":"Corollary-4.19","title":"","refnum":"4.19","reflabel":"Corollary","id":"Corollary-4.19","neu":true,"file":"index.tex","cls":"Corollary"},{"reftag":"","label":"Proof","autoid":"Proof*-4.11","title":"Proof of Theorem 4.19","reflabel":"Proof","cls":"Proof","id":"proof-of-theorem-4","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.20","label":"Corollary","autoid":"Corollary-4.20","title":"","refnum":"4.20","reflabel":"Corollary","id":"Corollary-4.20","neu":true,"file":"index.tex","cls":"Corollary"},{"reftag":"4.21","label":"Proposition","autoid":"Proposition-4.21","title":"","refnum":"4.21","reflabel":"Proposition","id":"Proposition-4.21","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-4.12","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.12","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.22","label":"Theorem","autoid":"Theorem-4.22","title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)","refnum":"4.22","reflabel":"Theorem","id":"theorem-density","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"4.23","label":"Question","autoid":"Question-4.23","title":"","refnum":"4.23","reflabel":"Question","id":"Question-4.23","neu":true,"file":"index.tex","cls":"Question"},{"reftag":"4.24","label":"Corollary","autoid":"Corollary-4.24","title":"","refnum":"4.24","reflabel":"Corollary","id":"Corollary-4.24","neu":true,"file":"index.tex","cls":"Corollary"},{"reftag":"","label":"Proof","autoid":"Proof*-4.13","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.13","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.48","label":"Definition","autoid":"Definition-3.48","title":"Inductive set","reflabel":"Definition","cls":"Definition","id":"inductive-set","neu":true,"file":"index.tex","refnum":"3.48"},{"reftag":"3.49","label":"Example","autoid":"Example-3.49","title":"","reflabel":"Example","cls":"Example","id":"Example-3.49","neu":true,"file":"index.tex","refnum":"3.49"},{"reftag":"3.50","label":"Proposition","autoid":"Proposition-3.50","title":"","reflabel":"Proposition","cls":"Proposition","id":"Proposition-3.50","neu":true,"file":"index.tex","refnum":"3.50"},{"reftag":"","label":"Proof","autoid":"Proof*-3.15","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.15","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.51","label":"Definition","autoid":"Definition-3.51","title":"Set of Natural Numbers","reflabel":"Definition","cls":"Definition","id":"definition-natural-numbers","neu":true,"file":"index.tex","refnum":"3.51"},{"reftag":"3.52","label":"Theorem","autoid":"Theorem-3.52","title":"\\({\\mathbb{N}}_{\\mathbb{R}}\\) is the smallest inductive subset of \\(\\mathbb{R}\\)","refnum":"3.52","reflabel":"Theorem","id":"theorem-smallest-inductive","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-3.16","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.16","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.53","label":"Theorem","autoid":"Theorem-3.53","title":"","refnum":"3.53","reflabel":"Theorem","id":"Theorem-3.53","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-3.17","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.17","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.54","label":"Notation","autoid":"Notation-3.54","title":"","reflabel":"Notation","cls":"Notation","id":"Notation-3.54","neu":true,"file":"index.tex","refnum":"3.54"},{"reftag":"3.55","label":"Theorem","autoid":"Theorem-3.55","title":"Principle of Induction","reflabel":"Theorem","cls":"Theorem","id":"theorem-induction-new","neu":true,"file":"index.tex","refnum":"3.55"},{"reftag":"","label":"Proof","autoid":"Proof*-3.18","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.18","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.56","label":"Theorem","autoid":"Theorem-3.56","title":"","refnum":"3.56","reflabel":"Theorem","id":"Theorem-3.56","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"3.57","label":"Theorem","autoid":"Theorem-3.57","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-3.57","neu":true,"file":"index.tex","refnum":"3.57"},{"reftag":"3.58","label":"Notation","autoid":"Notation-3.58","title":"","refnum":"3.58","reflabel":"Notation","id":"Notation-3.58","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"3.56","label":"Theorem","autoid":"Theorem-id-theorem-N-closed","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-N-closed","neu":true,"file":"index.tex","refnum":"3.56"},{"reftag":"","label":"Proof","autoid":"Proof*-3.19","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.19","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.58","label":"Definition","autoid":"Definition-3.58","title":"Set of Integers","reflabel":"Definition","cls":"Definition","id":"set-of-integers","neu":true,"file":"index.tex","refnum":"3.58"},{"reftag":"3.59","label":"Theorem","autoid":"Theorem-3.59","title":"","refnum":"3.59","reflabel":"Theorem","id":"Theorem-3.59","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-3.20","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.20","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.60","label":"Theorem","autoid":"Theorem-id-theorem-Z-closed","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-Z-closed","neu":true,"file":"index.tex","refnum":"3.60"},{"reftag":"3.61","label":"Theorem","autoid":"Theorem-3.61","title":"","refnum":"3.61","reflabel":"Theorem","id":"Theorem-3.61","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-3.21","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.21","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.62","label":"Notation","autoid":"Notation-3.62","title":"","refnum":"3.62","reflabel":"Notation","id":"Notation-3.62","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"3.53","label":"Theorem","autoid":"Theorem-id-theorem-n-1","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-n-1","neu":true,"file":"index.tex","refnum":"3.53"},{"reftag":"3.59","label":"Theorem","autoid":"Theorem-id-theorem-equivalent-Z","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-equivalent-Z","neu":true,"file":"index.tex","refnum":"3.59"},{"reftag":"3.61","label":"Theorem","autoid":"Theorem-id-theorem-Z-axioms","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-Z-axioms","neu":true,"file":"index.tex","refnum":"3.61"},{"reftag":"3.62","label":"Remark","autoid":"Remark-id-remark-Z-axioms","title":"","reflabel":"Remark","cls":"Remark","id":"remark-Z-axioms","neu":true,"file":"index.tex","refnum":"3.62"},{"reftag":"3.63","label":"Definition","autoid":"Definition-3.63","title":"Set of Rational Numbers","reflabel":"Definition","cls":"Definition","id":"set-of-rational-numbers","neu":true,"file":"index.tex","refnum":"3.63"},{"reftag":"3.64","label":"Theorem","autoid":"Theorem-3.64","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-3.64","neu":true,"file":"index.tex","refnum":"3.64"},{"reftag":"","label":"Proof","autoid":"Proof*-3.22","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-3.22","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.65","label":"Theorem","autoid":"Theorem-3.65","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-3.65","neu":true,"file":"index.tex","refnum":"3.65"},{"reftag":"3.66","label":"Notation","autoid":"Notation-3.66","title":"","reflabel":"Notation","cls":"Notation","id":"Notation-3.66","neu":true,"file":"index.tex","refnum":"3.66"},{"reftag":"4.13","label":"Definition","autoid":"Definition-4.13","title":"Dense set","reflabel":"Definition","cls":"Definition","id":"dense-set","neu":true,"file":"index.tex","refnum":"4.13"},{"reftag":"4.14","label":"Remark","autoid":"Remark-4.14","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-4.14","neu":true,"file":"index.tex","refnum":"4.14"},{"reftag":"4.15","label":"Theorem","autoid":"Theorem-4.15","title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)","reflabel":"Theorem","cls":"Theorem","id":"theorem-density","neu":true,"file":"index.tex","refnum":"4.15"},{"reftag":"4.16","label":"Definition","autoid":"Definition-4.16","title":"Irrational numbers","reflabel":"Definition","cls":"Definition","id":"irrational-numbers","neu":true,"file":"index.tex","refnum":"4.16"},{"reftag":"4.17","label":"Question","autoid":"Question-4.17","title":"","reflabel":"Question","cls":"Question","id":"Question-4.17","neu":true,"file":"index.tex","refnum":"4.17"},{"reftag":"4.18","label":"Corollary","autoid":"Corollary-4.18","title":"","reflabel":"Corollary","cls":"Corollary","id":"Corollary-4.18","neu":true,"file":"index.tex","refnum":"4.18"},{"reftag":"4.19","label":"Theorem","autoid":"Theorem-4.19","title":"Existence of \\(k\\)-th roots","reflabel":"Theorem","cls":"Theorem","id":"theorem_existence_root","neu":true,"file":"index.tex","refnum":"4.19"},{"reftag":"4.20","label":"Definition","autoid":"Definition-4.20","title":"\\(k\\)-th root of a number","reflabel":"Definition","cls":"Definition","id":"k-th-root-of-a-number","neu":true,"file":"index.tex","refnum":"4.20"},{"reftag":"4.21","label":"Definition","autoid":"Definition-4.21","title":"Bijective function","reflabel":"Definition","cls":"Definition","id":"bijective-function","neu":true,"file":"index.tex","refnum":"4.21"},{"reftag":"4.22","label":"Example","autoid":"Example-4.22","title":"Injectivity","reflabel":"Example","cls":"Example","id":"injectivity","neu":true,"file":"index.tex","refnum":"4.22"},{"reftag":"4.23","label":"Example","autoid":"Example-4.23","title":"Surjectivity","reflabel":"Example","cls":"Example","id":"surjectivity","neu":true,"file":"index.tex","refnum":"4.23"},{"reftag":"4.24","label":"Example","autoid":"Example-4.24","title":"Bijectivity","reflabel":"Example","cls":"Example","id":"bijectivity","neu":true,"file":"index.tex","refnum":"4.24"},{"reftag":"4.25","label":"Definition","autoid":"Definition-4.25","title":"Cardinality, finite, countable, uncountable","reflabel":"Definition","cls":"Definition","id":"cardinality-finite-countable-uncountable","neu":true,"file":"index.tex","refnum":"4.25"},{"reftag":"4.26","label":"Example","autoid":"Example-4.26","title":"","refnum":"4.26","reflabel":"Example","id":"Example-4.26","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"4.26","label":"Question","autoid":"Question-4.26","title":"","reflabel":"Question","cls":"Question","id":"Question-4.26","neu":true,"file":"index.tex","refnum":"4.26"},{"reftag":"4.27","label":"Proposition","autoid":"Proposition-id-proposition-countable-subset","title":"","reflabel":"Proposition","cls":"Proposition","id":"proposition-countable-subset","neu":true,"file":"index.tex","refnum":"4.27"},{"reftag":"4.28","label":"Example","autoid":"Example-4.28","title":"","reflabel":"Example","cls":"Example","id":"Example-4.28","neu":true,"file":"index.tex","refnum":"4.28"},{"reftag":"4.29","label":"Theorem","autoid":"Theorem-4.29","title":"\\(\\mathbb{R}\\) is uncountable","refnum":"4.29","reflabel":"Theorem","id":"mathbbr-is-uncountable","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"4.29","label":"Proposition","autoid":"Proposition-id-proposition-countable-union","title":"","reflabel":"Proposition","cls":"Proposition","id":"proposition-countable-union","neu":true,"file":"index.tex","refnum":"4.29"},{"reftag":"4.30","label":"Theorem","autoid":"Theorem-4.30","title":"\\(\\mathbb{Q}\\) is countable","reflabel":"Theorem","cls":"Theorem","id":"theorem-Q-countable","neu":true,"file":"index.tex","refnum":"4.30"},{"reftag":"","label":"Proof","autoid":"Proof*-4.14","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.14","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.31","label":"Theorem","autoid":"Theorem-4.31","title":"\\(\\mathbb{R}\\) is uncountable","reflabel":"Theorem","cls":"Theorem","id":"theorem-R-uncountable","neu":true,"file":"index.tex","refnum":"4.31"},{"reftag":"","label":"Proof","autoid":"Proof*-4.15","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.15","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"4.32","label":"Theorem","autoid":"Theorem-4.32","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-4.32","neu":true,"file":"index.tex","refnum":"4.32"},{"reftag":"","label":"Proof","autoid":"Proof*-4.16","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-4.16","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"3.52","label":"Proposition","autoid":"Proposition-3.52","title":"\\({\\mathbb{N}}_{\\mathbb{R}}\\) is the smallest inductive subset of \\(\\mathbb{R}\\)","reflabel":"Proposition","cls":"Proposition","id":"proposition-smallest-inductive","neu":true,"file":"index.tex","refnum":"3.52"},{"reftag":"5.1","label":"Definition","autoid":"Definition-5.1","title":"Complex Numbers","refnum":"5.1","reflabel":"Definition","id":"complex-numbers-1","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"5.2","label":"Definition","autoid":"Definition-5.2","title":"Complex Numbers","reflabel":"Definition","cls":"Definition","id":"complex-numbers-1","neu":true,"file":"index.tex","refnum":"5.2"},{"reftag":"5.3","label":"Definition","autoid":"Definition-5.3","title":"","reflabel":"Definition","cls":"Definition","id":"Definition-5.3","neu":true,"file":"index.tex","refnum":"5.3"},{"reftag":"5.4","label":"Notation","autoid":"Notation-5.4","title":"","refnum":"5.4","reflabel":"Notation","id":"Notation-5.4","neu":true,"file":"index.tex","cls":"Notation"},{"reftag":"5.5","label":"Definition","autoid":"Definition-5.5","title":"Multiplication in \\(\\mathbb{C}\\)","refnum":"5.5","reflabel":"Definition","id":"multiplication-in-mathbbc","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"","label":"Important","autoid":"Important*-5.1","title":"","reflabel":"Important","cls":"Important","id":"Important*-5.1","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.8","label":"Remark","autoid":"Remark-id-remark-complex-i","title":"","reflabel":"Remark","cls":"Remark","id":"remark-complex-i","neu":true,"file":"index.tex","refnum":"5.8"},{"reftag":"5.7","label":"Example","autoid":"Example-5.7","title":"","refnum":"5.7","reflabel":"Example","id":"Example-5.7","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.8","label":"Proposition","autoid":"Proposition-5.8","title":"Additive inverse in \\(\\mathbb{C}\\)","refnum":"5.8","reflabel":"Proposition","id":"additive-inverse-in-mathbbc","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"5.9","label":"Proposition","autoid":"Proposition-5.9","title":"Additive inverse in \\(\\mathbb{C}\\)","refnum":"5.9","reflabel":"Proposition","id":"proposition-C-additive-inverse","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"5.5","label":"Remark","autoid":"Remark-5.5","title":"Formal calculation for multiplication in \\(\\mathbb{C}\\)","refnum":"5.5","reflabel":"Remark","id":"remark-formal-multiplication","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"5.6","label":"Definition","autoid":"Definition-5.6","title":"Multiplication in \\(\\mathbb{C}\\)","refnum":"5.6","reflabel":"Definition","id":"definition-multiplication-C","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"5.8","label":"Example","autoid":"Example-5.8","title":"","refnum":"5.8","reflabel":"Example","id":"Example-5.8","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.10","label":"Remark","autoid":"Remark-5.10","title":"Formal calculation for multiplicative inverse","refnum":"5.10","reflabel":"Remark","id":"remark-formal-inverse","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"5.11","label":"Proposition","autoid":"Proposition-5.11","title":"Multiplicative inverse in \\(\\mathbb{C}\\)","refnum":"5.11","reflabel":"Proposition","id":"proposition-C-multiplicative-inverse","neu":true,"file":"index.tex","cls":"Proposition"},{"reftag":"","label":"Proof","autoid":"Proof*-5.2","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.2","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"","label":"Important","autoid":"Important*-5.3","title":"","reflabel":"Important","cls":"Important","id":"Important*-5.3","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.12","label":"Example","autoid":"Example-5.12","title":"","refnum":"5.12","reflabel":"Example","id":"Example-5.12","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.13","label":"Theorem","autoid":"Theorem-5.13","title":"","refnum":"5.13","reflabel":"Theorem","id":"Theorem-5.13","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-5.4","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.4","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.14","label":"Example","autoid":"Example-5.14","title":"","refnum":"5.14","reflabel":"Example","id":"Example-5.14","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.16","label":"Theorem","autoid":"Theorem-id-theorem-C-order","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-C-order","neu":true,"file":"index.tex","refnum":"5.16"},{"reftag":"","label":"Proof","autoid":"Proof*-5.5","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.5","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.16","label":"Definition","autoid":"Definition-5.16","title":"Complex conjugate","refnum":"5.16","reflabel":"Definition","id":"complex-conjugate","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"5.17","label":"Example","autoid":"Example-5.17","title":"","refnum":"5.17","reflabel":"Example","id":"Example-5.17","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.18","label":"Theorem","autoid":"Theorem-5.18","title":"","refnum":"5.18","reflabel":"Theorem","id":"Theorem-5.18","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-5.6","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.6","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.19","label":"Example","autoid":"Example-5.19","title":"","refnum":"5.19","reflabel":"Example","id":"Example-5.19","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.20","label":"Definition","autoid":"Definition-5.20","title":"Modulus","refnum":"5.20","reflabel":"Definition","id":"modulus","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"5.21","label":"Remark","autoid":"Remark-5.21","title":"Modulus of Real numbers","refnum":"5.21","reflabel":"Remark","id":"modulus-of-real-numbers","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"5.22","label":"Definition","autoid":"Definition-5.22","title":"Distance in \\(\\mathbb{C}\\)","refnum":"5.22","reflabel":"Definition","id":"distance-in-mathbbc","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"5.23","label":"Theorem","autoid":"Theorem-5.23","title":"","refnum":"5.23","reflabel":"Theorem","id":"Theorem-5.23","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-5.7","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.7","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.24","label":"Example","autoid":"Example-5.24","title":"","refnum":"5.24","reflabel":"Example","id":"Example-5.24","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.25","label":"Theorem","autoid":"Theorem-5.25","title":"","refnum":"5.25","reflabel":"Theorem","id":"Theorem-5.25","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-5.8","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.8","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.26","label":"Theorem","autoid":"Theorem-5.26","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-5.26","neu":true,"file":"index.tex","refnum":"5.26"},{"reftag":"","label":"Proof","autoid":"Proof*-5.9","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.9","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.27","label":"Remark","autoid":"Remark-5.27","title":"Geometric interpretation of triangle inequality","refnum":"5.27","reflabel":"Remark","id":"geometric-interpretation-of-triangle-inequality","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"5.28","label":"Definition","autoid":"Definition-5.28","title":"Argument","refnum":"5.28","reflabel":"Definition","id":"argument","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"","label":"Warning","autoid":"Warning*-5.10","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-5.10","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.29","label":"Remark","autoid":"Remark-5.29","title":"Principal Value","refnum":"5.29","reflabel":"Remark","id":"principal-value","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"5.30","label":"Example","autoid":"Example-5.30","title":"","refnum":"5.30","reflabel":"Example","id":"Example-5.30","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.31","label":"Theorem","autoid":"Theorem-5.31","title":"Polar coordinates","refnum":"5.31","reflabel":"Theorem","id":"theorem-polar-coordinates","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"5.32","label":"Definition","autoid":"Definition-5.32","title":"Trigonometric form","refnum":"5.32","reflabel":"Definition","id":"trigonometric-form","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"5.33","label":"Example","autoid":"Example-5.33","title":"","refnum":"5.33","reflabel":"Example","id":"Example-5.33","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.34","label":"Corollary","autoid":"Corollary-5.34","title":"Computing \\(\\arg(z)\\)","refnum":"5.34","reflabel":"Corollary","id":"corollary-arg","neu":true,"file":"index.tex","cls":"Corollary"},{"reftag":"","label":"Proof","autoid":"Proof*-5.11","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.11","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.35","label":"Example","autoid":"Example-5.35","title":"","refnum":"5.35","reflabel":"Example","id":"Example-5.35","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.34","label":"Example","autoid":"Example-id-example-trigonometric-form","title":"","reflabel":"Example","cls":"Example","id":"example-trigonometric-form","neu":true,"file":"index.tex","refnum":"5.34"},{"reftag":"5.36","label":"Theorem","autoid":"Theorem-5.36","title":"Euler’s identity","refnum":"5.36","reflabel":"Theorem","id":"theorem-euler-identity","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-5.12","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.12","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.37","label":"Theorem","autoid":"Theorem-5.37","title":"Euler’s identity","reflabel":"Theorem","cls":"Theorem","id":"theorem-euler-identity","neu":true,"file":"index.tex","refnum":"5.37"},{"reftag":"","label":"Proof","autoid":"Proof*-5.13","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.13","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.38","label":"Theorem","autoid":"Theorem-5.38","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-5.38","neu":true,"file":"index.tex","refnum":"5.38"},{"reftag":"","label":"Proof","autoid":"Proof*-5.14","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.14","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.39","label":"Definition","autoid":"Definition-5.39","title":"Exponential form","refnum":"5.39","reflabel":"Definition","id":"exponential-form-1","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"5.41","label":"Example","autoid":"Example-id-example-exponential-form","title":"","reflabel":"Example","cls":"Example","id":"example-exponential-form","neu":true,"file":"index.tex","refnum":"5.41"},{"reftag":"5.41","label":"Remark","autoid":"Remark-5.41","title":"Periodicity of exponential","refnum":"5.41","reflabel":"Remark","id":"periodicity-of-exponential","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"5.42","label":"Example","autoid":"Example-5.42","title":"","refnum":"5.42","reflabel":"Example","id":"Example-5.42","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.43","label":"Example","autoid":"Example-5.43","title":"","refnum":"5.43","reflabel":"Example","id":"Example-5.43","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"5.1","label":"Question","autoid":"Question-5.1","title":"","reflabel":"Question","cls":"Question","id":"Question-5.1","neu":true,"file":"index.tex","refnum":"5.1"},{"reftag":"5.4","label":"Definition","autoid":"Definition-5.4","title":"Addition in \\(\\mathbb{C}\\)","reflabel":"Definition","cls":"Definition","id":"definition-addition-C","neu":true,"file":"index.tex","refnum":"5.4"},{"reftag":"5.5","label":"Notation","autoid":"Notation-5.5","title":"","reflabel":"Notation","cls":"Notation","id":"Notation-5.5","neu":true,"file":"index.tex","refnum":"5.5"},{"reftag":"5.6","label":"Remark","autoid":"Remark-5.6","title":"Formal calculation for multiplication in \\(\\mathbb{C}\\)","reflabel":"Remark","cls":"Remark","id":"remark-formal-multiplication","neu":true,"file":"index.tex","refnum":"5.6"},{"reftag":"5.7","label":"Definition","autoid":"Definition-5.7","title":"Multiplication in \\(\\mathbb{C}\\)","reflabel":"Definition","cls":"Definition","id":"definition-multiplication-C","neu":true,"file":"index.tex","refnum":"5.7"},{"reftag":"5.9","label":"Example","autoid":"Example-5.9","title":"","reflabel":"Example","cls":"Example","id":"Example-5.9","neu":true,"file":"index.tex","refnum":"5.9"},{"reftag":"5.10","label":"Proposition","autoid":"Proposition-5.10","title":"Additive inverse in \\(\\mathbb{C}\\)","reflabel":"Proposition","cls":"Proposition","id":"proposition-C-additive-inverse","neu":true,"file":"index.tex","refnum":"5.10"},{"reftag":"5.11","label":"Remark","autoid":"Remark-5.11","title":"Formal calculation for multiplicative inverse","reflabel":"Remark","cls":"Remark","id":"remark-formal-inverse","neu":true,"file":"index.tex","refnum":"5.11"},{"reftag":"5.12","label":"Proposition","autoid":"Proposition-5.12","title":"Multiplicative inverse in \\(\\mathbb{C}\\)","reflabel":"Proposition","cls":"Proposition","id":"proposition-C-multiplicative-inverse","neu":true,"file":"index.tex","refnum":"5.12"},{"reftag":"5.13","label":"Example","autoid":"Example-5.13","title":"","reflabel":"Example","cls":"Example","id":"Example-5.13","neu":true,"file":"index.tex","refnum":"5.13"},{"reftag":"5.14","label":"Theorem","autoid":"Theorem-5.14","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-5.14","neu":true,"file":"index.tex","refnum":"5.14"},{"reftag":"5.15","label":"Example","autoid":"Example-5.15","title":"","reflabel":"Example","cls":"Example","id":"Example-5.15","neu":true,"file":"index.tex","refnum":"5.15"},{"reftag":"5.17","label":"Definition","autoid":"Definition-5.17","title":"Complex conjugate","reflabel":"Definition","cls":"Definition","id":"complex-conjugate","neu":true,"file":"index.tex","refnum":"5.17"},{"reftag":"5.18","label":"Example","autoid":"Example-5.18","title":"","reflabel":"Example","cls":"Example","id":"Example-5.18","neu":true,"file":"index.tex","refnum":"5.18"},{"reftag":"5.19","label":"Theorem","autoid":"Theorem-5.19","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-5.19","neu":true,"file":"index.tex","refnum":"5.19"},{"reftag":"5.20","label":"Example","autoid":"Example-5.20","title":"","reflabel":"Example","cls":"Example","id":"Example-5.20","neu":true,"file":"index.tex","refnum":"5.20"},{"reftag":"5.21","label":"Definition","autoid":"Definition-5.21","title":"Modulus","reflabel":"Definition","cls":"Definition","id":"modulus","neu":true,"file":"index.tex","refnum":"5.21"},{"reftag":"5.22","label":"Remark","autoid":"Remark-5.22","title":"Modulus of Real numbers","reflabel":"Remark","cls":"Remark","id":"modulus-of-real-numbers","neu":true,"file":"index.tex","refnum":"5.22"},{"reftag":"5.23","label":"Definition","autoid":"Definition-5.23","title":"Distance in \\(\\mathbb{C}\\)","reflabel":"Definition","cls":"Definition","id":"distance-in-mathbbc","neu":true,"file":"index.tex","refnum":"5.23"},{"reftag":"5.24","label":"Theorem","autoid":"Theorem-5.24","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-5.24","neu":true,"file":"index.tex","refnum":"5.24"},{"reftag":"5.25","label":"Example","autoid":"Example-5.25","title":"","reflabel":"Example","cls":"Example","id":"Example-5.25","neu":true,"file":"index.tex","refnum":"5.25"},{"reftag":"5.27","label":"Theorem","autoid":"Theorem-5.27","title":"Triangle inequality in \\(\\mathbb{C}\\)","reflabel":"Theorem","cls":"Theorem","id":"triangle-inequality-in-mathbbc","neu":true,"file":"index.tex","refnum":"5.27"},{"reftag":"5.28","label":"Remark","autoid":"Remark-5.28","title":"Geometric interpretation of triangle inequality","reflabel":"Remark","cls":"Remark","id":"geometric-interpretation-of-triangle-inequality","neu":true,"file":"index.tex","refnum":"5.28"},{"reftag":"5.29","label":"Definition","autoid":"Definition-5.29","title":"Argument","reflabel":"Definition","cls":"Definition","id":"argument","neu":true,"file":"index.tex","refnum":"5.29"},{"reftag":"5.30","label":"Remark","autoid":"Remark-5.30","title":"Principal Value","reflabel":"Remark","cls":"Remark","id":"principal-value","neu":true,"file":"index.tex","refnum":"5.30"},{"reftag":"5.31","label":"Example","autoid":"Example-5.31","title":"","reflabel":"Example","cls":"Example","id":"Example-5.31","neu":true,"file":"index.tex","refnum":"5.31"},{"reftag":"5.32","label":"Theorem","autoid":"Theorem-5.32","title":"Polar coordinates","reflabel":"Theorem","cls":"Theorem","id":"theorem-polar-coordinates","neu":true,"file":"index.tex","refnum":"5.32"},{"reftag":"5.33","label":"Definition","autoid":"Definition-5.33","title":"Trigonometric form","reflabel":"Definition","cls":"Definition","id":"trigonometric-form","neu":true,"file":"index.tex","refnum":"5.33"},{"reftag":"5.35","label":"Corollary","autoid":"Corollary-5.35","title":"Computing \\(\\arg(z)\\)","reflabel":"Corollary","cls":"Corollary","id":"corollary-arg","neu":true,"file":"index.tex","refnum":"5.35"},{"reftag":"5.36","label":"Example","autoid":"Example-5.36","title":"","reflabel":"Example","cls":"Example","id":"Example-5.36","neu":true,"file":"index.tex","refnum":"5.36"},{"reftag":"5.39","label":"Theorem","autoid":"Theorem-5.39","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-5.39","neu":true,"file":"index.tex","refnum":"5.39"},{"reftag":"5.40","label":"Definition","autoid":"Definition-5.40","title":"Exponential form","reflabel":"Definition","cls":"Definition","id":"exponential-form-1","neu":true,"file":"index.tex","refnum":"5.40"},{"reftag":"5.42","label":"Remark","autoid":"Remark-5.42","title":"Periodicity of exponential","reflabel":"Remark","cls":"Remark","id":"periodicity-of-exponential","neu":true,"file":"index.tex","refnum":"5.42"},{"reftag":"5.43","label":"Proposition","autoid":"Proposition-id-proposition-complex-exponential","title":"","reflabel":"Proposition","cls":"Proposition","id":"proposition-complex-exponential","neu":true,"file":"index.tex","refnum":"5.43"},{"reftag":"5.44","label":"Example","autoid":"Example-5.44","title":"","reflabel":"Example","cls":"Example","id":"Example-5.44","neu":true,"file":"index.tex","refnum":"5.44"},{"reftag":"5.45","label":"Example","autoid":"Example-5.45","title":"","reflabel":"Example","cls":"Example","id":"Example-5.45","neu":true,"file":"index.tex","refnum":"5.45"},{"reftag":"5.46","label":"Question","autoid":"Question-5.46","title":"","reflabel":"Question","cls":"Question","id":"Question-5.46","neu":true,"file":"index.tex","refnum":"5.46"},{"reftag":"5.47","label":"Theorem","autoid":"Theorem-5.47","title":"Fundamental theorem of algebra","reflabel":"Theorem","cls":"Theorem","id":"theorem-fta","neu":true,"file":"index.tex","refnum":"5.47"},{"reftag":"5.48","label":"Example","autoid":"Example-5.48","title":"","reflabel":"Example","cls":"Example","id":"Example-5.48","neu":true,"file":"index.tex","refnum":"5.48"},{"reftag":"5.49","label":"Example","autoid":"Example-id-example-degree-4","title":"","reflabel":"Example","cls":"Example","id":"example-degree-4","neu":true,"file":"index.tex","refnum":"5.49"},{"reftag":"5.50","label":"Definition","autoid":"Definition-5.50","title":"","reflabel":"Definition","cls":"Definition","id":"Definition-5.50","neu":true,"file":"index.tex","refnum":"5.50"},{"reftag":"5.51","label":"Example","autoid":"Example-id-example-multiplicity","title":"","reflabel":"Example","cls":"Example","id":"example-multiplicity","neu":true,"file":"index.tex","refnum":"5.51"},{"reftag":"5.52","label":"Question","autoid":"Question-5.52","title":"","reflabel":"Question","cls":"Question","id":"Question-5.52","neu":true,"file":"index.tex","refnum":"5.52"},{"reftag":"5.53","label":"Theorem","autoid":"Theorem-5.53","title":"Abel-Ruffini","reflabel":"Theorem","cls":"Theorem","id":"theorem-abel-ruffini","neu":true,"file":"index.tex","refnum":"5.53"},{"reftag":"5.54","label":"Proposition","autoid":"Proposition-5.54","title":"Quadratic formula","reflabel":"Proposition","cls":"Proposition","id":"proposition-quadratic-formula","neu":true,"file":"index.tex","refnum":"5.54"},{"reftag":"5.55","label":"Example","autoid":"Example-5.55","title":"","reflabel":"Example","cls":"Example","id":"Example-5.55","neu":true,"file":"index.tex","refnum":"5.55"},{"reftag":"5.56","label":"Example","autoid":"Example-5.56","title":"","reflabel":"Example","cls":"Example","id":"Example-5.56","neu":true,"file":"index.tex","refnum":"5.56"},{"reftag":"5.57","label":"Example","autoid":"Example-5.57","title":"","reflabel":"Example","cls":"Example","id":"Example-5.57","neu":true,"file":"index.tex","refnum":"5.57"},{"reftag":"5.58","label":"Question","autoid":"Question-5.58","title":"","reflabel":"Question","cls":"Question","id":"Question-5.58","neu":true,"file":"index.tex","refnum":"5.58"},{"reftag":"5.59","label":"Proposition","autoid":"Proposition-5.59","title":"Generalization of quadratci formula","reflabel":"Proposition","cls":"Proposition","id":"proposition-quadratic-formula-C","neu":true,"file":"index.tex","refnum":"5.59"},{"reftag":"5.60","label":"Remark","autoid":"Remark-5.60","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-5.60","neu":true,"file":"index.tex","refnum":"5.60"},{"reftag":"5.61","label":"Example","autoid":"Example-5.61","title":"","reflabel":"Example","cls":"Example","id":"Example-5.61","neu":true,"file":"index.tex","refnum":"5.61"},{"reftag":"5.62","label":"Remark","autoid":"Remark-5.62","title":"Polynomial equations of order \\(n=3,4\\)","reflabel":"Remark","cls":"Remark","id":"polynomial-equations-of-order-n34","neu":true,"file":"index.tex","refnum":"5.62"},{"reftag":"5.63","label":"Example","autoid":"Example-5.63","title":"","reflabel":"Example","cls":"Example","id":"Example-5.63","neu":true,"file":"index.tex","refnum":"5.63"},{"reftag":"5.64","label":"Example","autoid":"Example-5.64","title":"","reflabel":"Example","cls":"Example","id":"Example-5.64","neu":true,"file":"index.tex","refnum":"5.64"},{"reftag":"","label":"Problem","autoid":"Problem*-5.15","title":"","reflabel":"Problem","cls":"Problem","id":"Problem*-5.15","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.65","label":"Question","autoid":"Question-5.65","title":"","reflabel":"Question","cls":"Question","id":"Question-5.65","neu":true,"file":"index.tex","refnum":"5.65"},{"reftag":"5.66","label":"Example","autoid":"Example-5.66","title":"","reflabel":"Example","cls":"Example","id":"Example-5.66","neu":true,"file":"index.tex","refnum":"5.66"},{"reftag":"5.67","label":"Theorem","autoid":"Theorem-5.67","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-5.67","neu":true,"file":"index.tex","refnum":"5.67"},{"reftag":"","label":"Proof","autoid":"Proof*-5.16","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.16","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.68","label":"Definition","autoid":"Definition-5.68","title":"","reflabel":"Definition","cls":"Definition","id":"Definition-5.68","neu":true,"file":"index.tex","refnum":"5.68"},{"reftag":"5.69","label":"Example","autoid":"Example-5.69","title":"","reflabel":"Example","cls":"Example","id":"Example-5.69","neu":true,"file":"index.tex","refnum":"5.69"},{"reftag":"5.70","label":"Example","autoid":"Example-5.70","title":"","reflabel":"Example","cls":"Example","id":"Example-5.70","neu":true,"file":"index.tex","refnum":"5.70"},{"reftag":"","label":"Problem","autoid":"Problem*-5.17","title":"","reflabel":"Problem","cls":"Problem","id":"Problem*-5.17","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.71","label":"Theorem","autoid":"Theorem-5.71","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-5.71","neu":true,"file":"index.tex","refnum":"5.71"},{"reftag":"","label":"Proof","autoid":"Proof*-5.18","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-5.18","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"5.72","label":"Example","autoid":"Example-5.72","title":"","reflabel":"Example","cls":"Example","id":"Example-5.72","neu":true,"file":"index.tex","refnum":"5.72"},{"reftag":"5.73","label":"Example","autoid":"Example-5.73","title":"","reflabel":"Example","cls":"Example","id":"Example-5.73","neu":true,"file":"index.tex","refnum":"5.73"},{"reftag":"6.1","label":"Remark","autoid":"Remark-6.1","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-6.1","neu":true,"file":"index.tex","refnum":"6.1"},{"reftag":"6.2","label":"Definition","autoid":"Definition-6.2","title":"Sequence of Real numbers","reflabel":"Definition","cls":"Definition","id":"sequence-of-real-numbers","neu":true,"file":"index.tex","refnum":"6.2"},{"reftag":"6.3","label":"Notation","autoid":"Notation-6.3","title":"","reflabel":"Notation","cls":"Notation","id":"Notation-6.3","neu":true,"file":"index.tex","refnum":"6.3"},{"reftag":"6.4","label":"Example","autoid":"Example-6.4","title":"","reflabel":"Example","cls":"Example","id":"Example-6.4","neu":true,"file":"index.tex","refnum":"6.4"},{"reftag":"6.5","label":"Definition","autoid":"Definition-6.5","title":"Convergent sequence","reflabel":"Definition","cls":"Definition","id":"definition-convergent-sequence","neu":true,"file":"index.tex","refnum":"6.5"},{"reftag":"6.6","label":"Remark","autoid":"Remark-6.6","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-6.6","neu":true,"file":"index.tex","refnum":"6.6"},{"reftag":"6.7","label":"Theorem","autoid":"Theorem-id-theorem-one-over-n","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-one-over-n","neu":true,"file":"index.tex","refnum":"6.7"},{"reftag":"6.8","label":"Theorem","autoid":"Theorem-6.8","title":"","refnum":"6.8","reflabel":"Theorem","id":"Theorem-6.8","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"6.9","label":"Question","autoid":"Question-6.9","title":"","reflabel":"Question","cls":"Question","id":"Question-6.9","neu":true,"file":"index.tex","refnum":"6.9"},{"reftag":"","label":"Important","autoid":"Important*-6.4","title":"","reflabel":"Important","cls":"Important","id":"Important*-6.4","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.10","label":"Example","autoid":"Example-6.10","title":"","reflabel":"Example","cls":"Example","id":"Example-6.10","neu":true,"file":"index.tex","refnum":"6.10"},{"reftag":"6.11","label":"Definition","autoid":"Definition-6.11","title":"Divergent sequence","refnum":"6.11","reflabel":"Definition","id":"divergent-sequence","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"6.12","label":"Remark","autoid":"Remark-6.12","title":"","refnum":"6.12","reflabel":"Remark","id":"Remark-6.12","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"6.13","label":"Theorem","autoid":"Theorem-6.13","title":"","refnum":"6.13","reflabel":"Theorem","id":"Theorem-6.13","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-6.5","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.5","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.14","label":"Theorem","autoid":"Theorem-6.14","title":"","refnum":"6.14","reflabel":"Theorem","id":"Theorem-6.14","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-6.6","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.6","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.15","label":"Example","autoid":"Example-6.15","title":"","refnum":"6.15","reflabel":"Example","id":"Example-6.15","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"6.16","label":"Definition","autoid":"Definition-6.16","title":"Bounded sequence","refnum":"6.16","reflabel":"Definition","id":"definition-bounded-sequence","neu":true,"file":"index.tex","cls":"Definition"},{"reftag":"6.17","label":"Theorem","autoid":"Theorem-6.17","title":"","refnum":"6.17","reflabel":"Theorem","id":"Theorem-6.17","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"6.18","label":"Theorem","autoid":"Theorem-id-theorem-convergent-bounded","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-convergent-bounded","neu":true,"file":"index.tex","refnum":"6.18"},{"reftag":"","label":"Proof","autoid":"Proof*-6.7","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.7","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.18","label":"Example","autoid":"Example-6.18","title":"","refnum":"6.18","reflabel":"Example","id":"Example-6.18","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"6.21","label":"Corollary","autoid":"Corollary-id-corollary-convergent-bounded","title":"","reflabel":"Corollary","cls":"Corollary","id":"corollary-convergent-bounded","neu":true,"file":"index.tex","refnum":"6.21"},{"reftag":"6.20","label":"Remark","autoid":"Remark-6.20","title":"","refnum":"6.20","reflabel":"Remark","id":"Remark-6.20","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"6.21","label":"Theorem","autoid":"Theorem-6.21","title":"","refnum":"6.21","reflabel":"Theorem","id":"Theorem-6.21","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-6.8","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.8","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.22","label":"Theorem","autoid":"Theorem-6.22","title":"","refnum":"6.22","reflabel":"Theorem","id":"Theorem-6.22","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-6.9","title":"","refnum":"??","reflabel":"Proof","id":"Proof*-6.9","neu":true,"file":"index.tex","cls":"Proof"},{"reftag":"6.11","label":"Theorem","autoid":"Theorem-id-theorem-constant-sequence","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-constant-sequence","neu":true,"file":"index.tex","refnum":"6.11"},{"reftag":"6.12","label":"Definition","autoid":"Definition-6.12","title":"Divergent sequence","reflabel":"Definition","cls":"Definition","id":"divergent-sequence","neu":true,"file":"index.tex","refnum":"6.12"},{"reftag":"6.13","label":"Remark","autoid":"Remark-6.13","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-6.13","neu":true,"file":"index.tex","refnum":"6.13"},{"reftag":"6.15","label":"Theorem","autoid":"Theorem-6.15","title":"Uniqueness of limit","reflabel":"Theorem","cls":"Theorem","id":"theorem-uniqueness-limit","neu":true,"file":"index.tex","refnum":"6.15"},{"reftag":"6.16","label":"Example","autoid":"Example-6.16","title":"","reflabel":"Example","cls":"Example","id":"Example-6.16","neu":true,"file":"index.tex","refnum":"6.16"},{"reftag":"6.17","label":"Definition","autoid":"Definition-6.17","title":"Bounded sequence","reflabel":"Definition","cls":"Definition","id":"definition-bounded-sequence","neu":true,"file":"index.tex","refnum":"6.17"},{"reftag":"6.19","label":"Example","autoid":"Example-6.19","title":"","reflabel":"Example","cls":"Example","id":"Example-6.19","neu":true,"file":"index.tex","refnum":"6.19"},{"reftag":"6.21","label":"Remark","autoid":"Remark-6.21","title":"","refnum":"6.21","reflabel":"Remark","id":"Remark-6.21","neu":true,"file":"index.tex","cls":"Remark"},{"reftag":"6.23","label":"Theorem","autoid":"Theorem-6.23","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-6.23","neu":true,"file":"index.tex","refnum":"6.23"},{"reftag":"","label":"Proof","autoid":"Proof*-6.10","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.10","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.24","label":"Theorem","autoid":"Theorem-6.24","title":"","reflabel":"Theorem","cls":"Theorem","id":"Theorem-6.24","neu":true,"file":"index.tex","refnum":"6.24"},{"reftag":"6.26","label":"Example","autoid":"Example-id-example-limit-ploynomial","title":"","reflabel":"Example","cls":"Example","id":"example-limit-ploynomial","neu":true,"file":"index.tex","refnum":"6.26"},{"reftag":"6.26","label":"Example","autoid":"Example-6.26","title":"","refnum":"6.26","reflabel":"Example","id":"Example-6.26","neu":true,"file":"index.tex","cls":"Example"},{"reftag":"6.8","label":"Theorem","autoid":"Theorem-id-theorem-one-over-np","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-one-over-np","neu":true,"file":"index.tex","refnum":"6.8"},{"reftag":"","label":"Important","autoid":"Important*-6.11","title":"","refnum":"??","reflabel":"Important","id":"Important*-6.11","neu":true,"file":"index.tex","cls":"Important"},{"reftag":"6.14","label":"Theorem","autoid":"Theorem-id-theorem-1-minus-n","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-1-minus-n","neu":true,"file":"index.tex","refnum":"6.14"},{"reftag":"","label":"Warning","autoid":"Warning*-6.9","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-6.9","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.20","label":"Example","autoid":"Example-6.20","title":"","reflabel":"Example","cls":"Example","id":"Example-6.20","neu":true,"file":"index.tex","refnum":"6.20"},{"reftag":"6.22","label":"Remark","autoid":"Remark-6.22","title":"","reflabel":"Remark","cls":"Remark","id":"Remark-6.22","neu":true,"file":"index.tex","refnum":"6.22"},{"reftag":"","label":"Proof","autoid":"Proof*-6.11","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.11","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.25","label":"Theorem","autoid":"Theorem-6.25","title":"Algebra of limits","reflabel":"Theorem","cls":"Theorem","id":"theorem-algebra-limits","neu":true,"file":"index.tex","refnum":"6.25"},{"reftag":"","label":"Important","autoid":"Important*-6.12","title":"","refnum":"??","reflabel":"Important","id":"Important*-6.12","neu":true,"file":"index.tex","cls":"Important"},{"reftag":"6.27","label":"Example","autoid":"Example-id-example-algebra-of-limits-2","title":"","reflabel":"Example","cls":"Example","id":"example-algebra-of-limits-2","neu":true,"file":"index.tex","refnum":"6.27"},{"reftag":"6.28","label":"Example","autoid":"Example-6.28","title":"","reflabel":"Example","cls":"Example","id":"Example-6.28","neu":true,"file":"index.tex","refnum":"6.28"},{"reftag":"","label":"Warning","autoid":"Warning*-6.13","title":"","refnum":"??","reflabel":"Warning","id":"Warning*-6.13","neu":true,"file":"index.tex","cls":"Warning"},{"reftag":"","label":"Proof","autoid":"Proof*-6.14","title":"Proof of Theorem 6.25","refnum":"??","reflabel":"Proof","id":"proof-of-theorem-5","neu":true,"file":"index.tex","cls":"Proof"},{"reftag":"6.29","label":"Example","autoid":"Example-6.29","title":"","reflabel":"Example","cls":"Example","id":"Example-6.29","neu":true,"file":"index.tex","refnum":"6.29"},{"reftag":"6.30","label":"Example","autoid":"Example-6.30","title":"","reflabel":"Example","cls":"Example","id":"Example-6.30","neu":true,"file":"index.tex","refnum":"6.30"},{"reftag":"6.31","label":"Theorem","autoid":"Theorem-6.31","title":"","refnum":"6.31","reflabel":"Theorem","id":"Theorem-6.31","neu":true,"file":"index.tex","cls":"Theorem"},{"reftag":"","label":"Proof","autoid":"Proof*-6.15","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.15","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.32","label":"Example","autoid":"Example-6.32","title":"","reflabel":"Example","cls":"Example","id":"Example-6.32","neu":true,"file":"index.tex","refnum":"6.32"},{"reftag":"6.33","label":"Example","autoid":"Example-6.33","title":"","reflabel":"Example","cls":"Example","id":"Example-6.33","neu":true,"file":"index.tex","refnum":"6.33"},{"reftag":"","label":"Proof","autoid":"Proof*-6.12","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.12","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"","label":"Important","autoid":"Important*-6.13","title":"","reflabel":"Important","cls":"Important","id":"Important*-6.13","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"","label":"Warning","autoid":"Warning*-6.14","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-6.14","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.31","label":"Theorem","autoid":"Theorem-id-theorem-square-root-limit","title":"","reflabel":"Theorem","cls":"Theorem","id":"theorem-square-root-limit","neu":true,"file":"index.tex","refnum":"6.31"},{"reftag":"6.34","label":"Theorem","autoid":"Theorem-6.34","title":"Squeeze theorem","reflabel":"Theorem","cls":"Theorem","id":"theorem-squeeze","neu":true,"file":"index.tex","refnum":"6.34"},{"reftag":"","label":"Proof","autoid":"Proof*-6.16","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.16","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.35","label":"Example","autoid":"Example-6.35","title":"","reflabel":"Example","cls":"Example","id":"Example-6.35","neu":true,"file":"index.tex","refnum":"6.35"},{"reftag":"6.36","label":"Example","autoid":"Example-id-example-squeeze","title":"","reflabel":"Example","cls":"Example","id":"example-squeeze","neu":true,"file":"index.tex","refnum":"6.36"},{"reftag":"","label":"Warning","autoid":"Warning*-6.17","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-6.17","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.37","label":"Example","autoid":"Example-6.37","title":"","reflabel":"Example","cls":"Example","id":"Example-6.37","neu":true,"file":"index.tex","refnum":"6.37"},{"reftag":"6.38","label":"Definition","autoid":"Definition-6.38","title":"","reflabel":"Definition","cls":"Definition","id":"Definition-6.38","neu":true,"file":"index.tex","refnum":"6.38"},{"reftag":"6.39","label":"Theorem","autoid":"Theorem-6.39","title":"Geometric sequence test","reflabel":"Theorem","cls":"Theorem","id":"theorem-geometric-sequence","neu":true,"file":"index.tex","refnum":"6.39"},{"reftag":"","label":"Warning","autoid":"Warning*-6.18","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-6.18","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.40","label":"Lemma","autoid":"Lemma-6.40","title":"Bernoulli’s inequality","reflabel":"Lemma","cls":"Lemma","id":"lemma-bernoulli","neu":true,"file":"index.tex","refnum":"6.40"},{"reftag":"","label":"Proof","autoid":"Proof*-6.19","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.19","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"","label":"Proof","autoid":"Proof*-6.20","title":"Proof of Theorem 6.39","reflabel":"Proof","cls":"Proof","id":"proof-of-theorem-5","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.41","label":"Example","autoid":"Example-6.41","title":"","reflabel":"Example","cls":"Example","id":"Example-6.41","neu":true,"file":"index.tex","refnum":"6.41"},{"reftag":"6.42","label":"Theorem","autoid":"Theorem-6.42","title":"Ratio test","reflabel":"Theorem","cls":"Theorem","id":"ratio-test-1","neu":true,"file":"index.tex","refnum":"6.42"},{"reftag":"","label":"Proof","autoid":"Proof*-6.21","title":"","reflabel":"Proof","cls":"Proof","id":"Proof*-6.21","neu":true,"file":"index.tex","refnum":"??"},{"reftag":"6.43","label":"Example","autoid":"Example-6.43","title":"","reflabel":"Example","cls":"Example","id":"Example-6.43","neu":true,"file":"index.tex","refnum":"6.43"},{"reftag":"","label":"Warning","autoid":"Warning*-6.22","title":"","reflabel":"Warning","cls":"Warning","id":"Warning*-6.22","neu":true,"file":"index.tex","refnum":"??"}] \ No newline at end of file +[{"file":"index.tex","autoid":"Definition-1.1","reftag":"1.1","reflabel":"Definition","neu":true,"id":"Definition-1.1","refnum":"1.1","label":"Definition","cls":"Definition","title":""},{"file":"index.tex","autoid":"Question*-1.1","reftag":"","reflabel":"Question","neu":true,"id":"Question*-1.1","refnum":"??","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Question*-1.2","reftag":"","reflabel":"Question","neu":true,"id":"Question*-1.2","refnum":"??","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Question*-1.3","reftag":"","reflabel":"Question","neu":true,"id":"Question*-1.3","refnum":"??","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Question*-1.4","reftag":"","reflabel":"Question","neu":true,"id":"Question*-1.4","refnum":"??","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Conjecture-id-conj-line","reftag":"1.5","label":"Conjecture","id":"conj-line","reflabel":"Conjecture","refnum":"1.5","neu":true,"cls":"Conjecture","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-root-2","reftag":"1.6","label":"Theorem","id":"theorem-root-2","reflabel":"Theorem","refnum":"1.6","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-1.5","reftag":"","reflabel":"Proof","neu":true,"id":"proof-of-theorem","refnum":"??","label":"Proof","cls":"Proof","title":"Proof of Theorem 1.2"},{"file":"index.tex","autoid":"Theorem-1.3","reftag":"1.3","reflabel":"Theorem","neu":true,"id":"to-keep-in-mind-for-the-next-lessons","refnum":"1.3","label":"Theorem","cls":"Theorem","title":"To keep in mind for the next lessons"},{"file":"index.tex","autoid":"Question-id-Question-1","reftag":"1.1","label":"Question","id":"Question-1","reflabel":"Question","refnum":"1.1","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Question-id-Question-2","reftag":"1.2","label":"Question","id":"Question-2","reflabel":"Question","refnum":"1.2","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Question-1.3","reftag":"1.3","label":"Question","id":"Question-1.3","reflabel":"Question","refnum":"1.3","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Question-1.4","reftag":"1.4","label":"Question","id":"Question-1.4","reflabel":"Question","refnum":"1.4","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Proof*-1.1","reftag":"","label":"Proof","id":"proof-of-theorem","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"Proof of Theorem 1.6"},{"file":"index.tex","autoid":"Theorem-1.7","reftag":"1.7","reflabel":"Theorem","neu":true,"id":"to-keep-in-mind-for-the-next-lessons","refnum":"1.7","label":"Theorem","cls":"Theorem","title":"To keep in mind for the next lessons"},{"file":"index.tex","autoid":"Remark-1.7","reftag":"1.7","label":"Remark","id":"Remark-1.7","reflabel":"Remark","refnum":"1.7","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Theorem-1.8","reftag":"1.8","label":"Theorem","id":"we-will-prove-this-in-the-future","reflabel":"Theorem","refnum":"1.8","neu":true,"cls":"Theorem","title":"We will prove this in the future"},{"file":"index.tex","autoid":"Theorem-1.9","reftag":"1.9","label":"Theorem","id":"we-will-prove-this-in-the-future-1","reflabel":"Theorem","refnum":"1.9","neu":true,"cls":"Theorem","title":"We will prove this in the future"},{"file":"index.tex","autoid":"Remark-2.1","reftag":"2.1","label":"Remark","id":"Remark-2.1","reflabel":"Remark","refnum":"2.1","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Example-2.2","reftag":"2.2","label":"Example","id":"Example-2.2","reflabel":"Example","refnum":"2.2","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-2.3","reftag":"2.3","label":"Example","id":"Example-2.3","reflabel":"Example","refnum":"2.3","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-2.4","reftag":"2.4","label":"Example","id":"Example-2.4","reflabel":"Example","refnum":"2.4","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Proposition-id-Proposition-Equality-Sets","reftag":"2.7","label":"Proposition","id":"Proposition-Equality-Sets","reflabel":"Proposition","refnum":"2.7","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proof*-2.1","reftag":"","label":"Proof","id":"Proof*-2.1","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-2.6","reftag":"2.6","label":"Example","id":"Example-2.6","reflabel":"Example","refnum":"2.6","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-2.7","reftag":"2.7","reflabel":"Remark","neu":true,"id":"Remark-2.7","refnum":"2.7","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Example-2.8","reftag":"2.8","label":"Example","id":"Example-2.8","reflabel":"Example","refnum":"2.8","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Proposition-2.9","reftag":"2.9","reflabel":"Proposition","neu":true,"id":"de-morgans-laws","refnum":"2.9","label":"Proposition","cls":"Proposition","title":"De Morgan’s Laws"},{"file":"index.tex","autoid":"Definition-2.10","reftag":"2.10","reflabel":"Definition","neu":true,"id":"system-of-real-numbers-mathbbr","refnum":"2.10","label":"Definition","cls":"Definition","title":"System of Real Numbers \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Definition-2.11","reftag":"2.11","reflabel":"Definition","neu":true,"id":"equivalence-classes","refnum":"2.11","label":"Definition","cls":"Definition","title":"Equivalence classes"},{"file":"index.tex","autoid":"Example-2.12","reftag":"2.12","reflabel":"Example","neu":true,"id":"equality-is-an-equivalence-relation","refnum":"2.12","label":"Example","cls":"Example","title":"Equality is an equivalence relation"},{"file":"index.tex","autoid":"Definition-2.13","reftag":"2.13","reflabel":"Definition","neu":true,"id":"equivalence-classes","refnum":"2.13","label":"Definition","cls":"Definition","title":"Equivalence classes"},{"file":"index.tex","autoid":"Example-2.14","reftag":"2.14","reflabel":"Example","neu":true,"id":"equality-is-an-equivalence-relation","refnum":"2.14","label":"Example","cls":"Example","title":"Equality is an equivalence relation"},{"file":"index.tex","autoid":"Definition-2.15","reftag":"2.15","label":"Definition","id":"equivalence-classes","reflabel":"Definition","refnum":"2.15","neu":true,"cls":"Definition","title":"Equivalence classes"},{"file":"index.tex","autoid":"Example-2.16","reftag":"2.16","label":"Example","id":"equality-is-an-equivalence-relation","reflabel":"Example","refnum":"2.16","neu":true,"cls":"Example","title":"Equality is an equivalence relation"},{"file":"index.tex","autoid":"Remark-2.17","reftag":"2.17","reflabel":"Remark","neu":true,"id":"Remark-2.17","refnum":"2.17","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Remark-id-Remark-Absolute-Value-Sym","reftag":"2.18","reflabel":"Remark","neu":true,"id":"Remark-Absolute-Value-Sym","refnum":"2.18","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Remark-2.19","reftag":"2.19","reflabel":"Remark","neu":true,"id":"geometric-interpretation-of-x","refnum":"2.19","label":"Remark","cls":"Remark","title":"Geometric interpretation of \\(|x|\\)"},{"file":"index.tex","autoid":"Remark-id-remark-absolute-value-sym","reftag":"2.18","reflabel":"Remark","neu":true,"id":"remark-absolute-value-sym","refnum":"2.18","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Remark-id-rmk-absolute-value-sym","reftag":"2.30","label":"Remark","id":"rmk-absolute-value-sym","reflabel":"Remark","refnum":"2.30","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Remark-2.20","reftag":"2.20","reflabel":"Remark","neu":true,"id":"Remark-2.20","refnum":"2.20","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Lemma-2.21","reftag":"2.21","reflabel":"Lemma","neu":true,"id":"Lemma-2.21","refnum":"2.21","label":"Lemma","cls":"Lemma","title":""},{"file":"index.tex","autoid":"Example-2.5","reftag":"2.5","label":"Example","id":"Example-2.5","reflabel":"Example","refnum":"2.5","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-2.9","reftag":"2.9","label":"Remark","id":"Remark-2.9","reflabel":"Remark","refnum":"2.9","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Example-2.10","reftag":"2.10","label":"Example","id":"Example-2.10","reflabel":"Example","refnum":"2.10","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Proposition-2.11","reftag":"2.11","label":"Proposition","id":"de-morgans-laws","reflabel":"Proposition","refnum":"2.11","neu":true,"cls":"Proposition","title":"De Morgan’s Laws"},{"file":"index.tex","autoid":"Definition-2.12","reftag":"2.12","reflabel":"Definition","neu":true,"id":"equivalence-relation-1","refnum":"2.12","label":"Definition","cls":"Definition","title":"Equivalence relation"},{"file":"index.tex","autoid":"Definition-2.17","reftag":"2.17","reflabel":"Definition","neu":true,"id":"Definition-2.17","refnum":"2.17","label":"Definition","cls":"Definition","title":""},{"file":"index.tex","autoid":"Definition-2.18","reftag":"2.18","label":"Definition","id":"partial-order","reflabel":"Definition","refnum":"2.18","neu":true,"cls":"Definition","title":"Partial order"},{"file":"index.tex","autoid":"Example-2.19","reftag":"2.19","reflabel":"Example","neu":true,"id":"Example-2.19","refnum":"2.19","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-2.22","reftag":"2.22","reflabel":"Remark","neu":true,"id":"geometric-interpretation-of-x","refnum":"2.22","label":"Remark","cls":"Remark","title":"Geometric interpretation of \\(|x|\\)"},{"file":"index.tex","autoid":"Remark-2.23","reftag":"2.23","reflabel":"Remark","neu":true,"id":"geometric-interpretation-of-x","refnum":"2.23","label":"Remark","cls":"Remark","title":"Geometric interpretation of \\(|x|\\)"},{"file":"index.tex","autoid":"Lemma-id-lemma-absolute-value","reftag":"2.33","label":"Lemma","id":"lemma-absolute-value","reflabel":"Lemma","refnum":"2.33","neu":true,"cls":"Lemma","title":""},{"file":"index.tex","autoid":"Proof*-2.2","reftag":"","reflabel":"Proof","neu":true,"id":"proof-of-lemma","refnum":"??","label":"Proof","cls":"Proof","title":"Proof of Lemma 2.30"},{"file":"index.tex","autoid":"Lemma-2.25","reftag":"2.25","reflabel":"Lemma","neu":true,"id":"Lemma-2.25","refnum":"2.25","label":"Lemma","cls":"Lemma","title":""},{"file":"index.tex","autoid":"Theorem-2.26","reftag":"2.26","reflabel":"Theorem","neu":true,"id":"theorem-triangle-inequality","refnum":"2.26","label":"Theorem","cls":"Theorem","title":"Triangle inequality"},{"file":"index.tex","autoid":"Proof*-2.3","reftag":"","label":"Proof","id":"proof-of-lemma","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"Proof of Lemma 2.33"},{"file":"index.tex","autoid":"Remark-2.27","reftag":"2.27","reflabel":"Remark","neu":true,"id":"geometric-meaning-of-triangle-inequality","refnum":"2.27","label":"Remark","cls":"Remark","title":"Geometric meaning of triangle inequality"},{"file":"index.tex","autoid":"Remark-2.28","reftag":"2.28","reflabel":"Remark","neu":true,"id":"geometric-interpretation-of-x","refnum":"2.28","label":"Remark","cls":"Remark","title":"Geometric interpretation of \\(|x|\\)"},{"file":"index.tex","autoid":"Example-2.15","reftag":"2.15","reflabel":"Example","neu":true,"id":"Example-2.15","refnum":"2.15","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-2.16","reftag":"2.16","reflabel":"Definition","neu":true,"id":"order-relation-1","refnum":"2.16","label":"Definition","cls":"Definition","title":"Order relation"},{"file":"index.tex","autoid":"Example-2.17","reftag":"2.17","label":"Example","id":"Example-2.17","reflabel":"Example","refnum":"2.17","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-2.19","reftag":"2.19","label":"Definition","id":"total-order","reflabel":"Definition","refnum":"2.19","neu":true,"cls":"Definition","title":"Total order"},{"file":"index.tex","autoid":"Example-2.20","reftag":"2.20","label":"Example","id":"set-inclusion-is-a-partial-order","reflabel":"Example","refnum":"2.20","neu":true,"cls":"Example","title":"Set inclusion is a partial order"},{"file":"index.tex","autoid":"Remark-2.21","reftag":"2.21","reflabel":"Remark","neu":true,"id":"Remark-2.21","refnum":"2.21","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Remark-2.24","reftag":"2.24","reflabel":"Remark","neu":true,"id":"geometric-interpretation-of-x-y","refnum":"2.24","label":"Remark","cls":"Remark","title":"Geometric interpretation of \\(|x-y|\\)"},{"file":"index.tex","autoid":"Lemma-2.26","reftag":"2.26","reflabel":"Lemma","neu":true,"id":"Lemma-2.26","refnum":"2.26","label":"Lemma","cls":"Lemma","title":""},{"file":"index.tex","autoid":"Theorem-2.27","reftag":"2.27","reflabel":"Theorem","neu":true,"id":"theorem-triangle-inequality","refnum":"2.27","label":"Theorem","cls":"Theorem","title":"Triangle inequality"},{"file":"index.tex","autoid":"Remark-2.29","reftag":"2.29","label":"Remark","id":"Remark-2.29","reflabel":"Remark","refnum":"2.29","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Proposition-id-proposition-easy","reftag":"2.38","label":"Proposition","id":"proposition-easy","reflabel":"Proposition","refnum":"2.38","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proof*-2.4","reftag":"","label":"Proof","id":"proof-of-theorem-1","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"Proof of Theorem 2.32"},{"file":"index.tex","autoid":"Axiom-2.31","reftag":"2.31","reflabel":"Axiom","neu":true,"id":"principle-of-induction","refnum":"2.31","label":"Axiom","cls":"Axiom","title":"Principle of Induction"},{"file":"index.tex","autoid":"Important*-2.5","reftag":"","reflabel":"Important","neu":true,"id":"Important*-2.5","refnum":"??","label":"Important","cls":"Important","title":""},{"file":"index.tex","autoid":"Remark-2.32","reftag":"2.32","label":"Remark","id":"geometric-interpretation-of-x-y","reflabel":"Remark","refnum":"2.32","neu":true,"cls":"Remark","title":"Geometric interpretation of \\(|x-y|\\)"},{"file":"index.tex","autoid":"Corollary-2.33","reftag":"2.33","reflabel":"Corollary","neu":true,"id":"principle-of-inducion---alternative-formulation","refnum":"2.33","label":"Corollary","cls":"Corollary","title":"Principle of Inducion - Alternative formulation"},{"file":"index.tex","autoid":"Proof*-2.6","reftag":"","reflabel":"Proof","neu":true,"id":"Proof*-2.6","refnum":"??","label":"Proof","cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-2.34","reftag":"2.34","reflabel":"Example","neu":true,"id":"formula-for-summing-first-n-natural-numbers","refnum":"2.34","label":"Example","cls":"Example","title":"Formula for summing first \\(n\\) natural numbers"},{"file":"index.tex","autoid":"Example-2.35","reftag":"2.35","reflabel":"Example","neu":true,"id":"statements-about-sequences-of-numbers","refnum":"2.35","label":"Example","cls":"Example","title":"Statements about sequences of numbers"},{"file":"index.tex","autoid":"Proposition-id-proposition-heron","reftag":"6.1","reflabel":"Proposition","neu":true,"id":"proposition-heron","refnum":"6.1","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proof*-4.1","reftag":"","label":"Proof","id":"Proof*-4.1","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Proposition-4.2","reftag":"4.2","reflabel":"Proposition","neu":true,"id":"proposition-heron-error","refnum":"4.2","label":"Proposition","cls":"Proposition","title":"Error estimate"},{"file":"index.tex","autoid":"Proof*-4.2","reftag":"","label":"Proof","id":"Proof*-4.2","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Proposition-id-proposition-heron-error-exp","reftag":"6.3","reflabel":"Proposition","neu":true,"id":"proposition-heron-error-exp","refnum":"6.3","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proof*-4.3","reftag":"","label":"Proof","id":"Proof*-4.3","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-4.4","reftag":"4.4","reflabel":"Theorem","neu":true,"id":"convergence-of-herons-algorithm","refnum":"4.4","label":"Theorem","cls":"Theorem","title":"Convergence of Heron’s Algorithm"},{"file":"index.tex","autoid":"Proof*-4.4","reftag":"","reflabel":"Proof","neu":true,"id":"Proof*-4.4","refnum":"??","label":"Proof","cls":"Proof","title":""},{"file":"index.tex","autoid":"Definition-3.1","reftag":"3.1","label":"Definition","id":"binary-operation","reflabel":"Definition","refnum":"3.1","neu":true,"cls":"Definition","title":"Binary operation"},{"file":"index.tex","autoid":"Remark-2.12","reftag":"2.12","label":"Remark","id":"Remark-2.12","reflabel":"Remark","refnum":"2.12","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Example-2.13","reftag":"2.13","label":"Example","id":"Example-2.13","reflabel":"Example","refnum":"2.13","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-2.14","reftag":"2.14","label":"Definition","id":"equivalence-relation-1","reflabel":"Definition","refnum":"2.14","neu":true,"cls":"Definition","title":"Equivalence relation"},{"file":"index.tex","autoid":"Example-2.21","reftag":"2.21","label":"Example","id":"inequality-is-a-total-order","reflabel":"Example","refnum":"2.21","neu":true,"cls":"Example","title":"Inequality is a total order"},{"file":"index.tex","autoid":"Notation-2.22","reftag":"2.22","label":"Notation","id":"Notation-2.22","reflabel":"Notation","refnum":"2.22","neu":true,"cls":"Notation","title":""},{"file":"index.tex","autoid":"Definition-2.23","reftag":"2.23","label":"Definition","id":"Definition-2.23","reflabel":"Definition","refnum":"2.23","neu":true,"cls":"Definition","title":""},{"file":"index.tex","autoid":"Definition-2.24","reftag":"2.24","label":"Definition","id":"definition-function","reflabel":"Definition","refnum":"2.24","neu":true,"cls":"Definition","title":"Functions"},{"file":"index.tex","autoid":"Warning*-2.2","reftag":"","label":"Warning","id":"Warning*-2.2","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Example-2.25","reftag":"2.25","label":"Example","id":"Example-2.25","reflabel":"Example","refnum":"2.25","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-2.26","reftag":"2.26","label":"Example","id":"Example-2.26","reflabel":"Example","refnum":"2.26","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-2.27","reftag":"2.27","label":"Definition","id":"absolute-value","reflabel":"Definition","refnum":"2.27","neu":true,"cls":"Definition","title":"Absolute value"},{"file":"index.tex","autoid":"Example-2.28","reftag":"2.28","label":"Example","id":"Example-2.28","reflabel":"Example","refnum":"2.28","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-2.31","reftag":"2.31","label":"Remark","id":"geometric-interpretation-of-x","reflabel":"Remark","refnum":"2.31","neu":true,"cls":"Remark","title":"Geometric interpretation of \\(|x|\\)"},{"file":"index.tex","autoid":"Lemma-2.34","reftag":"2.34","label":"Lemma","id":"Lemma-2.34","reflabel":"Lemma","refnum":"2.34","neu":true,"cls":"Lemma","title":""},{"file":"index.tex","autoid":"Theorem-2.35","reftag":"2.35","label":"Theorem","id":"theorem-triangle-inequality","reflabel":"Theorem","refnum":"2.35","neu":true,"cls":"Theorem","title":"Triangle inequality"},{"file":"index.tex","autoid":"Remark-2.36","reftag":"2.36","label":"Remark","id":"geometric-meaning-of-triangle-inequality","reflabel":"Remark","refnum":"2.36","neu":true,"cls":"Remark","title":"Geometric meaning of triangle inequality"},{"file":"index.tex","autoid":"Remark-2.37","reftag":"2.37","label":"Remark","id":"Remark-2.37","reflabel":"Remark","refnum":"2.37","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Proof*-2.5","reftag":"","label":"Proof","id":"of-proposition","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"of Proposition 2.38"},{"file":"index.tex","autoid":"Axiom-2.39","reftag":"2.39","label":"Axiom","id":"principle-of-induction","reflabel":"Axiom","refnum":"2.39","neu":true,"cls":"Axiom","title":"Principle of Induction"},{"file":"index.tex","autoid":"Important*-2.6","reftag":"","label":"Important","id":"Important*-2.6","reflabel":"Important","refnum":"??","neu":true,"cls":"Important","title":""},{"file":"index.tex","autoid":"Remark-2.40","reftag":"2.40","label":"Remark","id":"Remark-2.40","reflabel":"Remark","refnum":"2.40","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Corollary-2.41","reftag":"2.41","label":"Corollary","id":"principle-of-inducion---alternative-formulation","reflabel":"Corollary","refnum":"2.41","neu":true,"cls":"Corollary","title":"Principle of Inducion - Alternative formulation"},{"file":"index.tex","autoid":"Proof*-2.7","reftag":"","label":"Proof","id":"Proof*-2.7","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-2.42","reftag":"2.42","label":"Example","id":"formula-for-summing-first-n-natural-numbers","reflabel":"Example","refnum":"2.42","neu":true,"cls":"Example","title":"Formula for summing first \\(n\\) natural numbers"},{"file":"index.tex","autoid":"Example-2.43","reftag":"2.43","label":"Example","id":"statements-about-sequences-of-numbers","reflabel":"Example","refnum":"2.43","neu":true,"cls":"Example","title":"Statements about sequences of numbers"},{"file":"index.tex","autoid":"Definition-3.2","reftag":"3.2","reflabel":"Definition","neu":true,"id":"Definition-3.2","refnum":"3.2","label":"Definition","cls":"Definition","title":""},{"file":"index.tex","autoid":"Definition-3.3","reftag":"3.3","reflabel":"Definition","neu":true,"id":"Definition-3.3","refnum":"3.3","label":"Definition","cls":"Definition","title":""},{"file":"index.tex","autoid":"Example-3.4","reftag":"3.4","reflabel":"Example","neu":true,"id":"Example-3.4","refnum":"3.4","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Question-3.5","reftag":"3.5","reflabel":"Question","neu":true,"id":"Question-3.5","refnum":"3.5","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-3.6","reftag":"3.6","reflabel":"Theorem","neu":true,"id":"mathbbq-does-not-have-the-cut-property.","refnum":"3.6","label":"Theorem","cls":"Theorem","title":"\\(\\mathbb{Q}\\) does not have the cut property."},{"file":"index.tex","autoid":"Proof*-3.1","reftag":"","label":"Proof","id":"Proof*-3.1","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Remark-3.7","reftag":"3.7","reflabel":"Remark","neu":true,"id":"Remark-3.7","refnum":"3.7","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Definition-3.8","reftag":"3.8","reflabel":"Definition","neu":true,"id":"subtraction-and-division","refnum":"3.8","label":"Definition","cls":"Definition","title":"Subtraction and division"},{"file":"index.tex","autoid":"Definition-3.9","reftag":"3.9","label":"Definition","id":"subtraction-and-division","reflabel":"Definition","refnum":"3.9","neu":true,"cls":"Definition","title":"Subtraction and division"},{"file":"index.tex","autoid":"Definition-3.10","reftag":"3.10","reflabel":"Definition","neu":true,"id":"partition-of-a-set","refnum":"3.10","label":"Definition","cls":"Definition","title":"Partition of a set"},{"file":"index.tex","autoid":"Remark-3.11","reftag":"3.11","reflabel":"Remark","neu":true,"id":"Remark-3.11","refnum":"3.11","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Remark-2.26","reftag":"2.26","reflabel":"Remark","neu":true,"id":"Remark-2.26","refnum":"2.26","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Lemma-2.31","reftag":"2.31","reflabel":"Lemma","neu":true,"id":"Lemma-2.31","refnum":"2.31","label":"Lemma","cls":"Lemma","title":""},{"file":"index.tex","autoid":"Theorem-2.32","reftag":"2.32","reflabel":"Theorem","neu":true,"id":"theorem-triangle-inequality","refnum":"2.32","label":"Theorem","cls":"Theorem","title":"Triangle inequality"},{"file":"index.tex","autoid":"Remark-2.33","reftag":"2.33","reflabel":"Remark","neu":true,"id":"geometric-meaning-of-triangle-inequality","refnum":"2.33","label":"Remark","cls":"Remark","title":"Geometric meaning of triangle inequality"},{"file":"index.tex","autoid":"Remark-2.34","reftag":"2.34","reflabel":"Remark","neu":true,"id":"Remark-2.34","refnum":"2.34","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Axiom-2.36","reftag":"2.36","reflabel":"Axiom","neu":true,"id":"principle-of-induction","refnum":"2.36","label":"Axiom","cls":"Axiom","title":"Principle of Induction"},{"file":"index.tex","autoid":"Corollary-2.38","reftag":"2.38","reflabel":"Corollary","neu":true,"id":"principle-of-inducion---alternative-formulation","refnum":"2.38","label":"Corollary","cls":"Corollary","title":"Principle of Inducion - Alternative formulation"},{"file":"index.tex","autoid":"Example-2.39","reftag":"2.39","reflabel":"Example","neu":true,"id":"formula-for-summing-first-n-natural-numbers","refnum":"2.39","label":"Example","cls":"Example","title":"Formula for summing first \\(n\\) natural numbers"},{"file":"index.tex","autoid":"Example-2.40","reftag":"2.40","reflabel":"Example","neu":true,"id":"statements-about-sequences-of-numbers","refnum":"2.40","label":"Example","cls":"Example","title":"Statements about sequences of numbers"},{"file":"index.tex","autoid":"Definition-2.1","reftag":"2.1","reflabel":"Definition","neu":true,"id":"partition-of-a-set","refnum":"2.1","label":"Definition","cls":"Definition","title":"Partition of a set"},{"file":"index.tex","autoid":"Definition-2.2","reftag":"2.2","reflabel":"Definition","neu":true,"id":"cut-of-a-set","refnum":"2.2","label":"Definition","cls":"Definition","title":"Cut of a set"},{"file":"index.tex","autoid":"Definition-2.3","reftag":"2.3","reflabel":"Definition","neu":true,"id":"cut-property-1","refnum":"2.3","label":"Definition","cls":"Definition","title":"Cut property"},{"file":"index.tex","autoid":"Question-2.5","reftag":"2.5","reflabel":"Question","neu":true,"id":"Question-2.5","refnum":"2.5","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-2.6","reftag":"2.6","reflabel":"Theorem","neu":true,"id":"mathbbq-does-not-have-the-cut-property.","refnum":"2.6","label":"Theorem","cls":"Theorem","title":"\\(\\mathbb{Q}\\) does not have the cut property."},{"file":"index.tex","autoid":"Definition-2.8","reftag":"2.8","reflabel":"Definition","neu":true,"id":"binary-operation","refnum":"2.8","label":"Definition","cls":"Definition","title":"Binary operation"},{"file":"index.tex","autoid":"Definition-2.9","reftag":"2.9","reflabel":"Definition","neu":true,"id":"field","refnum":"2.9","label":"Definition","cls":"Definition","title":"Field"},{"file":"index.tex","autoid":"Remark-2.11","reftag":"2.11","reflabel":"Remark","neu":true,"id":"Remark-2.11","refnum":"2.11","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Proposition-3.2","reftag":"3.2","reflabel":"Proposition","neu":true,"id":"proposition-heron-error","refnum":"3.2","label":"Proposition","cls":"Proposition","title":"Error estimate"},{"file":"index.tex","autoid":"Proof*-3.2","reftag":"","label":"Proof","id":"proof-of-theorem-2","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"Proof of Theorem 3.20"},{"file":"index.tex","autoid":"Proof*-3.3","reftag":"","label":"Proof","id":"Proof*-3.3","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-3.4","reftag":"3.4","reflabel":"Theorem","neu":true,"id":"convergence-of-herons-algorithm","refnum":"3.4","label":"Theorem","cls":"Theorem","title":"Convergence of Heron’s Algorithm"},{"file":"index.tex","autoid":"Proof*-3.4","reftag":"","reflabel":"Proof","neu":true,"id":"Proof*-3.4","refnum":"??","label":"Proof","cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-3.2","reftag":"3.2","reflabel":"Example","neu":true,"id":"example-binary-operation","refnum":"3.2","label":"Example","cls":"Example","title":"of binary operation"},{"file":"index.tex","autoid":"Example-id-example-binary-operation-2","reftag":"3.5","label":"Example","id":"example-binary-operation-2","reflabel":"Example","refnum":"3.5","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-3.5","reftag":"3.5","reflabel":"Example","neu":true,"id":"Example-3.5","refnum":"3.5","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-3.6","reftag":"3.6","reflabel":"Definition","neu":true,"id":"subtraction-and-division","refnum":"3.6","label":"Definition","cls":"Definition","title":"Subtraction and division"},{"file":"index.tex","autoid":"Example-3.7","reftag":"3.7","reflabel":"Example","neu":true,"id":"Example-3.7","refnum":"3.7","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Proposition-3.9","reftag":"3.9","reflabel":"Proposition","neu":true,"id":"properties-of-field-operations","refnum":"3.9","label":"Proposition","cls":"Proposition","title":"Properties of field operations"},{"file":"index.tex","autoid":"Proposition-3.10","reftag":"3.10","label":"Proposition","id":"uniqueness-of-neutral-elements-and-inverses","reflabel":"Proposition","refnum":"3.10","neu":true,"cls":"Proposition","title":"Uniqueness of neutral elements and inverses"},{"file":"index.tex","autoid":"Theorem-3.11","reftag":"3.11","reflabel":"Theorem","neu":true,"id":"Theorem-3.11","refnum":"3.11","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Definition-3.12","reftag":"3.12","reflabel":"Definition","neu":true,"id":"cut-of-a-set","refnum":"3.12","label":"Definition","cls":"Definition","title":"Cut of a set"},{"file":"index.tex","autoid":"Definition-3.13","reftag":"3.13","label":"Definition","id":"Definition-3.13","reflabel":"Definition","refnum":"3.13","neu":true,"cls":"Definition","title":""},{"file":"index.tex","autoid":"Definition-3.14","reftag":"3.14","reflabel":"Definition","neu":true,"id":"cut-of-a-set","refnum":"3.14","label":"Definition","cls":"Definition","title":"Cut of a set"},{"file":"index.tex","autoid":"Example-3.15","reftag":"3.15","reflabel":"Example","neu":true,"id":"Example-3.15","refnum":"3.15","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Question-3.16","reftag":"3.16","reflabel":"Question","neu":true,"id":"Question-3.16","refnum":"3.16","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-3.17","reftag":"3.17","reflabel":"Theorem","neu":true,"id":"mathbbq-does-not-have-the-cut-property.","refnum":"3.17","label":"Theorem","cls":"Theorem","title":"\\(\\mathbb{Q}\\) does not have the cut property."},{"file":"index.tex","autoid":"Remark-3.18","reftag":"3.18","reflabel":"Remark","neu":true,"id":"Remark-3.18","refnum":"3.18","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Definition-3.19","reftag":"3.19","reflabel":"Definition","neu":true,"id":"system-of-real-numbers-mathbbr","refnum":"3.19","label":"Definition","cls":"Definition","title":"System of Real Numbers \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Definition-3.11","reftag":"3.11","reflabel":"Definition","neu":true,"id":"partition-of-a-set","refnum":"3.11","label":"Definition","cls":"Definition","title":"Partition of a set"},{"file":"index.tex","autoid":"Example-3.14","reftag":"3.14","label":"Example","id":"Example-3.14","reflabel":"Example","refnum":"3.14","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Question-3.15","reftag":"3.15","reflabel":"Question","neu":true,"id":"Question-3.15","refnum":"3.15","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-3.16","reftag":"3.16","reflabel":"Theorem","neu":true,"id":"mathbbq-does-not-have-the-cut-property.","refnum":"3.16","label":"Theorem","cls":"Theorem","title":"\\(\\mathbb{Q}\\) does not have the cut property."},{"file":"index.tex","autoid":"Remark-3.17","reftag":"3.17","reflabel":"Remark","neu":true,"id":"Remark-3.17","refnum":"3.17","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Definition-3.18","reftag":"3.18","reflabel":"Definition","neu":true,"id":"system-of-real-numbers-mathbbr","refnum":"3.18","label":"Definition","cls":"Definition","title":"System of Real Numbers \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Theorem-3.9","reftag":"3.9","reflabel":"Theorem","neu":true,"id":"Theorem-3.9","refnum":"3.9","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Example-3.13","reftag":"3.13","reflabel":"Example","neu":true,"id":"Example-3.13","refnum":"3.13","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Question-3.14","reftag":"3.14","reflabel":"Question","neu":true,"id":"Question-3.14","refnum":"3.14","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-3.15","reftag":"3.15","reflabel":"Theorem","neu":true,"id":"mathbbq-does-not-have-the-cut-property.","refnum":"3.15","label":"Theorem","cls":"Theorem","title":"\\(\\mathbb{Q}\\) does not have the cut property."},{"file":"index.tex","autoid":"Remark-3.16","reftag":"3.16","reflabel":"Remark","neu":true,"id":"Remark-3.16","refnum":"3.16","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Definition-3.17","reftag":"3.17","label":"Definition","id":"cut-property-1","reflabel":"Definition","refnum":"3.17","neu":true,"cls":"Definition","title":"Cut property"},{"file":"index.tex","autoid":"Proposition-3.7","reftag":"3.7","reflabel":"Proposition","neu":true,"id":"uniqueness-of-neutral-elements-and-inverses","refnum":"3.7","label":"Proposition","cls":"Proposition","title":"Uniqueness of neutral elements and inverses"},{"file":"index.tex","autoid":"Proposition-3.8","reftag":"3.8","reflabel":"Proposition","neu":true,"id":"uniqueness-of-neutral-elements-and-inverses","refnum":"3.8","label":"Proposition","cls":"Proposition","title":"Uniqueness of neutral elements and inverses"},{"file":"index.tex","autoid":"Definition-3.5","reftag":"3.5","reflabel":"Definition","neu":true,"id":"field","refnum":"3.5","label":"Definition","cls":"Definition","title":"Field"},{"file":"index.tex","autoid":"Example-3.6","reftag":"3.6","label":"Example","id":"Example-3.6","reflabel":"Example","refnum":"3.6","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-3.7","reftag":"3.7","label":"Definition","id":"field","reflabel":"Definition","refnum":"3.7","neu":true,"cls":"Definition","title":"Field"},{"file":"index.tex","autoid":"Theorem-3.10","reftag":"3.10","reflabel":"Theorem","neu":true,"id":"Theorem-3.10","refnum":"3.10","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Example-3.3","reftag":"3.3","label":"Example","id":"example-binary-operation","reflabel":"Example","refnum":"3.3","neu":true,"cls":"Example","title":"of binary operation"},{"file":"index.tex","autoid":"Definition-3.4","reftag":"3.4","label":"Definition","id":"Definition-3.4","reflabel":"Definition","refnum":"3.4","neu":true,"cls":"Definition","title":""},{"file":"index.tex","autoid":"Example-3.1","reftag":"3.1","reflabel":"Example","neu":true,"id":"example-binary-operation","refnum":"3.1","label":"Example","cls":"Example","title":"of binary operation"},{"file":"index.tex","autoid":"Notation-3.2","reftag":"3.2","label":"Notation","id":"Notation-3.2","reflabel":"Notation","refnum":"3.2","neu":true,"cls":"Notation","title":""},{"file":"index.tex","autoid":"Example-3.8","reftag":"3.8","label":"Example","id":"Example-3.8","reflabel":"Example","refnum":"3.8","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Proposition-3.11","reftag":"3.11","label":"Proposition","id":"properties-of-field-operations","reflabel":"Proposition","refnum":"3.11","neu":true,"cls":"Proposition","title":"Properties of field operations"},{"file":"index.tex","autoid":"Theorem-3.12","reftag":"3.12","label":"Theorem","id":"Theorem-3.12","reflabel":"Theorem","refnum":"3.12","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Definition-3.15","reftag":"3.15","label":"Definition","id":"partition-of-a-set","reflabel":"Definition","refnum":"3.15","neu":true,"cls":"Definition","title":"Partition of a set"},{"file":"index.tex","autoid":"Example-3.16","reftag":"3.16","reflabel":"Example","neu":true,"id":"Example-3.16","refnum":"3.16","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Question-3.17","reftag":"3.17","reflabel":"Question","neu":true,"id":"Question-3.17","refnum":"3.17","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-3.18","reftag":"3.18","reflabel":"Theorem","neu":true,"id":"mathbbq-does-not-have-the-cut-property.","refnum":"3.18","label":"Theorem","cls":"Theorem","title":"\\(\\mathbb{Q}\\) does not have the cut property."},{"file":"index.tex","autoid":"Remark-3.19","reftag":"3.19","reflabel":"Remark","neu":true,"id":"Remark-3.19","refnum":"3.19","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Definition-3.20","reftag":"3.20","reflabel":"Definition","neu":true,"id":"system-of-real-numbers-mathbbr","refnum":"3.20","label":"Definition","cls":"Definition","title":"System of Real Numbers \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Definition-3.16","reftag":"3.16","label":"Definition","id":"cut-of-a-set","reflabel":"Definition","refnum":"3.16","neu":true,"cls":"Definition","title":"Cut of a set"},{"file":"index.tex","autoid":"Example-3.18","reftag":"3.18","label":"Example","id":"Example-3.18","reflabel":"Example","refnum":"3.18","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Question-3.19","reftag":"3.19","label":"Question","id":"Question-3.19","reflabel":"Question","refnum":"3.19","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-3.20","reftag":"3.20","label":"Theorem","id":"theorem-Q-cut","reflabel":"Theorem","refnum":"3.20","neu":true,"cls":"Theorem","title":"\\(\\mathbb{Q}\\) does not have the cut property."},{"file":"index.tex","autoid":"Remark-3.21","reftag":"3.21","label":"Remark","id":"remark-idea-proof-cut","reflabel":"Remark","refnum":"3.21","neu":true,"cls":"Remark","title":"Ideas for the proof of Theorem 3.20"},{"file":"index.tex","autoid":"Definition-3.22","reftag":"3.22","reflabel":"Definition","neu":true,"id":"system-of-real-numbers-mathbbr","refnum":"3.22","label":"Definition","cls":"Definition","title":"System of Real Numbers \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Notation-3.23","reftag":"3.23","reflabel":"Notation","neu":true,"id":"Notation-3.23","refnum":"3.23","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Remark-3.24","reftag":"3.24","reflabel":"Remark","neu":true,"id":"Remark-3.24","refnum":"3.24","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Remark-3.25","reftag":"3.25","reflabel":"Remark","neu":true,"id":"Remark-3.25","refnum":"3.25","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Example-3.22","reftag":"3.22","reflabel":"Example","neu":true,"id":"intuition-about-supremum-and-infimum","refnum":"3.22","label":"Example","cls":"Example","title":"Intuition about supremum and infimum"},{"file":"index.tex","autoid":"Definition-3.23","reftag":"3.23","reflabel":"Definition","neu":true,"id":"upper-bound-and-bounded-above","refnum":"3.23","label":"Definition","cls":"Definition","title":"Upper bound and bounded above"},{"file":"index.tex","autoid":"Definition-3.24","reftag":"3.24","label":"Definition","id":"upper-bound-and-bounded-above","reflabel":"Definition","refnum":"3.24","neu":true,"cls":"Definition","title":"Upper bound and bounded above"},{"file":"index.tex","autoid":"Notation-3.25","reftag":"3.25","reflabel":"Notation","neu":true,"id":"Notation-3.25","refnum":"3.25","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Proposition-3.26","reftag":"3.26","reflabel":"Proposition","neu":true,"id":"Proposition-3.26","refnum":"3.26","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Warning*-3.4","reftag":"","label":"Warning","id":"Warning*-3.4","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Warning*-3.5","reftag":"","label":"Warning","id":"Warning*-3.5","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Definition-3.27","reftag":"3.27","reflabel":"Definition","neu":true,"id":"maximum","refnum":"3.27","label":"Definition","cls":"Definition","title":"Maximum"},{"file":"index.tex","autoid":"Proposition-3.28","reftag":"3.28","label":"Proposition","id":"Proposition-3.28","reflabel":"Proposition","refnum":"3.28","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proof*-3.6","reftag":"","label":"Proof","id":"Proof*-3.6","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Warning*-3.7","reftag":"","label":"Warning","id":"Warning*-3.7","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Definition-3.29","reftag":"3.29","label":"Definition","id":"maximum","reflabel":"Definition","refnum":"3.29","neu":true,"cls":"Definition","title":"Maximum"},{"file":"index.tex","autoid":"Proposition-3.30","reftag":"3.30","label":"Proposition","id":"Proposition-3.30","reflabel":"Proposition","refnum":"3.30","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Warning*-3.8","reftag":"","label":"Warning","id":"Warning*-3.8","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Warning*-3.9","reftag":"","label":"Warning","id":"Warning*-3.9","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Warning*-3.10","reftag":"","label":"Warning","id":"Warning*-3.10","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Proposition-3.31","reftag":"3.31","reflabel":"Proposition","neu":true,"id":"Proposition-3.31","refnum":"3.31","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proposition-3.32","reftag":"3.32","label":"Proposition","id":"Proposition-3.32","reflabel":"Proposition","refnum":"3.32","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Definition-3.33","reftag":"3.33","reflabel":"Definition","neu":true,"id":"system-of-real-numbers-mathbbr","refnum":"3.33","label":"Definition","cls":"Definition","title":"System of Real Numbers \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Notation-3.34","reftag":"3.34","reflabel":"Notation","neu":true,"id":"Notation-3.34","refnum":"3.34","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Remark-3.35","reftag":"3.35","reflabel":"Remark","neu":true,"id":"Remark-3.35","refnum":"3.35","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Remark-3.36","reftag":"3.36","reflabel":"Remark","neu":true,"id":"Remark-3.36","refnum":"3.36","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Remark-3.26","reftag":"3.26","reflabel":"Remark","neu":true,"id":"Remark-3.26","refnum":"3.26","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Proposition-3.27","reftag":"3.27","reflabel":"Proposition","neu":true,"id":"Proposition-3.27","refnum":"3.27","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Definition-3.28","reftag":"3.28","reflabel":"Definition","neu":true,"id":"maximum","refnum":"3.28","label":"Definition","cls":"Definition","title":"Maximum"},{"file":"index.tex","autoid":"Proposition-3.29","reftag":"3.29","reflabel":"Proposition","neu":true,"id":"Proposition-3.29","refnum":"3.29","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Definition-3.30","reftag":"3.30","reflabel":"Definition","neu":true,"id":"upper-bound-bounded-below-infimum-minimum","refnum":"3.30","label":"Definition","cls":"Definition","title":"Upper bound, bounded below, infimum, minimum"},{"file":"index.tex","autoid":"Proposition-3.33","reftag":"3.33","label":"Proposition","id":"Proposition-3.33","reflabel":"Proposition","refnum":"3.33","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Question-3.34","reftag":"3.34","reflabel":"Question","neu":true,"id":"Question-3.34","refnum":"3.34","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-Q-not-complete","reftag":"3.36","label":"Theorem","id":"theorem-Q-not-complete","reflabel":"Theorem","refnum":"3.36","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-3.11","reftag":"","label":"Proof","id":"Proof*-3.11","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Question-3.36","reftag":"3.36","reflabel":"Question","neu":true,"id":"Question-3.36","refnum":"3.36","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Definition-3.37","reftag":"3.37","reflabel":"Definition","neu":true,"id":"completeness-1","refnum":"3.37","label":"Definition","cls":"Definition","title":"Completeness"},{"file":"index.tex","autoid":"Notation-3.38","reftag":"3.38","reflabel":"Notation","neu":true,"id":"Notation-3.38","refnum":"3.38","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Proposition-3.39","reftag":"3.39","reflabel":"Proposition","neu":true,"id":"Proposition-3.39","refnum":"3.39","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proof*-3.12","reftag":"","label":"Proof","id":"Proof*-3.12","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-3.40","reftag":"3.40","reflabel":"Theorem","neu":true,"id":"theorem-cut-complete","refnum":"3.40","label":"Theorem","cls":"Theorem","title":"Equivalence of Cut Property and Completeness"},{"file":"index.tex","autoid":"Proof*-3.13","reftag":"","label":"Proof","id":"proof-of-theorem-3","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"Proof of Theorem 3.41"},{"file":"index.tex","autoid":"Definition-3.41","reftag":"3.41","reflabel":"Definition","neu":true,"id":"system-of-real-numbers-mathbbr","refnum":"3.41","label":"Definition","cls":"Definition","title":"System of Real Numbers \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Remark-3.42","reftag":"3.42","label":"Remark","id":"ideas-for-proving-theorem","reflabel":"Remark","refnum":"3.42","neu":true,"cls":"Remark","title":"Ideas for proving Theorem 3.41"},{"file":"index.tex","autoid":"Notation-3.43","reftag":"3.43","reflabel":"Notation","neu":true,"id":"Notation-3.43","refnum":"3.43","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Remark-3.44","reftag":"3.44","label":"Remark","id":"Remark-3.44","reflabel":"Remark","refnum":"3.44","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Important*-3.14","reftag":"","label":"Important","id":"Important*-3.14","reflabel":"Important","refnum":"??","neu":true,"cls":"Important","title":""},{"file":"index.tex","autoid":"Question-3.45","reftag":"3.45","reflabel":"Question","neu":true,"id":"Question-3.45","refnum":"3.45","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Remark-3.22","reftag":"3.22","label":"Remark","id":"Remark-3.22","reflabel":"Remark","refnum":"3.22","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Example-3.23","reftag":"3.23","label":"Example","id":"intuition-about-supremum-and-infimum","reflabel":"Example","refnum":"3.23","neu":true,"cls":"Example","title":"Intuition about supremum and infimum"},{"file":"index.tex","autoid":"Definition-3.25","reftag":"3.25","label":"Definition","id":"supremum","reflabel":"Definition","refnum":"3.25","neu":true,"cls":"Definition","title":"Supremum"},{"file":"index.tex","autoid":"Notation-3.26","reftag":"3.26","label":"Notation","id":"Notation-3.26","reflabel":"Notation","refnum":"3.26","neu":true,"cls":"Notation","title":""},{"file":"index.tex","autoid":"Remark-3.27","reftag":"3.27","label":"Remark","id":"Remark-3.27","reflabel":"Remark","refnum":"3.27","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Definition-3.31","reftag":"3.31","label":"Definition","id":"upper-bound-bounded-below-infimum-minimum","reflabel":"Definition","refnum":"3.31","neu":true,"cls":"Definition","title":"Upper bound, bounded below, infimum, minimum"},{"file":"index.tex","autoid":"Proposition-3.34","reftag":"3.34","label":"Proposition","id":"proposition-inf-sup","reflabel":"Proposition","refnum":"3.34","neu":true,"cls":"Proposition","title":"Relationship between sup and inf"},{"file":"index.tex","autoid":"Question-3.35","reftag":"3.35","label":"Question","id":"Question-3.35","reflabel":"Question","refnum":"3.35","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Question-3.37","reftag":"3.37","label":"Question","id":"Question-3.37","reflabel":"Question","refnum":"3.37","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Definition-3.38","reftag":"3.38","label":"Definition","id":"completeness-1","reflabel":"Definition","refnum":"3.38","neu":true,"cls":"Definition","title":"Completeness"},{"file":"index.tex","autoid":"Notation-3.39","reftag":"3.39","label":"Notation","id":"Notation-3.39","reflabel":"Notation","refnum":"3.39","neu":true,"cls":"Notation","title":""},{"file":"index.tex","autoid":"Proposition-3.40","reftag":"3.40","label":"Proposition","id":"Proposition-3.40","reflabel":"Proposition","refnum":"3.40","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Theorem-3.41","reftag":"3.41","label":"Theorem","id":"theorem-cut-complete","reflabel":"Theorem","refnum":"3.41","neu":true,"cls":"Theorem","title":"Equivalence of Cut Property and Completeness"},{"file":"index.tex","autoid":"Definition-3.42","reftag":"3.42","reflabel":"Definition","neu":true,"id":"system-of-real-numbers-mathbbr","refnum":"3.42","label":"Definition","cls":"Definition","title":"System of Real Numbers \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Remark-3.43","reftag":"3.43","reflabel":"Remark","neu":true,"id":"Remark-3.43","refnum":"3.43","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Notation-3.44","reftag":"3.44","reflabel":"Notation","neu":true,"id":"Notation-3.44","refnum":"3.44","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Remark-3.45","reftag":"3.45","reflabel":"Remark","neu":true,"id":"Remark-3.45","refnum":"3.45","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Question-3.46","reftag":"3.46","reflabel":"Question","neu":true,"id":"Question-3.46","refnum":"3.46","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Proof*-6.1","reftag":"","label":"Proof","id":"proof-of-theorem-long-version","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"Proof of Theorem 6.7 (Long version)"},{"file":"index.tex","autoid":"Proposition-6.2","reftag":"6.2","reflabel":"Proposition","neu":true,"id":"proposition-heron-error","refnum":"6.2","label":"Proposition","cls":"Proposition","title":"Error estimate"},{"file":"index.tex","autoid":"Proof*-6.2","reftag":"","label":"Proof","id":"proof-of-theorem-short-version","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"Proof of Theorem 6.7 (Short version)"},{"file":"index.tex","autoid":"Proof*-6.3","reftag":"","label":"Proof","id":"Proof*-6.3","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-6.4","reftag":"6.4","reflabel":"Theorem","neu":true,"id":"convergence-of-herons-algorithm","refnum":"6.4","label":"Theorem","cls":"Theorem","title":"Convergence of Heron’s Algorithm"},{"file":"index.tex","autoid":"Proof*-6.4","reftag":"","reflabel":"Proof","neu":true,"id":"Proof*-6.4","refnum":"??","label":"Proof","cls":"Proof","title":""},{"file":"index.tex","autoid":"Remark-4.1","reftag":"4.1","label":"Remark","id":"Remark-4.1","reflabel":"Remark","refnum":"4.1","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Theorem-4.2","reftag":"4.2","label":"Theorem","id":"theorem-archimedean","reflabel":"Theorem","refnum":"4.2","neu":true,"cls":"Theorem","title":"Archimedean Property"},{"file":"index.tex","autoid":"Theorem-4.3","reftag":"4.3","label":"Theorem","id":"theorem-archimedean-alternative","reflabel":"Theorem","refnum":"4.3","neu":true,"cls":"Theorem","title":"Archimedean Property (Alternative formulation)"},{"file":"index.tex","autoid":"Question-4.4","reftag":"4.4","label":"Question","id":"Question-4.4","reflabel":"Question","refnum":"4.4","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-4.5","reftag":"4.5","label":"Theorem","id":"theorem-nested","reflabel":"Theorem","refnum":"4.5","neu":true,"cls":"Theorem","title":"Nested Interval Property"},{"file":"index.tex","autoid":"Important*-4.4","reftag":"","label":"Important","id":"Important*-4.4","reflabel":"Important","refnum":"??","neu":true,"cls":"Important","title":""},{"file":"index.tex","autoid":"Example-id-example-nested-open","reftag":"4.6","label":"Example","id":"example-nested-open","reflabel":"Example","refnum":"4.6","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Proposition-4.7","reftag":"4.7","label":"Proposition","id":"proposition-supremum-characterization","reflabel":"Proposition","refnum":"4.7","neu":true,"cls":"Proposition","title":"Characterization of Supremum"},{"file":"index.tex","autoid":"Proof*-4.5","reftag":"","label":"Proof","id":"proof-of-proposition","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"Proof of Proposition 4.16"},{"file":"index.tex","autoid":"Proposition-4.8","reftag":"4.8","label":"Proposition","id":"prop-supremum-infimum","reflabel":"Proposition","refnum":"4.8","neu":true,"cls":"Proposition","title":"Characterization of Infimum"},{"file":"index.tex","autoid":"Proposition-4.9","reftag":"4.9","reflabel":"Proposition","neu":true,"id":"Proposition-4.9","refnum":"4.9","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proof*-4.6","reftag":"","label":"Proof","id":"Proof*-4.6","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Proposition-4.10","reftag":"4.10","reflabel":"Proposition","neu":true,"id":"Proposition-4.10","refnum":"4.10","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proof*-4.7","reftag":"","label":"Proof","id":"Proof*-4.7","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-4.11","reftag":"4.11","reflabel":"Theorem","neu":true,"id":"theorem-archimedean","refnum":"4.11","label":"Theorem","cls":"Theorem","title":"Archimedean Property"},{"file":"index.tex","autoid":"Question-4.12","reftag":"4.12","reflabel":"Question","neu":true,"id":"Question-4.12","refnum":"4.12","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Corollary-4.13","reftag":"4.13","reflabel":"Corollary","neu":true,"id":"Corollary-4.13","refnum":"4.13","label":"Corollary","cls":"Corollary","title":""},{"file":"index.tex","autoid":"Proof*-4.8","reftag":"","label":"Proof","id":"Proof*-4.8","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Proposition-id-proposition-interval-inf-sup","reftag":"4.9","label":"Proposition","id":"proposition-interval-inf-sup","reflabel":"Proposition","refnum":"4.9","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Corollary-4.10","reftag":"4.10","label":"Corollary","id":"Corollary-4.10","reflabel":"Corollary","refnum":"4.10","neu":true,"cls":"Corollary","title":""},{"file":"index.tex","autoid":"Corollary-4.11","reftag":"4.11","label":"Corollary","id":"Corollary-4.11","reflabel":"Corollary","refnum":"4.11","neu":true,"cls":"Corollary","title":""},{"file":"index.tex","autoid":"Proposition-4.12","reftag":"4.12","label":"Proposition","id":"Proposition-4.12","reflabel":"Proposition","refnum":"4.12","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Theorem-4.13","reftag":"4.13","reflabel":"Theorem","neu":true,"id":"theorem-density","refnum":"4.13","label":"Theorem","cls":"Theorem","title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Question-4.14","reftag":"4.14","reflabel":"Question","neu":true,"id":"Question-4.14","refnum":"4.14","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Corollary-4.15","reftag":"4.15","reflabel":"Corollary","neu":true,"id":"Corollary-4.15","refnum":"4.15","label":"Corollary","cls":"Corollary","title":""},{"file":"index.tex","autoid":"Proof*-4.9","reftag":"","label":"Proof","id":"Proof*-4.9","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Definition-3.43","reftag":"3.43","label":"Definition","id":"definition-R","reflabel":"Definition","refnum":"3.43","neu":true,"cls":"Definition","title":"System of Real Numbers \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Notation-3.45","reftag":"3.45","label":"Notation","id":"Notation-3.45","reflabel":"Notation","refnum":"3.45","neu":true,"cls":"Notation","title":""},{"file":"index.tex","autoid":"Remark-3.46","reftag":"3.46","label":"Remark","id":"Remark-3.46","reflabel":"Remark","refnum":"3.46","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Question-3.47","reftag":"3.47","label":"Question","id":"Question-3.47","reflabel":"Question","refnum":"3.47","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Definition-4.1","reftag":"4.1","reflabel":"Definition","neu":true,"id":"inductive-set","refnum":"4.1","label":"Definition","cls":"Definition","title":"Inductive set"},{"file":"index.tex","autoid":"Example-4.2","reftag":"4.2","reflabel":"Example","neu":true,"id":"Example-4.2","refnum":"4.2","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Proposition-4.3","reftag":"4.3","reflabel":"Proposition","neu":true,"id":"Proposition-4.3","refnum":"4.3","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Definition-4.4","reftag":"4.4","reflabel":"Definition","neu":true,"id":"set-of-natural-numbers","refnum":"4.4","label":"Definition","cls":"Definition","title":"Set of Natural Numbers"},{"file":"index.tex","autoid":"Theorem-4.6","reftag":"4.6","reflabel":"Theorem","neu":true,"id":"Theorem-4.6","refnum":"4.6","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Notation-4.7","reftag":"4.7","reflabel":"Notation","neu":true,"id":"Notation-4.7","refnum":"4.7","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Theorem-4.8","reftag":"4.8","reflabel":"Theorem","neu":true,"id":"principle-of-induction-1","refnum":"4.8","label":"Theorem","cls":"Theorem","title":"Principle of Induction"},{"file":"index.tex","autoid":"Notation-4.9","reftag":"4.9","reflabel":"Notation","neu":true,"id":"Notation-4.9","refnum":"4.9","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Remark-4.10","reftag":"4.10","reflabel":"Remark","neu":true,"id":"Remark-4.10","refnum":"4.10","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Theorem-4.12","reftag":"4.12","reflabel":"Theorem","neu":true,"id":"theorem-archimedean-alternative","refnum":"4.12","label":"Theorem","cls":"Theorem","title":"Archimedean Property (Alternative formulation)"},{"file":"index.tex","autoid":"Question-4.13","reftag":"4.13","reflabel":"Question","neu":true,"id":"Question-4.13","refnum":"4.13","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-4.14","reftag":"4.14","reflabel":"Theorem","neu":true,"id":"theorem-nested","refnum":"4.14","label":"Theorem","cls":"Theorem","title":"Nested Interval Property"},{"file":"index.tex","autoid":"Important*-4.8","reftag":"","reflabel":"Important","neu":true,"id":"Important*-4.8","refnum":"??","label":"Important","cls":"Important","title":""},{"file":"index.tex","autoid":"Proposition-4.16","reftag":"4.16","reflabel":"Proposition","neu":true,"id":"proposition-supremum-characterization","refnum":"4.16","label":"Proposition","cls":"Proposition","title":"Characterization of Supremum"},{"file":"index.tex","autoid":"Proposition-4.17","reftag":"4.17","reflabel":"Proposition","neu":true,"id":"prop-supremum-infimum","refnum":"4.17","label":"Proposition","cls":"Proposition","title":"Characterization of Infimum"},{"file":"index.tex","autoid":"Proof*-4.10","reftag":"","label":"Proof","id":"Proof*-4.10","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Corollary-4.19","reftag":"4.19","reflabel":"Corollary","neu":true,"id":"Corollary-4.19","refnum":"4.19","label":"Corollary","cls":"Corollary","title":""},{"file":"index.tex","autoid":"Proof*-4.11","reftag":"","label":"Proof","id":"proof-of-theorem-4","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"Proof of Theorem 4.19"},{"file":"index.tex","autoid":"Corollary-4.20","reftag":"4.20","reflabel":"Corollary","neu":true,"id":"Corollary-4.20","refnum":"4.20","label":"Corollary","cls":"Corollary","title":""},{"file":"index.tex","autoid":"Proposition-4.21","reftag":"4.21","reflabel":"Proposition","neu":true,"id":"Proposition-4.21","refnum":"4.21","label":"Proposition","cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proof*-4.12","reftag":"","label":"Proof","id":"Proof*-4.12","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-4.22","reftag":"4.22","reflabel":"Theorem","neu":true,"id":"theorem-density","refnum":"4.22","label":"Theorem","cls":"Theorem","title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Question-4.23","reftag":"4.23","reflabel":"Question","neu":true,"id":"Question-4.23","refnum":"4.23","label":"Question","cls":"Question","title":""},{"file":"index.tex","autoid":"Corollary-4.24","reftag":"4.24","reflabel":"Corollary","neu":true,"id":"Corollary-4.24","refnum":"4.24","label":"Corollary","cls":"Corollary","title":""},{"file":"index.tex","autoid":"Proof*-4.13","reftag":"","label":"Proof","id":"Proof*-4.13","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Definition-3.48","reftag":"3.48","label":"Definition","id":"inductive-set","reflabel":"Definition","refnum":"3.48","neu":true,"cls":"Definition","title":"Inductive set"},{"file":"index.tex","autoid":"Example-3.49","reftag":"3.49","label":"Example","id":"Example-3.49","reflabel":"Example","refnum":"3.49","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Proposition-3.50","reftag":"3.50","label":"Proposition","id":"Proposition-3.50","reflabel":"Proposition","refnum":"3.50","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Proof*-3.15","reftag":"","label":"Proof","id":"Proof*-3.15","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Definition-3.51","reftag":"3.51","label":"Definition","id":"definition-natural-numbers","reflabel":"Definition","refnum":"3.51","neu":true,"cls":"Definition","title":"Set of Natural Numbers"},{"file":"index.tex","autoid":"Theorem-3.52","reftag":"3.52","reflabel":"Theorem","neu":true,"id":"theorem-smallest-inductive","refnum":"3.52","label":"Theorem","cls":"Theorem","title":"\\({\\mathbb{N}}_{\\mathbb{R}}\\) is the smallest inductive subset of \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Proof*-3.16","reftag":"","label":"Proof","id":"Proof*-3.16","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-3.53","reftag":"3.53","reflabel":"Theorem","neu":true,"id":"Theorem-3.53","refnum":"3.53","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-3.17","reftag":"","label":"Proof","id":"Proof*-3.17","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Notation-3.54","reftag":"3.54","label":"Notation","id":"Notation-3.54","reflabel":"Notation","refnum":"3.54","neu":true,"cls":"Notation","title":""},{"file":"index.tex","autoid":"Theorem-3.55","reftag":"3.55","label":"Theorem","id":"theorem-induction-new","reflabel":"Theorem","refnum":"3.55","neu":true,"cls":"Theorem","title":"Principle of Induction"},{"file":"index.tex","autoid":"Proof*-3.18","reftag":"","label":"Proof","id":"Proof*-3.18","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-3.56","reftag":"3.56","reflabel":"Theorem","neu":true,"id":"Theorem-3.56","refnum":"3.56","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Theorem-3.57","reftag":"3.57","label":"Theorem","id":"Theorem-3.57","reflabel":"Theorem","refnum":"3.57","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Notation-3.58","reftag":"3.58","reflabel":"Notation","neu":true,"id":"Notation-3.58","refnum":"3.58","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-N-closed","reftag":"3.56","label":"Theorem","id":"theorem-N-closed","reflabel":"Theorem","refnum":"3.56","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-3.19","reftag":"","label":"Proof","id":"Proof*-3.19","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Definition-3.58","reftag":"3.58","label":"Definition","id":"set-of-integers","reflabel":"Definition","refnum":"3.58","neu":true,"cls":"Definition","title":"Set of Integers"},{"file":"index.tex","autoid":"Theorem-3.59","reftag":"3.59","reflabel":"Theorem","neu":true,"id":"Theorem-3.59","refnum":"3.59","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-3.20","reftag":"","label":"Proof","id":"Proof*-3.20","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-Z-closed","reftag":"3.60","label":"Theorem","id":"theorem-Z-closed","reflabel":"Theorem","refnum":"3.60","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Theorem-3.61","reftag":"3.61","reflabel":"Theorem","neu":true,"id":"Theorem-3.61","refnum":"3.61","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-3.21","reftag":"","label":"Proof","id":"Proof*-3.21","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Notation-3.62","reftag":"3.62","reflabel":"Notation","neu":true,"id":"Notation-3.62","refnum":"3.62","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-n-1","reftag":"3.53","label":"Theorem","id":"theorem-n-1","reflabel":"Theorem","refnum":"3.53","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-equivalent-Z","reftag":"3.59","label":"Theorem","id":"theorem-equivalent-Z","reflabel":"Theorem","refnum":"3.59","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-Z-axioms","reftag":"3.61","label":"Theorem","id":"theorem-Z-axioms","reflabel":"Theorem","refnum":"3.61","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Remark-id-remark-Z-axioms","reftag":"3.62","label":"Remark","id":"remark-Z-axioms","reflabel":"Remark","refnum":"3.62","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Definition-3.63","reftag":"3.63","label":"Definition","id":"set-of-rational-numbers","reflabel":"Definition","refnum":"3.63","neu":true,"cls":"Definition","title":"Set of Rational Numbers"},{"file":"index.tex","autoid":"Theorem-3.64","reftag":"3.64","label":"Theorem","id":"Theorem-3.64","reflabel":"Theorem","refnum":"3.64","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-3.22","reftag":"","label":"Proof","id":"Proof*-3.22","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-3.65","reftag":"3.65","label":"Theorem","id":"Theorem-3.65","reflabel":"Theorem","refnum":"3.65","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Notation-3.66","reftag":"3.66","label":"Notation","id":"Notation-3.66","reflabel":"Notation","refnum":"3.66","neu":true,"cls":"Notation","title":""},{"file":"index.tex","autoid":"Definition-4.13","reftag":"4.13","label":"Definition","id":"dense-set","reflabel":"Definition","refnum":"4.13","neu":true,"cls":"Definition","title":"Dense set"},{"file":"index.tex","autoid":"Remark-4.14","reftag":"4.14","label":"Remark","id":"Remark-4.14","reflabel":"Remark","refnum":"4.14","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Theorem-4.15","reftag":"4.15","label":"Theorem","id":"theorem-density","reflabel":"Theorem","refnum":"4.15","neu":true,"cls":"Theorem","title":"Density of \\(\\mathbb{Q}\\) in \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Definition-4.16","reftag":"4.16","label":"Definition","id":"irrational-numbers","reflabel":"Definition","refnum":"4.16","neu":true,"cls":"Definition","title":"Irrational numbers"},{"file":"index.tex","autoid":"Question-4.17","reftag":"4.17","label":"Question","id":"Question-4.17","reflabel":"Question","refnum":"4.17","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Corollary-4.18","reftag":"4.18","label":"Corollary","id":"Corollary-4.18","reflabel":"Corollary","refnum":"4.18","neu":true,"cls":"Corollary","title":""},{"file":"index.tex","autoid":"Theorem-4.19","reftag":"4.19","label":"Theorem","id":"theorem_existence_root","reflabel":"Theorem","refnum":"4.19","neu":true,"cls":"Theorem","title":"Existence of \\(k\\)-th roots"},{"file":"index.tex","autoid":"Definition-4.20","reftag":"4.20","label":"Definition","id":"k-th-root-of-a-number","reflabel":"Definition","refnum":"4.20","neu":true,"cls":"Definition","title":"\\(k\\)-th root of a number"},{"file":"index.tex","autoid":"Definition-4.21","reftag":"4.21","label":"Definition","id":"bijective-function","reflabel":"Definition","refnum":"4.21","neu":true,"cls":"Definition","title":"Bijective function"},{"file":"index.tex","autoid":"Example-4.22","reftag":"4.22","label":"Example","id":"injectivity","reflabel":"Example","refnum":"4.22","neu":true,"cls":"Example","title":"Injectivity"},{"file":"index.tex","autoid":"Example-4.23","reftag":"4.23","label":"Example","id":"surjectivity","reflabel":"Example","refnum":"4.23","neu":true,"cls":"Example","title":"Surjectivity"},{"file":"index.tex","autoid":"Example-4.24","reftag":"4.24","label":"Example","id":"bijectivity","reflabel":"Example","refnum":"4.24","neu":true,"cls":"Example","title":"Bijectivity"},{"file":"index.tex","autoid":"Definition-4.25","reftag":"4.25","label":"Definition","id":"cardinality-finite-countable-uncountable","reflabel":"Definition","refnum":"4.25","neu":true,"cls":"Definition","title":"Cardinality, finite, countable, uncountable"},{"file":"index.tex","autoid":"Example-4.26","reftag":"4.26","reflabel":"Example","neu":true,"id":"Example-4.26","refnum":"4.26","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Question-4.26","reftag":"4.26","label":"Question","id":"Question-4.26","reflabel":"Question","refnum":"4.26","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Proposition-id-proposition-countable-subset","reftag":"4.27","label":"Proposition","id":"proposition-countable-subset","reflabel":"Proposition","refnum":"4.27","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Example-4.28","reftag":"4.28","label":"Example","id":"Example-4.28","reflabel":"Example","refnum":"4.28","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-4.29","reftag":"4.29","reflabel":"Theorem","neu":true,"id":"mathbbr-is-uncountable","refnum":"4.29","label":"Theorem","cls":"Theorem","title":"\\(\\mathbb{R}\\) is uncountable"},{"file":"index.tex","autoid":"Proposition-id-proposition-countable-union","reftag":"4.29","label":"Proposition","id":"proposition-countable-union","reflabel":"Proposition","refnum":"4.29","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Theorem-4.30","reftag":"4.30","label":"Theorem","id":"theorem-Q-countable","reflabel":"Theorem","refnum":"4.30","neu":true,"cls":"Theorem","title":"\\(\\mathbb{Q}\\) is countable"},{"file":"index.tex","autoid":"Proof*-4.14","reftag":"","label":"Proof","id":"Proof*-4.14","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-4.31","reftag":"4.31","label":"Theorem","id":"theorem-R-uncountable","reflabel":"Theorem","refnum":"4.31","neu":true,"cls":"Theorem","title":"\\(\\mathbb{R}\\) is uncountable"},{"file":"index.tex","autoid":"Proof*-4.15","reftag":"","label":"Proof","id":"Proof*-4.15","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-4.32","reftag":"4.32","label":"Theorem","id":"Theorem-4.32","reflabel":"Theorem","refnum":"4.32","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-4.16","reftag":"","label":"Proof","id":"Proof*-4.16","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Proposition-3.52","reftag":"3.52","label":"Proposition","id":"proposition-smallest-inductive","reflabel":"Proposition","refnum":"3.52","neu":true,"cls":"Proposition","title":"\\({\\mathbb{N}}_{\\mathbb{R}}\\) is the smallest inductive subset of \\(\\mathbb{R}\\)"},{"file":"index.tex","autoid":"Definition-5.1","reftag":"5.1","reflabel":"Definition","neu":true,"id":"complex-numbers-1","refnum":"5.1","label":"Definition","cls":"Definition","title":"Complex Numbers"},{"file":"index.tex","autoid":"Definition-5.2","reftag":"5.2","label":"Definition","id":"complex-numbers-1","reflabel":"Definition","refnum":"5.2","neu":true,"cls":"Definition","title":"Complex Numbers"},{"file":"index.tex","autoid":"Definition-5.3","reftag":"5.3","label":"Definition","id":"Definition-5.3","reflabel":"Definition","refnum":"5.3","neu":true,"cls":"Definition","title":""},{"file":"index.tex","autoid":"Notation-5.4","reftag":"5.4","reflabel":"Notation","neu":true,"id":"Notation-5.4","refnum":"5.4","label":"Notation","cls":"Notation","title":""},{"file":"index.tex","autoid":"Definition-5.5","reftag":"5.5","reflabel":"Definition","neu":true,"id":"multiplication-in-mathbbc","refnum":"5.5","label":"Definition","cls":"Definition","title":"Multiplication in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Important*-5.1","reftag":"","label":"Important","id":"Important*-5.1","reflabel":"Important","refnum":"??","neu":true,"cls":"Important","title":""},{"file":"index.tex","autoid":"Remark-id-remark-complex-i","reftag":"5.8","label":"Remark","id":"remark-complex-i","reflabel":"Remark","refnum":"5.8","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Example-5.7","reftag":"5.7","reflabel":"Example","neu":true,"id":"Example-5.7","refnum":"5.7","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Proposition-5.8","reftag":"5.8","reflabel":"Proposition","neu":true,"id":"additive-inverse-in-mathbbc","refnum":"5.8","label":"Proposition","cls":"Proposition","title":"Additive inverse in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Proposition-5.9","reftag":"5.9","reflabel":"Proposition","neu":true,"id":"proposition-C-additive-inverse","refnum":"5.9","label":"Proposition","cls":"Proposition","title":"Additive inverse in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Remark-5.5","reftag":"5.5","reflabel":"Remark","neu":true,"id":"remark-formal-multiplication","refnum":"5.5","label":"Remark","cls":"Remark","title":"Formal calculation for multiplication in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Definition-5.6","reftag":"5.6","reflabel":"Definition","neu":true,"id":"definition-multiplication-C","refnum":"5.6","label":"Definition","cls":"Definition","title":"Multiplication in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Example-5.8","reftag":"5.8","reflabel":"Example","neu":true,"id":"Example-5.8","refnum":"5.8","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-5.10","reftag":"5.10","reflabel":"Remark","neu":true,"id":"remark-formal-inverse","refnum":"5.10","label":"Remark","cls":"Remark","title":"Formal calculation for multiplicative inverse"},{"file":"index.tex","autoid":"Proposition-5.11","reftag":"5.11","reflabel":"Proposition","neu":true,"id":"proposition-C-multiplicative-inverse","refnum":"5.11","label":"Proposition","cls":"Proposition","title":"Multiplicative inverse in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Proof*-5.2","reftag":"","label":"Proof","id":"Proof*-5.2","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Important*-5.3","reftag":"","label":"Important","id":"Important*-5.3","reflabel":"Important","refnum":"??","neu":true,"cls":"Important","title":""},{"file":"index.tex","autoid":"Example-5.12","reftag":"5.12","reflabel":"Example","neu":true,"id":"Example-5.12","refnum":"5.12","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.13","reftag":"5.13","reflabel":"Theorem","neu":true,"id":"Theorem-5.13","refnum":"5.13","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-5.4","reftag":"","label":"Proof","id":"Proof*-5.4","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-5.14","reftag":"5.14","reflabel":"Example","neu":true,"id":"Example-5.14","refnum":"5.14","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-C-order","reftag":"5.16","label":"Theorem","id":"theorem-C-order","reflabel":"Theorem","refnum":"5.16","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-5.5","reftag":"","label":"Proof","id":"Proof*-5.5","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Definition-5.16","reftag":"5.16","reflabel":"Definition","neu":true,"id":"complex-conjugate","refnum":"5.16","label":"Definition","cls":"Definition","title":"Complex conjugate"},{"file":"index.tex","autoid":"Example-5.17","reftag":"5.17","reflabel":"Example","neu":true,"id":"Example-5.17","refnum":"5.17","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.18","reftag":"5.18","reflabel":"Theorem","neu":true,"id":"Theorem-5.18","refnum":"5.18","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-5.6","reftag":"","label":"Proof","id":"Proof*-5.6","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-5.19","reftag":"5.19","reflabel":"Example","neu":true,"id":"Example-5.19","refnum":"5.19","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-5.20","reftag":"5.20","reflabel":"Definition","neu":true,"id":"modulus","refnum":"5.20","label":"Definition","cls":"Definition","title":"Modulus"},{"file":"index.tex","autoid":"Remark-5.21","reftag":"5.21","reflabel":"Remark","neu":true,"id":"modulus-of-real-numbers","refnum":"5.21","label":"Remark","cls":"Remark","title":"Modulus of Real numbers"},{"file":"index.tex","autoid":"Definition-5.22","reftag":"5.22","reflabel":"Definition","neu":true,"id":"distance-in-mathbbc","refnum":"5.22","label":"Definition","cls":"Definition","title":"Distance in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Theorem-5.23","reftag":"5.23","reflabel":"Theorem","neu":true,"id":"Theorem-5.23","refnum":"5.23","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-5.7","reftag":"","label":"Proof","id":"Proof*-5.7","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-5.24","reftag":"5.24","reflabel":"Example","neu":true,"id":"Example-5.24","refnum":"5.24","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.25","reftag":"5.25","reflabel":"Theorem","neu":true,"id":"Theorem-5.25","refnum":"5.25","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-5.8","reftag":"","label":"Proof","id":"Proof*-5.8","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-5.26","reftag":"5.26","label":"Theorem","id":"Theorem-5.26","reflabel":"Theorem","refnum":"5.26","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-5.9","reftag":"","label":"Proof","id":"Proof*-5.9","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Remark-5.27","reftag":"5.27","reflabel":"Remark","neu":true,"id":"geometric-interpretation-of-triangle-inequality","refnum":"5.27","label":"Remark","cls":"Remark","title":"Geometric interpretation of triangle inequality"},{"file":"index.tex","autoid":"Definition-5.28","reftag":"5.28","reflabel":"Definition","neu":true,"id":"argument","refnum":"5.28","label":"Definition","cls":"Definition","title":"Argument"},{"file":"index.tex","autoid":"Warning*-5.10","reftag":"","label":"Warning","id":"Warning*-5.10","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Remark-5.29","reftag":"5.29","reflabel":"Remark","neu":true,"id":"principal-value","refnum":"5.29","label":"Remark","cls":"Remark","title":"Principal Value"},{"file":"index.tex","autoid":"Example-5.30","reftag":"5.30","reflabel":"Example","neu":true,"id":"Example-5.30","refnum":"5.30","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.31","reftag":"5.31","reflabel":"Theorem","neu":true,"id":"theorem-polar-coordinates","refnum":"5.31","label":"Theorem","cls":"Theorem","title":"Polar coordinates"},{"file":"index.tex","autoid":"Definition-5.32","reftag":"5.32","reflabel":"Definition","neu":true,"id":"trigonometric-form","refnum":"5.32","label":"Definition","cls":"Definition","title":"Trigonometric form"},{"file":"index.tex","autoid":"Example-5.33","reftag":"5.33","reflabel":"Example","neu":true,"id":"Example-5.33","refnum":"5.33","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Corollary-5.34","reftag":"5.34","reflabel":"Corollary","neu":true,"id":"corollary-arg","refnum":"5.34","label":"Corollary","cls":"Corollary","title":"Computing \\(\\arg(z)\\)"},{"file":"index.tex","autoid":"Proof*-5.11","reftag":"","label":"Proof","id":"Proof*-5.11","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-5.35","reftag":"5.35","reflabel":"Example","neu":true,"id":"Example-5.35","refnum":"5.35","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Example-id-example-trigonometric-form","reftag":"5.34","label":"Example","id":"example-trigonometric-form","reflabel":"Example","refnum":"5.34","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.36","reftag":"5.36","reflabel":"Theorem","neu":true,"id":"theorem-euler-identity","refnum":"5.36","label":"Theorem","cls":"Theorem","title":"Euler’s identity"},{"file":"index.tex","autoid":"Proof*-5.12","reftag":"","label":"Proof","id":"Proof*-5.12","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-5.37","reftag":"5.37","label":"Theorem","id":"theorem-euler-identity","reflabel":"Theorem","refnum":"5.37","neu":true,"cls":"Theorem","title":"Euler’s identity"},{"file":"index.tex","autoid":"Proof*-5.13","reftag":"","label":"Proof","id":"Proof*-5.13","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-5.38","reftag":"5.38","label":"Theorem","id":"Theorem-5.38","reflabel":"Theorem","refnum":"5.38","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-5.14","reftag":"","label":"Proof","id":"Proof*-5.14","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Definition-5.39","reftag":"5.39","reflabel":"Definition","neu":true,"id":"exponential-form-1","refnum":"5.39","label":"Definition","cls":"Definition","title":"Exponential form"},{"file":"index.tex","autoid":"Example-id-example-exponential-form","reftag":"5.41","label":"Example","id":"example-exponential-form","reflabel":"Example","refnum":"5.41","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-5.41","reftag":"5.41","reflabel":"Remark","neu":true,"id":"periodicity-of-exponential","refnum":"5.41","label":"Remark","cls":"Remark","title":"Periodicity of exponential"},{"file":"index.tex","autoid":"Example-5.42","reftag":"5.42","reflabel":"Example","neu":true,"id":"Example-5.42","refnum":"5.42","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Example-5.43","reftag":"5.43","reflabel":"Example","neu":true,"id":"Example-5.43","refnum":"5.43","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Question-5.1","reftag":"5.1","label":"Question","id":"Question-5.1","reflabel":"Question","refnum":"5.1","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Definition-5.4","reftag":"5.4","label":"Definition","id":"definition-addition-C","reflabel":"Definition","refnum":"5.4","neu":true,"cls":"Definition","title":"Addition in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Notation-5.5","reftag":"5.5","label":"Notation","id":"Notation-5.5","reflabel":"Notation","refnum":"5.5","neu":true,"cls":"Notation","title":""},{"file":"index.tex","autoid":"Remark-5.6","reftag":"5.6","label":"Remark","id":"remark-formal-multiplication","reflabel":"Remark","refnum":"5.6","neu":true,"cls":"Remark","title":"Formal calculation for multiplication in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Definition-5.7","reftag":"5.7","label":"Definition","id":"definition-multiplication-C","reflabel":"Definition","refnum":"5.7","neu":true,"cls":"Definition","title":"Multiplication in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Example-5.9","reftag":"5.9","label":"Example","id":"Example-5.9","reflabel":"Example","refnum":"5.9","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Proposition-5.10","reftag":"5.10","label":"Proposition","id":"proposition-C-additive-inverse","reflabel":"Proposition","refnum":"5.10","neu":true,"cls":"Proposition","title":"Additive inverse in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Remark-5.11","reftag":"5.11","label":"Remark","id":"remark-formal-inverse","reflabel":"Remark","refnum":"5.11","neu":true,"cls":"Remark","title":"Formal calculation for multiplicative inverse"},{"file":"index.tex","autoid":"Proposition-5.12","reftag":"5.12","label":"Proposition","id":"proposition-C-multiplicative-inverse","reflabel":"Proposition","refnum":"5.12","neu":true,"cls":"Proposition","title":"Multiplicative inverse in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Example-5.13","reftag":"5.13","label":"Example","id":"Example-5.13","reflabel":"Example","refnum":"5.13","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.14","reftag":"5.14","label":"Theorem","id":"Theorem-5.14","reflabel":"Theorem","refnum":"5.14","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Example-5.15","reftag":"5.15","label":"Example","id":"Example-5.15","reflabel":"Example","refnum":"5.15","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-5.17","reftag":"5.17","label":"Definition","id":"complex-conjugate","reflabel":"Definition","refnum":"5.17","neu":true,"cls":"Definition","title":"Complex conjugate"},{"file":"index.tex","autoid":"Example-5.18","reftag":"5.18","label":"Example","id":"Example-5.18","reflabel":"Example","refnum":"5.18","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.19","reftag":"5.19","label":"Theorem","id":"Theorem-5.19","reflabel":"Theorem","refnum":"5.19","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Example-5.20","reftag":"5.20","label":"Example","id":"Example-5.20","reflabel":"Example","refnum":"5.20","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-5.21","reftag":"5.21","label":"Definition","id":"modulus","reflabel":"Definition","refnum":"5.21","neu":true,"cls":"Definition","title":"Modulus"},{"file":"index.tex","autoid":"Remark-5.22","reftag":"5.22","label":"Remark","id":"modulus-of-real-numbers","reflabel":"Remark","refnum":"5.22","neu":true,"cls":"Remark","title":"Modulus of Real numbers"},{"file":"index.tex","autoid":"Definition-5.23","reftag":"5.23","label":"Definition","id":"distance-in-mathbbc","reflabel":"Definition","refnum":"5.23","neu":true,"cls":"Definition","title":"Distance in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Theorem-5.24","reftag":"5.24","label":"Theorem","id":"Theorem-5.24","reflabel":"Theorem","refnum":"5.24","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Example-5.25","reftag":"5.25","label":"Example","id":"Example-5.25","reflabel":"Example","refnum":"5.25","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.27","reftag":"5.27","label":"Theorem","id":"triangle-inequality-in-mathbbc","reflabel":"Theorem","refnum":"5.27","neu":true,"cls":"Theorem","title":"Triangle inequality in \\(\\mathbb{C}\\)"},{"file":"index.tex","autoid":"Remark-5.28","reftag":"5.28","label":"Remark","id":"geometric-interpretation-of-triangle-inequality","reflabel":"Remark","refnum":"5.28","neu":true,"cls":"Remark","title":"Geometric interpretation of triangle inequality"},{"file":"index.tex","autoid":"Definition-5.29","reftag":"5.29","label":"Definition","id":"argument","reflabel":"Definition","refnum":"5.29","neu":true,"cls":"Definition","title":"Argument"},{"file":"index.tex","autoid":"Remark-5.30","reftag":"5.30","label":"Remark","id":"principal-value","reflabel":"Remark","refnum":"5.30","neu":true,"cls":"Remark","title":"Principal Value"},{"file":"index.tex","autoid":"Example-5.31","reftag":"5.31","label":"Example","id":"Example-5.31","reflabel":"Example","refnum":"5.31","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.32","reftag":"5.32","label":"Theorem","id":"theorem-polar-coordinates","reflabel":"Theorem","refnum":"5.32","neu":true,"cls":"Theorem","title":"Polar coordinates"},{"file":"index.tex","autoid":"Definition-5.33","reftag":"5.33","label":"Definition","id":"trigonometric-form","reflabel":"Definition","refnum":"5.33","neu":true,"cls":"Definition","title":"Trigonometric form"},{"file":"index.tex","autoid":"Corollary-5.35","reftag":"5.35","label":"Corollary","id":"corollary-arg","reflabel":"Corollary","refnum":"5.35","neu":true,"cls":"Corollary","title":"Computing \\(\\arg(z)\\)"},{"file":"index.tex","autoid":"Example-5.36","reftag":"5.36","label":"Example","id":"Example-5.36","reflabel":"Example","refnum":"5.36","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.39","reftag":"5.39","label":"Theorem","id":"Theorem-5.39","reflabel":"Theorem","refnum":"5.39","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Definition-5.40","reftag":"5.40","label":"Definition","id":"exponential-form-1","reflabel":"Definition","refnum":"5.40","neu":true,"cls":"Definition","title":"Exponential form"},{"file":"index.tex","autoid":"Remark-5.42","reftag":"5.42","label":"Remark","id":"periodicity-of-exponential","reflabel":"Remark","refnum":"5.42","neu":true,"cls":"Remark","title":"Periodicity of exponential"},{"file":"index.tex","autoid":"Proposition-id-proposition-complex-exponential","reftag":"5.43","label":"Proposition","id":"proposition-complex-exponential","reflabel":"Proposition","refnum":"5.43","neu":true,"cls":"Proposition","title":""},{"file":"index.tex","autoid":"Example-5.44","reftag":"5.44","label":"Example","id":"Example-5.44","reflabel":"Example","refnum":"5.44","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-5.45","reftag":"5.45","label":"Example","id":"Example-5.45","reflabel":"Example","refnum":"5.45","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Question-5.46","reftag":"5.46","label":"Question","id":"Question-5.46","reflabel":"Question","refnum":"5.46","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-5.47","reftag":"5.47","label":"Theorem","id":"theorem-fta","reflabel":"Theorem","refnum":"5.47","neu":true,"cls":"Theorem","title":"Fundamental theorem of algebra"},{"file":"index.tex","autoid":"Example-5.48","reftag":"5.48","label":"Example","id":"Example-5.48","reflabel":"Example","refnum":"5.48","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-id-example-degree-4","reftag":"5.49","label":"Example","id":"example-degree-4","reflabel":"Example","refnum":"5.49","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-5.50","reftag":"5.50","label":"Definition","id":"Definition-5.50","reflabel":"Definition","refnum":"5.50","neu":true,"cls":"Definition","title":""},{"file":"index.tex","autoid":"Example-id-example-multiplicity","reftag":"5.51","label":"Example","id":"example-multiplicity","reflabel":"Example","refnum":"5.51","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Question-5.52","reftag":"5.52","label":"Question","id":"Question-5.52","reflabel":"Question","refnum":"5.52","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Theorem-5.53","reftag":"5.53","label":"Theorem","id":"theorem-abel-ruffini","reflabel":"Theorem","refnum":"5.53","neu":true,"cls":"Theorem","title":"Abel-Ruffini"},{"file":"index.tex","autoid":"Proposition-5.54","reftag":"5.54","label":"Proposition","id":"proposition-quadratic-formula","reflabel":"Proposition","refnum":"5.54","neu":true,"cls":"Proposition","title":"Quadratic formula"},{"file":"index.tex","autoid":"Example-5.55","reftag":"5.55","label":"Example","id":"Example-5.55","reflabel":"Example","refnum":"5.55","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-5.56","reftag":"5.56","label":"Example","id":"Example-5.56","reflabel":"Example","refnum":"5.56","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-5.57","reftag":"5.57","label":"Example","id":"Example-5.57","reflabel":"Example","refnum":"5.57","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Question-5.58","reftag":"5.58","label":"Question","id":"Question-5.58","reflabel":"Question","refnum":"5.58","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Proposition-5.59","reftag":"5.59","label":"Proposition","id":"proposition-quadratic-formula-C","reflabel":"Proposition","refnum":"5.59","neu":true,"cls":"Proposition","title":"Generalization of quadratci formula"},{"file":"index.tex","autoid":"Remark-5.60","reftag":"5.60","label":"Remark","id":"Remark-5.60","reflabel":"Remark","refnum":"5.60","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Example-5.61","reftag":"5.61","label":"Example","id":"Example-5.61","reflabel":"Example","refnum":"5.61","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-5.62","reftag":"5.62","label":"Remark","id":"polynomial-equations-of-order-n34","reflabel":"Remark","refnum":"5.62","neu":true,"cls":"Remark","title":"Polynomial equations of order \\(n=3,4\\)"},{"file":"index.tex","autoid":"Example-5.63","reftag":"5.63","label":"Example","id":"Example-5.63","reflabel":"Example","refnum":"5.63","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-5.64","reftag":"5.64","label":"Example","id":"Example-5.64","reflabel":"Example","refnum":"5.64","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Problem*-5.15","reftag":"","label":"Problem","id":"Problem*-5.15","reflabel":"Problem","refnum":"??","neu":true,"cls":"Problem","title":""},{"file":"index.tex","autoid":"Question-5.65","reftag":"5.65","label":"Question","id":"Question-5.65","reflabel":"Question","refnum":"5.65","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Example-5.66","reftag":"5.66","label":"Example","id":"Example-5.66","reflabel":"Example","refnum":"5.66","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-5.67","reftag":"5.67","label":"Theorem","id":"Theorem-5.67","reflabel":"Theorem","refnum":"5.67","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-5.16","reftag":"","label":"Proof","id":"Proof*-5.16","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Definition-5.68","reftag":"5.68","label":"Definition","id":"Definition-5.68","reflabel":"Definition","refnum":"5.68","neu":true,"cls":"Definition","title":""},{"file":"index.tex","autoid":"Example-5.69","reftag":"5.69","label":"Example","id":"Example-5.69","reflabel":"Example","refnum":"5.69","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-5.70","reftag":"5.70","label":"Example","id":"Example-5.70","reflabel":"Example","refnum":"5.70","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Problem*-5.17","reftag":"","label":"Problem","id":"Problem*-5.17","reflabel":"Problem","refnum":"??","neu":true,"cls":"Problem","title":""},{"file":"index.tex","autoid":"Theorem-5.71","reftag":"5.71","label":"Theorem","id":"Theorem-5.71","reflabel":"Theorem","refnum":"5.71","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-5.18","reftag":"","label":"Proof","id":"Proof*-5.18","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-5.72","reftag":"5.72","label":"Example","id":"Example-5.72","reflabel":"Example","refnum":"5.72","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-5.73","reftag":"5.73","label":"Example","id":"Example-5.73","reflabel":"Example","refnum":"5.73","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-6.1","reftag":"6.1","label":"Remark","id":"Remark-6.1","reflabel":"Remark","refnum":"6.1","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Definition-6.2","reftag":"6.2","label":"Definition","id":"sequence-of-real-numbers","reflabel":"Definition","refnum":"6.2","neu":true,"cls":"Definition","title":"Sequence of Real numbers"},{"file":"index.tex","autoid":"Notation-6.3","reftag":"6.3","label":"Notation","id":"Notation-6.3","reflabel":"Notation","refnum":"6.3","neu":true,"cls":"Notation","title":""},{"file":"index.tex","autoid":"Example-6.4","reftag":"6.4","label":"Example","id":"Example-6.4","reflabel":"Example","refnum":"6.4","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-6.5","reftag":"6.5","label":"Definition","id":"definition-convergent-sequence","reflabel":"Definition","refnum":"6.5","neu":true,"cls":"Definition","title":"Convergent sequence"},{"file":"index.tex","autoid":"Remark-6.6","reftag":"6.6","label":"Remark","id":"Remark-6.6","reflabel":"Remark","refnum":"6.6","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-one-over-n","reftag":"6.7","label":"Theorem","id":"theorem-one-over-n","reflabel":"Theorem","refnum":"6.7","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Theorem-6.8","reftag":"6.8","reflabel":"Theorem","neu":true,"id":"Theorem-6.8","refnum":"6.8","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Question-6.9","reftag":"6.9","label":"Question","id":"Question-6.9","reflabel":"Question","refnum":"6.9","neu":true,"cls":"Question","title":""},{"file":"index.tex","autoid":"Important*-6.4","reftag":"","label":"Important","id":"Important*-6.4","reflabel":"Important","refnum":"??","neu":true,"cls":"Important","title":""},{"file":"index.tex","autoid":"Example-6.10","reftag":"6.10","label":"Example","id":"Example-6.10","reflabel":"Example","refnum":"6.10","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-6.11","reftag":"6.11","reflabel":"Definition","neu":true,"id":"divergent-sequence","refnum":"6.11","label":"Definition","cls":"Definition","title":"Divergent sequence"},{"file":"index.tex","autoid":"Remark-6.12","reftag":"6.12","reflabel":"Remark","neu":true,"id":"Remark-6.12","refnum":"6.12","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Theorem-6.13","reftag":"6.13","reflabel":"Theorem","neu":true,"id":"Theorem-6.13","refnum":"6.13","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-6.5","reftag":"","label":"Proof","id":"Proof*-6.5","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-6.14","reftag":"6.14","reflabel":"Theorem","neu":true,"id":"Theorem-6.14","refnum":"6.14","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-6.6","reftag":"","label":"Proof","id":"Proof*-6.6","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-6.15","reftag":"6.15","reflabel":"Example","neu":true,"id":"Example-6.15","refnum":"6.15","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-6.16","reftag":"6.16","reflabel":"Definition","neu":true,"id":"definition-bounded-sequence","refnum":"6.16","label":"Definition","cls":"Definition","title":"Bounded sequence"},{"file":"index.tex","autoid":"Theorem-6.17","reftag":"6.17","reflabel":"Theorem","neu":true,"id":"Theorem-6.17","refnum":"6.17","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-convergent-bounded","reftag":"6.18","label":"Theorem","id":"theorem-convergent-bounded","reflabel":"Theorem","refnum":"6.18","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-6.7","reftag":"","label":"Proof","id":"Proof*-6.7","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-6.18","reftag":"6.18","reflabel":"Example","neu":true,"id":"Example-6.18","refnum":"6.18","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Corollary-id-corollary-convergent-bounded","reftag":"6.21","label":"Corollary","id":"corollary-convergent-bounded","reflabel":"Corollary","refnum":"6.21","neu":true,"cls":"Corollary","title":""},{"file":"index.tex","autoid":"Remark-6.20","reftag":"6.20","reflabel":"Remark","neu":true,"id":"Remark-6.20","refnum":"6.20","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Theorem-6.21","reftag":"6.21","reflabel":"Theorem","neu":true,"id":"Theorem-6.21","refnum":"6.21","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-6.8","reftag":"","label":"Proof","id":"Proof*-6.8","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-6.22","reftag":"6.22","reflabel":"Theorem","neu":true,"id":"Theorem-6.22","refnum":"6.22","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-6.9","reftag":"","reflabel":"Proof","neu":true,"id":"Proof*-6.9","refnum":"??","label":"Proof","cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-constant-sequence","reftag":"6.11","label":"Theorem","id":"theorem-constant-sequence","reflabel":"Theorem","refnum":"6.11","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Definition-6.12","reftag":"6.12","label":"Definition","id":"divergent-sequence","reflabel":"Definition","refnum":"6.12","neu":true,"cls":"Definition","title":"Divergent sequence"},{"file":"index.tex","autoid":"Remark-6.13","reftag":"6.13","label":"Remark","id":"Remark-6.13","reflabel":"Remark","refnum":"6.13","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Theorem-6.15","reftag":"6.15","label":"Theorem","id":"theorem-uniqueness-limit","reflabel":"Theorem","refnum":"6.15","neu":true,"cls":"Theorem","title":"Uniqueness of limit"},{"file":"index.tex","autoid":"Example-6.16","reftag":"6.16","label":"Example","id":"Example-6.16","reflabel":"Example","refnum":"6.16","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-6.17","reftag":"6.17","label":"Definition","id":"definition-bounded-sequence","reflabel":"Definition","refnum":"6.17","neu":true,"cls":"Definition","title":"Bounded sequence"},{"file":"index.tex","autoid":"Example-6.19","reftag":"6.19","label":"Example","id":"Example-6.19","reflabel":"Example","refnum":"6.19","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-6.21","reftag":"6.21","reflabel":"Remark","neu":true,"id":"Remark-6.21","refnum":"6.21","label":"Remark","cls":"Remark","title":""},{"file":"index.tex","autoid":"Theorem-6.23","reftag":"6.23","label":"Theorem","id":"Theorem-6.23","reflabel":"Theorem","refnum":"6.23","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-6.10","reftag":"","label":"Proof","id":"Proof*-6.10","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-6.24","reftag":"6.24","label":"Theorem","id":"Theorem-6.24","reflabel":"Theorem","refnum":"6.24","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Example-id-example-limit-ploynomial","reftag":"6.26","label":"Example","id":"example-limit-ploynomial","reflabel":"Example","refnum":"6.26","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-6.26","reftag":"6.26","reflabel":"Example","neu":true,"id":"Example-6.26","refnum":"6.26","label":"Example","cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-one-over-np","reftag":"6.8","label":"Theorem","id":"theorem-one-over-np","reflabel":"Theorem","refnum":"6.8","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Important*-6.11","reftag":"","reflabel":"Important","neu":true,"id":"Important*-6.11","refnum":"??","label":"Important","cls":"Important","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-1-minus-n","reftag":"6.14","label":"Theorem","id":"theorem-1-minus-n","reflabel":"Theorem","refnum":"6.14","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Warning*-6.9","reftag":"","label":"Warning","id":"Warning*-6.9","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Example-6.20","reftag":"6.20","label":"Example","id":"Example-6.20","reflabel":"Example","refnum":"6.20","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-6.22","reftag":"6.22","label":"Remark","id":"Remark-6.22","reflabel":"Remark","refnum":"6.22","neu":true,"cls":"Remark","title":""},{"file":"index.tex","autoid":"Proof*-6.11","reftag":"","label":"Proof","id":"Proof*-6.11","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Theorem-6.25","reftag":"6.25","label":"Theorem","id":"theorem-algebra-limits","reflabel":"Theorem","refnum":"6.25","neu":true,"cls":"Theorem","title":"Algebra of limits"},{"file":"index.tex","autoid":"Important*-6.12","reftag":"","reflabel":"Important","neu":true,"id":"Important*-6.12","refnum":"??","label":"Important","cls":"Important","title":""},{"file":"index.tex","autoid":"Example-id-example-algebra-of-limits-2","reftag":"6.27","label":"Example","id":"example-algebra-of-limits-2","reflabel":"Example","refnum":"6.27","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-6.28","reftag":"6.28","label":"Example","id":"Example-6.28","reflabel":"Example","refnum":"6.28","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Warning*-6.13","reftag":"","reflabel":"Warning","neu":true,"id":"Warning*-6.13","refnum":"??","label":"Warning","cls":"Warning","title":""},{"file":"index.tex","autoid":"Proof*-6.14","reftag":"","reflabel":"Proof","neu":true,"id":"proof-of-theorem-5","refnum":"??","label":"Proof","cls":"Proof","title":"Proof of Theorem 6.25"},{"file":"index.tex","autoid":"Example-6.29","reftag":"6.29","label":"Example","id":"Example-6.29","reflabel":"Example","refnum":"6.29","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-6.30","reftag":"6.30","label":"Example","id":"Example-6.30","reflabel":"Example","refnum":"6.30","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-6.31","reftag":"6.31","reflabel":"Theorem","neu":true,"id":"Theorem-6.31","refnum":"6.31","label":"Theorem","cls":"Theorem","title":""},{"file":"index.tex","autoid":"Proof*-6.15","reftag":"","label":"Proof","id":"Proof*-6.15","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-6.32","reftag":"6.32","label":"Example","id":"Example-6.32","reflabel":"Example","refnum":"6.32","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-6.33","reftag":"6.33","label":"Example","id":"Example-6.33","reflabel":"Example","refnum":"6.33","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Proof*-6.12","reftag":"","label":"Proof","id":"Proof*-6.12","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Important*-6.13","reftag":"","label":"Important","id":"Important*-6.13","reflabel":"Important","refnum":"??","neu":true,"cls":"Important","title":""},{"file":"index.tex","autoid":"Warning*-6.14","reftag":"","label":"Warning","id":"Warning*-6.14","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Theorem-id-theorem-square-root-limit","reftag":"6.31","label":"Theorem","id":"theorem-square-root-limit","reflabel":"Theorem","refnum":"6.31","neu":true,"cls":"Theorem","title":""},{"file":"index.tex","autoid":"Theorem-6.34","reftag":"6.34","label":"Theorem","id":"theorem-squeeze","reflabel":"Theorem","refnum":"6.34","neu":true,"cls":"Theorem","title":"Squeeze theorem"},{"file":"index.tex","autoid":"Proof*-6.16","reftag":"","label":"Proof","id":"Proof*-6.16","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-6.35","reftag":"6.35","label":"Example","id":"Example-6.35","reflabel":"Example","refnum":"6.35","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-id-example-squeeze","reftag":"6.36","label":"Example","id":"example-squeeze","reflabel":"Example","refnum":"6.36","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Warning*-6.17","reftag":"","label":"Warning","id":"Warning*-6.17","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Example-6.37","reftag":"6.37","label":"Example","id":"Example-6.37","reflabel":"Example","refnum":"6.37","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Definition-6.38","reftag":"6.38","label":"Definition","id":"Definition-6.38","reflabel":"Definition","refnum":"6.38","neu":true,"cls":"Definition","title":""},{"file":"index.tex","autoid":"Theorem-6.39","reftag":"6.39","label":"Theorem","id":"theorem-geometric-sequence","reflabel":"Theorem","refnum":"6.39","neu":true,"cls":"Theorem","title":"Geometric sequence test"},{"file":"index.tex","autoid":"Warning*-6.18","reftag":"","label":"Warning","id":"Warning*-6.18","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Lemma-6.40","reftag":"6.40","label":"Lemma","id":"lemma-bernoulli","reflabel":"Lemma","refnum":"6.40","neu":true,"cls":"Lemma","title":"Bernoulli’s inequality"},{"file":"index.tex","autoid":"Proof*-6.19","reftag":"","label":"Proof","id":"Proof*-6.19","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Proof*-6.20","reftag":"","label":"Proof","id":"proof-of-theorem-5","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":"Proof of Theorem 6.39"},{"file":"index.tex","autoid":"Example-6.41","reftag":"6.41","label":"Example","id":"Example-6.41","reflabel":"Example","refnum":"6.41","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Theorem-6.42","reftag":"6.42","label":"Theorem","id":"theorem-ratio-test","reflabel":"Theorem","refnum":"6.42","neu":true,"cls":"Theorem","title":"Ratio test"},{"file":"index.tex","autoid":"Proof*-6.21","reftag":"","label":"Proof","id":"Proof*-6.21","reflabel":"Proof","refnum":"??","neu":true,"cls":"Proof","title":""},{"file":"index.tex","autoid":"Example-6.43","reftag":"6.43","label":"Example","id":"Example-6.43","reflabel":"Example","refnum":"6.43","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Warning*-6.22","reftag":"","label":"Warning","id":"Warning*-6.22","reflabel":"Warning","refnum":"??","neu":true,"cls":"Warning","title":""},{"file":"index.tex","autoid":"Example-6.44","reftag":"6.44","label":"Example","id":"Example-6.44","reflabel":"Example","refnum":"6.44","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Example-6.45","reftag":"6.45","label":"Example","id":"Example-6.45","reflabel":"Example","refnum":"6.45","neu":true,"cls":"Example","title":""},{"file":"index.tex","autoid":"Remark-6.46","reftag":"6.46","label":"Remark","id":"Remark-6.46","reflabel":"Remark","refnum":"6.46","neu":true,"cls":"Remark","title":""}] \ No newline at end of file diff --git a/_freeze/sections/chap_6/execute-results/html.json b/_freeze/sections/chap_6/execute-results/html.json index fa69ea3..4aa173d 100644 --- a/_freeze/sections/chap_6/execute-results/html.json +++ b/_freeze/sections/chap_6/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "cfd0383b7e6e430d3155239404aab63c", + "hash": "6b1a1762bc10b062f85651bd4f9de758", "result": { - "markdown": "::: {.content-hidden}\n$\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\Q}{\\mathbb{Q}}\n\\newcommand{\\C}{\\mathbb{C}} \n\\newcommand{\\N}{\\mathbb{N}}\n\\newcommand{\\Z}{\\mathbb{Z}}\n\n\\renewcommand\\Re{\\operatorname{Re}}\n\\renewcommand\\Im{\\operatorname{Im}}\n\n\n\n\n\n\\newcommand{\\e}{\\varepsilon}\n\\newcommand{\\g}{\\gamma}\n\n\\newcommand{\\st}{\\, \\text{ s.t. } \\, }\n\\newcommand{\\divider}{\\, \\colon \\,}\n\n\\newcommand{\\closure}[2][2]{{}\\mkern#1mu \\overline{\\mkern-#1mu #2 \\mkern-#1mu}\\mkern#1mu {}}\n\n\n\\newcommand{\\Czero}{\\mathnormal{C}}\n\\newcommand{\\Cinf}{{\\mathnormal{C}}^{\\infty}}\n\\newcommand{\\Cinfcomp}{{\\mathnormal{C}}_0^{\\infty}}\n\\newcommand{\\Lone}{{\\mathnormal{L}}^1}\n\\newcommand{\\Loneloc}{{\\mathnormal{L}}_{loc}^1}\n\\newcommand{\\Ltwo}{{\\mathnormal{L}}^2}\n\\newcommand{\\Lp}{{\\mathnormal{L}}^p}\n\\newcommand{\\Linf}{{\\mathnormal{L}}^{\\infty}}\n\\newcommand{\\Woneone}{{\\mathnormal{W}}^{1,1}}\n\\newcommand{\\Wonetwo}{{\\mathnormal{W}}^{1,2}}\n\\newcommand{\\Wonep}{{\\mathnormal{W}}^{1,p}}\n\\newcommand{\\Woneinf}{{\\mathnormal{W}}^{1,\\infty}}\n\\newcommand{\\Wtwotwo}{{\\mathnormal{W}}^{2,2}}\n\\newcommand{\\Wktwo}{{\\mathnormal{W}}^{k,2}}\n\\newcommand{\\Wkp}{{\\mathnormal{W}}^{k,p}}\n\\newcommand{\\Lip}{\\mathnormal{Lip}}\n\n\\newcommand{\\scp}[2]{\\left\\langle #1,#2 \\right\\rangle} %prodotto scalare\n\\newcommand{\\abs}[1]{\\left| #1 \\right|} %valore assoluto\n\\newcommand{\\norm}[1]{\\left\\| #1 \\right\\|} %norma\n\n\n\n\n\n\n\n\n\n$\n:::\n\n\n\n\n\n# Sequences\n\n\n\nA sequence is an infinite list of real numbers. For example, the following are sequences:\n\n\n- $(1,2,3,4, \\ldots)$\n\n- $(-1,1,-1,1, \\ldots)$\n\n- $\\left(1, \\frac{1}{2}, \\frac{1}{3}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right)$\n\n\n::: Remark\n\n- The order of elements in a sequence matters. \n\n> For example\n>$$\n>(1,2,3,4,5,6, \\ldots) \\neq(2,1,4,3,6,5, \\ldots)\n>$$\n\n- A sequence is not a set. \n\n> For example \n>$$\n>\\{-1,1,-1,1,-1,1, \\ldots\\}=\\{-1,1\\}\n>$$\n>but we cannot make a similar statement for the sequence \n>$$\n>(-1,1,-1,1,-1,1, \\ldots) \\,.\n>$$\n\n- The above notation is ambiguous.\n\n> For example the sequence \n>$$\n>(1,2,3,4, \\ldots)\n>$$\ncan continue as\n>\n>$$\n>(1,2,3,4,1,2,3,4,1,2,3,4, \\ldots) \\,.\n>$$\n\n- In the sequence \n$$\n\\left(1, \\frac{1}{2}, \\frac{1}{3}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right)\n$$\nthe elements get smaller and smaller, and closer and closer to $0$. We say that this sequence converges to $0$, or has $0$ as a limit. \n\n\n:::\n\n\nWe would like to make the notions of sequence and convergence more precise.\n\n\n## Sequences in $\\R$\n\n\nWe start with the definition of sequence of Real numbers.\n\n\n::: Definition \n### Sequence of Real numbers\n\nA sequence $a$ in $\\R$ is a function\n$$\na \\colon \\N \\to \\R \\,.\n$$\nFor $n \\in \\N$, we denote the $n$-th element of the sequence $a$ by \n$$\na_{n}=a(n)\n$$ \nand write the sequence as \n$$\n\\left(a_{n}\\right)_{n \\in \\N} \\,.\n$$\n:::\n\n\n::: Notation\n\nWe will sometimes omit the subscript $n \\in \\N$ and simply write \n$$\n\\left(a_{n}\\right) \\,.\n$$ \nIn certain situations, we will also write\n$$\n\\left(a_{n}\\right)_{n=1}^{\\infty} \\,.\n$$\n\n\n:::\n\n\n\n\n::: Example \n\n- In general $\\left(a_{n}\\right)_{n \\in \\N}$ is the sequence \n$$\n\\left(a_{1}, a_{2}, a_{3}, \\ldots\\right)\\,.\n$$\n\n- Consider the function \n$$\na \\colon \\N \\to \\N \\, , \\quad n \\mapsto 2 n \\,.\n$$\nThis is also a sequence of real numbers. It can be written as \n$$\n(2 n)_{n \\in \\N}\n$$\nand it represents the sequence of even numbers \n$$\n(2,4,6,8,10, \\ldots) \\,.\n$$\n\n- Let \n$$\na_{n}=(-1)^{n}\n$$\nThen $\\left(a_{n}\\right)$ is the sequence \n$$\n(-1,1,-1,1,-1,1, \\ldots) \\,.\n$$\n\n- $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ is the sequence \n$$\n\\left(1, \\frac{1}{2}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right) \\,.\n$$\n\n\n:::\n\n\n\n## Convergent sequences\n\n\nWe have notice that the sequence $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ gets close to $0$ as $n$ gets large. We would like to say that $a_{n}$ converges to $0$ as $n$ tends to infinity.\n\nTo make this precise, we first have to say what it means for two numbers to be *close*. For this we use the notion of absolute value, and say that:\n\n- $x$ and $y$ are close if $|x-y|$ is small. \n- $|x-y|$ is called the distance between $x$ and $y$\n- For $x$ to be close to $0$, we need that $|x-0|=|x|$ is small.\n\nSaying that $|x|$ is *small* is not very precise. Let us now give the formal definition of convergent sequence.\n\n::: Definition \n### Convergent sequence {#definition-convergent-sequence}\n\nWe say that a sequence $\\left(a_{n}\\right)_{n \\in \\N}$ in $\\mathbb{R}$ **converges** to $a \\in \\mathbb{R}$ or equivalently has limit $a$, denoted by\n\n$$\n\\lim _{n \\rightarrow \\infty} a_{n}=a \\text {, }\n$$\n\nif for all $\\e \\in \\mathbb{R}, \\e>0$, there exists an $N \\in \\N$ such that for all $n \\in \\N, n \\geq N$ it holds that \n$$\n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nUsing quantifiers, we can write this as\n$$\n\\forall \\, \\e>0 , \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\,\\left|a_{n}-a\\right| < \\e \\,.\n$$\n\nIf there exists $a \\in \\R$ such that $\\lim _{n \\rightarrow \\infty} a_{n}=a$, then we say that the sequence $\\left(a_{n}\\right)_{n \\in \\N}$ is **convergent**.\n\n:::\n\n\n::: Remark\n\n- Informally, Definition \\ref{definition-convergent-sequence} says that, no matter how small we choose $\\e$ (as long as it is strictly positive), we always have that $a_{n}$ has a distance to $a$ of less than or equal to $\\e$ from a certain point onwards (i.e., from $N$ onward). The sequence $\\left(a_{n}\\right)$ may fluctuate wildly in the beginning, but from $N$ onward it should stay within a distance of $\\e$ of $a$.\n\n- In general $N$ depends on $\\e$. If $\\e$ is chosen smaller, we might have to take $N$ larger: this means we need to wait longer before the sequence stays within a distance $\\e$ from $a$.\n\n:::\n\n\nWe now prove that the sequence\n$$\na_n = \\frac1n\n$$\nconverges to $0$, according to Definition \\ref{definition-convergent-sequence}.\n\n::: {.Theorem #theorem-one-over-n}\n\nThe sequence $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ converges to $0$ , i.e.,\n\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{1}{n}=0 \\,.\n$$\n\n:::\n\nWe give two proofs of the above theorem:\n\n- Long proof, with all the details.\n- Short proof, with less details, but still acceptable. \n\n::: Proof \n### Proof of Theorem \\ref{theorem-one-over-n} (Long version)\n\nWe have to show that\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{1}{n}=0,\n$$\n\nwhich by definition is equivalent to showing that\n\n$$\n\\forall \\, \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n}-0\\right| < \\e \\,.\n$${#eq-one-over-n}\n\nLet $\\e \\in \\mathbb{R}$ with $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e}\\,.\n$$\nSuch natural number $N$ exists thanks to the Archimedean property. The above implies\n$$\n\\frac{1}{N} < \\e \\,,\n$${#eq-one-over-n-1}\nLet $n \\in \\N$ with $n \\geq N$. By (@eq-one-over-n-1) we have\n$$\n\\frac{1}{n} \\leq \\frac{1}{N} < \\e \\,.\n$$\nFrom this we deduce\n$$\n\\left|\\frac{1}{n}-0\\right|=\\frac{1}{n} \\leq \\frac{1}{N} < \\e\n$$\n\nSince $n \\in \\N, n \\geq N$ was arbitrary, we have proven that \n$$\n\\left|\\frac{1}{n}-0\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-one-over-n-2}\nCondition (@eq-one-over-n-2) holds for all $\\e>0$, for the choice of $N \\in \\N$ such that\n$$\nN > \\frac{1}{\\e} \\,.\n$$\nWe have hence shown (@eq-one-over-n), and the proof is concluded.\n\n:::\n\nAs the above proof is quite long and includes lots of details, it is acceptable to shorten it. For example:\n\n- We skip some intermediate steps.\n- We do not mention the Archimedean property.\n- We leave out the conclusion when it is obvious that the statement has been proven. \n\n\n\n\n::: Proof \n### Proof of Theorem \\ref{theorem-one-over-n} (Short version)\n\nWe have to show that\n\n$$\n\\forall \\, \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n}-0\\right| < \\e \\,.\n$$\n\nLet $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e}\\,.\n$$\nLet $n \\geq N$. Then\n$$\n\\left|\\frac{1}{n}-0\\right|=\\frac{1}{n} \\leq \\frac{1}{N} < \\e \\,.\n$$\n\n:::\n\n\nIn Theorem \\ref{theorem-one-over-n} we showed that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n} = 0 \\,.\n$$\nWe can generalise this statement to prove that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n^{p}} = 0\n$$\nfor any $p>0$ fixed.\n\n\n::: {.Theorem #theorem-one-over-np}\nFor all $p>0$, the sequence $\\left(\\frac{1}{n^{p}}\\right)_{n \\in \\N}$ converges to $0$ , i.e.,\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{1}{n^{p}}=0\n$$\n:::\n\n::: Proof\n\nLet $p>0$. We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n^{p}}-0\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e^{1 / p}} \\,.\n$${#eq-theorem-one-over-np-1}\nLet $n \\geq N$. Since $p>0$, we have $n^{p} \\geq N^{p}$, which implies \n$$\n\\frac{1}{n^p} \\leq \\frac{1}{N^p} \\,.\n$$\nBy (@eq-theorem-one-over-np-1) we deduce\n$$\n\\frac{1}{N^p} < \\e \\,.\n$$\nThen\n$$\n\\left|\\frac{1}{n^{p}}-0\\right|=\\frac{1}{n^{p}} \\leq \\frac{1}{N^{p}} < \\e \\,.\n$$\n\n:::\n\n::: Question\nWhy did we choose $N \\in \\N$ such that\n$$\nN > \\frac{1}{\\e^p}\n$$\nin the above proof?\n:::\n\nThe answer is: because it works. Finding a number $N$ that makes the proof work requires some *rough work*: Specifically, such rough work consists in finding $N \\in \\N$ such that the inequality\n$$\n|a_N - a | < \\e \n$$\nis satisfied. \n\n\n::: Important \n\nAny *rough work* required to prove convergence must be shown before the formal proof (in assignments). \n\n:::\n\n\n\n\n::: Example \n\nProve that, as $n \\rightarrow \\infty$,\n\n$$\n\\frac{n}{2n+3} \\to \\frac{1}{2} \\,.\n$$\n\n*Part 1. Rough Work.*\n\nLet $\\e>0$. We want to find $N \\in \\N$ such that\n$$\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTo this end, we compute:\n\\begin{align*}\n\\left|\\frac{n}{2 n+3}-\\frac{1}{2}\\right| & \n=\\left|\\frac{2n -(2n + 3)}{2(2n +3)}\\right| \\\\\n& =\\left|\\frac{- 3}{4n + 6}\\right| \\\\\n& = \\frac{3}{4n + 6} \\,.\n\\end{align*}\nTherefore \n\\begin{align*}\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e\n\\quad \\iff & \\quad\n\\frac{3}{4n + 6} < \\e \\\\\n\\quad \\iff & \\quad\n\\frac{4n + 6}{3} > \\frac{1}{\\e} \\\\\n\\quad \\iff & \\quad\n4n + 6 > \\frac{3}{\\e} \\\\\n\\quad \\iff & \\quad\n4n > \\frac{3}{\\e} - 6 \\\\\n\\quad \\iff & \\quad\nn > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n\\end{align*}\nLooking at the above equivalences, it is clear that $N \\in \\N$ has to be chosen so that\n$$\nN > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n$$\n\n\n*Part 2. Formal Proof.* We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that\n$$\nN > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n$${#eq-example-limit-1}\nBy the rough work shown above, inequality (@eq-example-limit-1) is equivalent to \n$$\n \\frac{3}{4N + 6} < \\e \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| \n& = \\left|\\frac{- 3 }{2(2 n+3)}\\right| \\\\\n& = \\frac{3}{4 n+ 6 } \\\\\n& \\leq \\frac{3}{4 N+ 6 } \\\\\n& < \\e \\,,\n\\end{align*}\nwhere in the third line we used that $n \\geq N$.\n\n:::\n\n\nWe conclude by showing that constant sequences always converge.\n\n::: {.Theorem #theorem-constant-sequence}\n\nLet $c \\in \\R$ and define the constant sequence\n$$\na_n := c \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nWe have that \n$$\n\\lim_{n \\to \\infty} \\, a_n = c \\,.\n$$\n\n:::\n\n::: Proof\n\nWe have to prove that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_n - c \\right| < \\e \\,.\n$${#eq-constant-sequence}\nLet $\\e>0$. We have\n$$\n\\left|a_n - c \\right| = \\left|c - c \\right| = 0 < \\e \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nTherefore we can choose $N=1$ and (@eq-constant-sequence) is satisfied. \n:::\n\n\n\n\n## Divergent sequences\n\n\nThe opposite of convergent sequences are divergent sequences.\n\n::: Definition\n### Divergent sequence\n\nWe say that a sequence $\\left(a_{n}\\right)_{n \\in \\N}$ in $\\R$ is **divergent** if it is not convergent.\n\n:::\n\n\n\n::: Remark\n\nProving that a sequence $(a_n)$ is divergent is more complicated than showing it is convergent: To show that $(a_n)$ is divergent, we need to show that \n$(a_n)$ cannot converge to $a$ for any $a \\in \\R$.\n\nIn other words, we have to show that there does not exist an $a \\in \\mathbb{R}$ such that \n$$\n\\lim _{n \\rightarrow \\infty} \\, a_n = a \\,.\n$$\nUsing quantifiers, this means\n$$\n\\nexists \\, a \\in \\R \\st \\forall \\, \\e>0 \\,, \\, \n\\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\,\n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nThe above is equivalent to showing that\n$$\n\\forall \\, a \\in \\R \\,, \\, \\exists \\, \\e > 0 \\st \\forall \\, N \\in \\N \\,, \\, \\exists \\, n \\geq N \\st \\left|a_{n}-a\\right| \\geq \\e \\,.\n$$\n\n:::\n\n\n\n::: {.Theorem #theorem-1-minus-n}\nLet $\\left(a_{n}\\right)$ be the sequence defined by\n$$\na_{n}=(-1)^{n} \\,.\n$$\nThen $\\left(a_{n}\\right)$ does not converge. \n\n:::\n\n::: Proof\n\nTo prove that $\\left(a_{n}\\right)$ does not converge, we have to show that \n$$\n\\forall \\, a \\in \\R \\,, \\, \\exists \\, \\e > 0 \\st \\forall \\, N \\in \\N \\,, \\, \\exists \\, n \\geq N \\st \\left|a_{n}-a\\right| \\geq \\e \\,.\n$$\nLet $a \\in \\R$. Choose \n$$\n\\e=\\frac{1}{2} \\,.\n$$ \nLet $N \\in \\N$. We distinguish two cases:\n\n- $a \\geq 0$: Choose $n=2 N+1$. Note that $n \\geq N$. Then\n\\begin{align*}\n\\left|a_{n}-a\\right| & = \\left|a_{2 N+1}-a\\right| \\\\\n& = \\left|(-1)^{2 N+1}-a\\right| \\\\\n& =|-1-a| \\\\\n& =1+a \\\\\n& \\geq 1 \\\\\n& > \\frac{1}{2} = \\e \\,,\n\\end{align*}\nwhere we used that $a \\geq 0$, and therefore \n$$\n|-1-a|=1+a \\geq 1 \\,.\n$$\n\n- $a<0$: Choose $n=2 N$. Note that $n \\geq N$. Then\n\\begin{align*}\n\\left|a_{n}-a\\right| & = \\left|a_{2 N}-a\\right| \\\\\n& =\\left|(-1)^{2 N}-a\\right| \\\\ \n& = |1-a| \\\\\n& = 1-a \\\\\n& > 1 \\\\\n& > \\frac{1}{2} = \\e \\,,\n\\end{align*}\nwhere we used that $a < 0$, and therefore \n$$\n|1-a|=1-a > 1 \\,.\n$$\n\n\n:::\n\n\n\n## Uniqueness of limit\n\n\nIn Definition \\ref{definition-convergent-sequence} of convergence, we used the notation \n$$\n\\lim_{n \\rightarrow \\infty} a_{n}=a \\,.\n$$ \nThe above notation makes sense only if the limit is unique, that is, if we do not have that \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,,\n$$ \nfor some \n$$\na \\neq b \\,.\n$$\nIn the next theorem we will show that the limit is unique, if it exists.\n\n::: Theorem \n### Uniqueness of limit {#theorem-uniqueness-limit}\n\nLet $\\left(a_{n}\\right)_{n \\in \\N}$ be a sequence. Suppose that \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = a \\,, \\quad \n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,.\n$$\nThen $a=b$.\n:::\n\n\n::: Proof\n\nAssume that, \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = a \\,, \\quad \n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,.\n$$\nSuppose by contradiction that\n$$\na \\neq b \\,.\n$$\nChoose \n$$\n\\e := \\frac{1}{2} \\, |a-b| \\,.\n$$\nTherefore $\\e>0$, since $|a-b|>0$. By the convergence $a_{n} \\rightarrow a$,\n$$\n\\exists \\, N_1 \\in \\N \\st \\forall \\, n \\geq N_1 \\,, \\, \n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nBy the convergence $a_{n} \\rightarrow b$,\n$$\n\\exists \\, N_2 \\in \\N \\st \\forall \\, n \\geq N_2 \\,, \\, \n\\left|a_{n} - b \\right| < \\e \\,.\n$$\nDefine\n$$\nN := \\max \\{ N_1, N_2 \\} \\,.\n$$\nChoose an $n \\in \\N$ such that $n \\geq N$. In particular\n$$\nn \\geq N_1 \\,, \\quad n \\geq N_2 \\,.\n$$\nThen\n\\begin{align*}\n2 \\e & = |a-b| \\\\\n& = \\left|a-a_{n}+a_{n}-b\\right| \\\\\n& \\leq\\left|a-a_{n}\\right|+\\left|a_{n}-b\\right| \\\\\n& < \\e + \\e \\\\\n& = 2 \\e \\,,\n\\end{align*}\nwhere we used the triangle inequality in the first inequality.\nHence $2 \\e < 2 \\e$, which gives a contradiction.\n\n:::\n\n\n::: Example \n\nProve that\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3}=\\frac{1}{2}\n$$\n\nAccording to Theorem \\ref{theorem-uniqueness-limit}, it suffices to show that the sequence \n$$\n\\left(\\frac{n^{2}-1}{2 n^{2}-3}\\right)_{n \\in \\N}\n$$ \nconverges to $\\frac{1}{2}$, since then $\\frac{1}{2}$ can be the only limit.\n\n\n*Part 1. Rough Work.*\n\nLet $\\e>0$. We want to find $N \\in \\N$ such that\n$$\n\\left|\\frac{n^{2}-1}{2 n^{2}-3} - \\frac{1}{2}\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTo this end, we compute:\n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| \n& =\\left|\\frac{2\\left(n^{2}-1\\right)-\\left(2 n^{2}-3\\right)}{2\\left(2 n^{2}-3\\right)}\\right| \\\\\n& =\\left|\\frac{1}{4 n^{2}-6}\\right| \\\\\n& =\\frac{1}{4 n^{2}-6} \\\\\n& =\\frac{1}{3 n^{2}+n^{2}-6} \\\\\n& \\leq \\frac{1}{3 n^{2}} \n\\end{align*}\nwhich holds if $n \\geq 3$, since in this case $n^2 - 6 \\geq 0$.\nTherefore \n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| < \\e\n\\quad \\impliedby & \\quad\n\\frac{1}{3n^2} < \\e \\\\\n\\quad \\iff & \\quad\n3n^2 > \\frac{1}{\\e} \\\\\n\\quad \\iff & \\quad\nn^2 > \\frac{1}{3\\e} \\\\\n\\quad \\iff & \\quad\nn > \\frac{1}{\\sqrt{3\\e}} \\,.\n\\end{align*}\nLooking at the above implications, it is clear that $N \\in \\N$ has to be chosen so that\n$$\nN > \\frac{1}{\\sqrt{3\\e}} \\,.\n$$\nMoreover we need to recall that $N$ has to satisfy \n$$\nN \\geq 3\n$$ \nfor the estimates to hold.\n\n\n*Part 2. Formal Proof.* We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that\n$$\nN > \\max \\left\\{ \\frac{1}{\\sqrt{3\\e}}, 3 \\right\\} \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| \n& =\\frac{1}{4 n^{2}-6} \\\\\n& =\\frac{1}{3 n^{2}+n^{2}-6} \\\\\n& \\leq \\frac{1}{3 n^{2}} \\\\\n& \\leq \\frac{1}{3 N^{2}} \\\\\n& < \\e \\,,\n\\end{align*}\nwhere we used that \n$$\nn \\geq N \\geq 3 \n$$ \nwhich implies \n$$\nn^2 - 6 \\geq 0\\,,\n$$\nin the third line. The last inequality holds, since it is equivalent \nto \n$$\nN > \\frac{1}{\\sqrt{3 \\e}} \\,.\n$$\n\n:::\n\n\n\n\n## Bounded sequences\n\n\nAn important property of sequences is boundedness. \n\n\n::: Definition \n### Bounded sequence {#definition-bounded-sequence}\n\nA sequence $\\left(a_{n}\\right)_{n \\in \\N}$ is called **bounded** if there exists a constant $M \\in \\R$, with $M>0$, such that\n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\n\n:::\n\nDefinition \\ref{definition-bounded-sequence} says that a sequence is bounded, if we can find some constant $M>0$ (possibly very large), such that for all elements of the sequence it holds that \n$$\n\\left|a_{n}\\right| \\leq M \\,,\n$$\nor equivalently, that \n$$\n-M \\leq a_{n} \\leq M \\,.\n$$\n\n\nWe now show that any sequence that converges is also bounded\n\n::: {.Theorem #theorem-convergent-bounded}\n\nIf a sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ converges, then the sequence is bounded.\n\n:::\n\n\n::: Proof \n\nSuppose the sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ converges and let\n$$\na: = \\lim_{n \\rightarrow \\infty} a_{n}\n$$\nBy definition of convergence we have that\n$$\n\\forall \\, \\e >0 \\,, \\, \\exists N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_{n}-a \\right| < \\e \\,.\n$$\nIn particular, we can choose\n$$\n\\e = 1\n$$ \nand let $N \\in \\N$ be that value such that\n$$\n\\left|a_{n}-a \\right| < 1 \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nIf $n \\geq N$ we have, by the triangle inequality,\n\\begin{align*}\n\\left|a_{n}\\right| & = \\left|a_{n}-a+a\\right| \\\\\n & \\leq \\left|a_{n}-a\\right|+|a| \\\\\n & < 1+|a| \\,.\n\\end{align*}\nSet\n$$\nM:=\\max \\left\\{\\left|a_{1}\\right|,\\left|a_{2}\\right|, \\ldots,\\left|a_{N-1}\\right|, 1+|a|\\right\\} \\,.\n$$\nNote that such maximum exists, being the set finite. Then \n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nshowing that $(a_n)$ is bounded.\n\n:::\n\n\nThe choice of $M$ in the above proof says that the sequence can behave wildly for a finite number of terms. After that, it will stay close to the value of the limit, if the latter exists.\n\n::: Example\n\nIn Theorem \\ref{theorem-one-over-n} we have shown that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n} = 0 \n$$\nHence, it follows from Theorem \\ref{theorem-convergent-bounded} that the sequence $(1/n)$ is bounded.\n\nIndeed, we have that\n$$\n\\left|\\frac{1}{n}\\right|=\\frac{1}{n} \\leq 1 \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nsince $n \\geq 1$ for all $n \\in \\N$.\n\n:::\n\n\n::: Warning\n\nThe converse of Theorem \\ref{theorem-convergent-bounded} does not hold: There exist sequences $(a_n)$ which are bounded, but not convergent.\n\n:::\n\n\n::: Example\n\nDefine the sequence\n$$\na_n = (-1)^n \\,.\n$$\nWe have proven in Theorem \\ref{theorem-1-minus-n} that $(a_n)$ is not convergent. However\n$(a_n)$ is bounded, with $M=1$, since\n$$\n|a_n| = |(-1)^n| = 1 = M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\n\n:::\n\n\n\nTaking the contrapositive of the statement in Theorem \\ref{theorem-convergent-bounded} we get the following corollary:\n\n\n::: {.Corollary #corollary-convergent-bounded}\n\nIf a sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ is not bounded, then the sequence does not converge.\n\n:::\n\n\n::: Remark\n\nFor a sequence $(a_n)$ to be unbounded, it means that\n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nThe above is saying that no real number $M>0$ can be a bound for $|a_n|$, since there is always an index $n \\in \\N$ such that \n$$\n|a_n| > M \\,.\n$$\n\n:::\n\n\nWe can use Corollary \\ref{corollary-convergent-bounded} to show that certain sequences do not converge.\n\n\n::: Theorem \n\nFor all $p>0$, the sequence $\\left(n^{p}\\right)_{n \\in \\mathbb{N}}$ does not converge.\n\n:::\n\n\n::: Proof\nLet $p>0$. We prove that the sequence $\\left(n^{p}\\right)_{n \\in \\mathbb{N}}$ is unbounded, that is, \n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nTo this end, let $M > 0$. Choose $n \\in \\N$ such that \n$$\nn > M^{1/p} \\,.\n$$\nThen\n$$\na_n = n^{p}>\\left(M^{1/p}\\right)^{p}=M \\,.\n$$\nThis proves that the sequence $(n^p)$ is unbounded. Hence $(n^p)$ cannot converge, by Corollary \\ref{corollary-convergent-bounded}.\n\n:::\n\n\n\n::: Theorem\n\nThe sequence $(\\log n)_{n \\in \\mathbb{N}}$ does not converge.\n\n:::\n\n\n::: Proof \n\nLet us show that $(\\log n)_{n \\in \\mathbb{N}}$ is unbounded, that is, \n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nTo this end let $M > 0$. Choose $n \\in \\N$ such that \n$$\nn \\geq e^{M+1} \\,.\n$$\nThen\n$$\n|a_n| = |\\log n| \\geq \\left| \\log e^{M+1} \\right| = M + 1 > M \\,.\n$$\nThis proves that the sequence $(\\log n)$ is unbounded. Hence $(\\log n)$ cannot converge, by Corollary \\ref{corollary-convergent-bounded}.\n\n:::\n\n\n\n\n## Algebra of limits\n\nProving convergence using Definition \\ref{definition-convergent-sequence} can be a tedious task. In this section we discuss how to prove convergence, starting from known convergence results.\n\n\n::: Theorem \n### Algebra of limits {#theorem-algebra-limits} \n\nLet $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ and $\\left(b_{n}\\right)_{n \\in \\mathbb{N}}$ be sequences in $\\mathbb{R}$. Suppose that\n$$\n\\lim _{n \\rightarrow \\infty} a_{n}=a \\,, \\quad \\lim _{n \\rightarrow \\infty} b_{n}=b \\,,\n$$\nfor some $a,b \\in \\R$. Then,\n\n1. Limit of sum is the sum of limits:\n$$\n\\lim_{n \\rightarrow \\infty}\\left(a_{n} \\pm b_{n}\\right)=a \\pm b\n$$\n\n2. Limit of product is the product of limits: \n$$\n\\lim _{n \\rightarrow \\infty}\\left(a_{n} b_{n}\\right) = a b \n$$\n\n3. If $b_{n} \\neq 0$ for all $n \\in \\mathbb{N}$ and $b \\neq 0$, then \n$$\n\\lim_{n \\rightarrow \\infty} \\left(\\frac{a_{n}}{b_{n}}\\right)=\\frac{a}{b} \n$$\n\n:::\n\n\n\n\n::: Proof \n\n\n Let $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ and $\\left(b_{n}\\right)_{n \\in \\mathbb{N}}$ be sequences in $\\mathbb{R}$ and let $c \\in \\mathbb{R}$. Suppose that, for some $a, b \\in \\mathbb{R}$\n$$\n\\lim _{n \\rightarrow \\infty} a_{n}=a \\,, \\quad \\lim _{n \\rightarrow \\infty} b_{n}=b \\,.\n$$\n\n\n*Proof of Point 1.* \n\nWe need to show that \n$$\n\\lim_{n \\to \\infty} (a_n \\pm b_n) = a \\pm b \\,.\n$$\nWe only give a proof of the formula with $+$, since the case with $-$ follows with a very similar proof. Hence, we need to show that\n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|(a_{n} + b_n) - (a+b) \\right| < \\e \\,.\n$$\nLet $\\e>0$ and set\n$$\n\\widetilde{\\e} := \\frac{\\e}{2} \\,.\n$$\nSince $a_{n} \\rightarrow a$ and $\\widetilde{\\e}>0$, there exists $N_1 \\in \\N$ such that\n$$\n|a_n - a|< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nSince $b_{n} \\rightarrow b$ and $\\widetilde{\\e}>0$, there exists $N_2 \\in \\N$ such that\n$$\n|b_n - b|< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n$$\nDefine\n$$\nN : = \\max \\{ N_1, N_2 \\} \\,.\n$$\nFor all $n \\geq N$ we have, by the triangle inequality,\n\\begin{align*}\n\\left|\\left(a_{n}+b_{n}\\right)-(a+b)\\right| \n& = \\left|\\left(a_{n}-a\\right) + \\left(b_{n}-b\\right)\\right| \\\\\n& \\leq \\left|a_{n}-a\\right|+\\left|b_{n}-b\\right| \\\\\n& < \\widetilde{\\e}+\\widetilde{\\e} \\\\\n& =\\e \\,.\n\\end{align*}\n\n\n\n*Proof of Point 2.*\n\n\nWe need to show that \n$$\n\\lim_{n \\to \\infty} (a_n b_n) = a b \\,,\n$$\nwhich is equivalent to \n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_{n} b_{n} - a b \\right| < \\e \\,.\n$$\nLet $\\e>0$. The sequence $\\left(a_{n}\\right)$ converges, and hence is bounded, by Theorem \\ref{theorem-convergent-bounded}. This means there exists some $M>0$ such that \n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nDefine \n$$\n\\widetilde{\\e} = \\frac{\\e}{ M + |b| } \\,. \n$$\nSince $a_{n} \\rightarrow a$ and $\\widetilde{\\e} > 0$, there exists \n$N_1 \\in \\N$ such that\n$$\n| a_n - a | < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nSince $b_{n} \\rightarrow b$ and $\\widetilde{\\e} > 0$, there exists \n$N_2 \\in \\N$ such that\n$$\n| b_n - b | < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n$$\nLet \n$$\nN:= \\max\\{ N_1, N_2 \\} \\,.\n$$\nFor all $n \\geq N$ we have\n\\begin{align*}\n\\left|a_{n}b_{n}-a b\\right| \n& = \\left|a_{n} b_{n} - a_n b + a_n b - a b \\right| \\\\\n& \\leq \\left|a_{n} b_{n} - a_n b \\right| + \\left|a_n b - a b \\right| \\\\\n& =\\left|a_{n}\\right| \\left|b_{n}-b\\right|+ |b| \\left|a_{n}-a\\right| \\\\\n& < M \\, \\widetilde{\\e} +|b| \\, \\widetilde{\\e} \\\\\n& = (M + |b|) \\, \\widetilde{\\e} \\\\\n& = \\e \\,.\n\\end{align*}\n\n\n*Proof of Point 3.* \n\nSuppose in addition that $b_n \\neq 0$ and $b \\neq 0$. We need to show that\n$$\n\\lim_{n \\to \\infty} \\, \\frac{a_n}{b_n} = \\frac{a}{b} \\,,\n$$\nwhich is equivalent to\n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{a_{n}}{ b_{n}} - \\frac{a}{b} \\right| < \\e \\,.\n$$\nWe suppose in addition that $b>0$. The proof is very similar for the case $b <0$. Let $\\e > 0$. Set\n$$\n\\delta := \\frac{b}{2} \\,.\n$$\nSince $b_n \\to b$ and $\\delta>0$, there exists $N_1 \\in \\N$ such that\n$$\n|b_n - b| < \\delta \\, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nIn particular we have\n$$\nb_n > b - \\delta = b - \\frac{b}{2} = \\frac{b}{2} \\, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nDefine\n$$\n\\widetilde{\\e} := \\frac{ b^2 }{ 2 (b + |a|)} \\, \\e \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $a_n \\to a$, there exists $N_2 \\in \\N$ such that\n$$\n|a_n - a |< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $b_n \\to b$, there exists $N_3 \\in \\N$ such that\n$$\n|b_n - b |< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_3 \\,.\n$$\nDefine\n$$\nN:= \\max\\{ N_1, N_2, N_3 \\} \\,.\n$$\nFor all $n \\geq N$ we have\n\\begin{align*}\n\\left|\\frac{a_{n}}{ b_{n}} - \\frac{a}{b} \\right| & = \n\\left|\\frac{a_{n} b - a b_n}{ b_{n} b } \\right| \\\\\n& = \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left| a_{n}b - a b + a b - a b_n \\right| \\\\\n& = \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left| (a_{n} - a) b + a(b-b_n) \\right| \\\\\n& \\leq \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left( |a_{n} - a| |b| + |a| |b-b_n| \\right) \\\\\n& < \\frac{1}{ \\dfrac{b}{2} \\, b } \\, \\left( \\widetilde{\\e} \\, b + \\widetilde{\\e} |a| \\right) \\\\\n& = \\frac{2 (b + |a|) }{b^2} \\, \\widetilde{\\e} \\\\\n& = \\e \\,.\n\\end{align*}\n\n:::\n\n\n\nIn the future we will refer to Theorem \\ref{theorem-algebra-limits} as the *Algebra of Limits*. We now show how to use Theorem \\ref{theorem-algebra-limits} for computing certain limits. \n\n\n::: {.Example #example-limit-ploynomial}\nProve that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{3 n}{7 n+4} = \\frac{3}{7} \\,.\n$$\n\n\n> *Proof*. We can rewrite\n$$\n\\frac{3 n}{7 n+4}=\\frac{3}{7+\\dfrac{4}{n}}\n$$\nBy Theorem \\ref{theorem-constant-sequence} we know that\n$$\n3 \\rightarrow 3\\,, \\quad 4 \\to 4 \\,, \\quad 7 \\to 7 \\,.\n$$\nFrom Theorem \\ref{theorem-one-over-n} we know that \n$$\n\\frac{1}{n} \\rightarrow 0 \\,.\n$$\nHence, it follows from Theorem \\ref{theorem-algebra-limits} Point 2 that \n$$\n\\frac{4}{n} = 4 \\cdot \\frac1n \\rightarrow 4 \\cdot 0 = 0 \\,.\n$$\nBy Theorem \\ref{theorem-algebra-limits} Point 1 we have\n$$\n7 + \\frac{4}{n} \\rightarrow 7 + 0 = 7 \\,.\n$$\nFinally we can use Theorem \\ref{theorem-algebra-limits} Point 3 to infer\n$$\n\\frac{3 n}{7 n+4}=\\frac{3}{7+\\dfrac{4}{n}} \\rightarrow \\frac{3}{7} \\,.\n$$\n\n:::\n\n\n::: Important \n\nThe technique shown in Example \\ref{example-limit-ploynomial} is useful to compute limits of fractions of polynomials. To identify the possible limit, if it exists, it is often best to divide by the largest power of $n$ in the denominator.\n\n:::\n\n\n\n::: {.Example #example-algebra-of-limits-2}\nProve that\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1}{2} \\,.\n$$\n\n> *Proof*. Factor $n^2$ to obtain\n$$\n\\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} \\,.\n$$\nBy Theorem \\ref{theorem-one-over-np} we have\n$$\n\\frac{1}{n^2} \\to 0 \\,.\n$$\nWe can then use the Algebra of Limits Theorem \\ref{theorem-algebra-limits} Point 2 to infer\n$$\n\\frac{3}{n^2} \\to 3 \\cdot 0 = 0\n$$\nand Theorem \\ref{theorem-algebra-limits} Point 1 to get\n$$\n1 - \\frac{1}{n^2} \\to 1 - 0 = 1 \\,, \\quad \n2 - \\frac{3}{n^2} \\to 2 - 0 = 2 \\,.\n$$\nFinally we use Theorem \\ref{theorem-algebra-limits} Point 3 and conclude\n$$\n \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} \\to \\frac{1}{2} \\,.\n$$\nTherefore\n$$\n\\lim_{n \\to \\infty } \\, \\frac{n^{2}-1}{2 n^{2}-3} = \\lim_{n \\to \\infty} \\, \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} = \\frac{1}{2} \\,.\n$$\n\n:::\n\n\n\nWe can also use the Algebra of Limits to prove that certain limits do not exist.\n\n\n\n::: Example \n\nProve that the sequence\n$$\na_n = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1}\n$$\ndoes not converge.\n\n> *Proof*. To show that the sequence $\\left(a_n\\right)$ does not converge, we divide by the largest power in the denominator, which in this case is $n^2$\n\\begin{align*}\na_n & = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1} \\\\\n & =\\frac{4 n+ \\dfrac{8}{n} + \\dfrac{1}{n^{2}} }{7+ \\dfrac{2}{n} + \\dfrac{1}{n^{2}} } \\\\\n & = \\frac{b_n}{c_n}\n\\end{align*}\nwhere we set \n$$\nb_n := 4 n+ \\dfrac{8}{n} + \\dfrac{1}{n^{2}}\\,, \\quad\nc_n := 7 + \\dfrac{2}{n} + \\dfrac{1}{n^{2}} \\,.\n$$\nUsing the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we see that\n$$\nc_n = 7+ \\dfrac{2}{n} + \\dfrac{1}{n^{2}} \\to 7 \\,.\n$$\nSuppose by contradiction that\n$$\na_n \\to a\n$$\nfor some $a \\in \\R$. Then, by the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we would infer\n$$\nb_n = c_n \\cdot a_n \\to 7 a \\,,\n$$\nconcluding that $b_n$ is convergent to $7a$. We have that\n$$\nb_n = 4n + d_n \\,, \\quad d_n := \\dfrac{8}{n} + \\dfrac{1}{n^{2}} \\,.\n$$\nAgain by the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we get that \n$$\nd_n = \\dfrac{8}{n} + \\dfrac{1}{n^{2}} \\to 0 \\,,\n$$\nand hence\n$$\n4n = b_n - d_n \\to 7a - 0 = 7a \\,.\n$$\nThis is a contradiction, since the sequence $(4n)$ is unbounded, and hence cannot be convergent. Hence $(a_n)$ is not convergent.\n:::\n\n\n\n::: Warning\n\nConsider the sequence \n$$\na_n = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1}\n$$\nfrom the previous example. We have proven that $(a_n)$ is not convergent, by making use of the Algebra of Limits. \n\nLet us review a **faulty** argument to conclude that $(a_n)$ is not convergent. Write\n$$\na_n = \\frac{b_n}{c_n} \\,, \\quad b_n:= 4 n^{3}+8 n+1\\,, \n\\quad c_n : =7 n^{2}+2 n+1 \\,.\n$$\nThe numerator \n$$\nb_n = 4 n^{3}+8 n+1\n$$\nand denominator \n$$\nc_n =7 n^{2}+2 n+1 \n$$\nare both unbounded, and hence $(b_n)$ and $(c_n)$ do not converge. One might be tempted to conclude that $(a_n)$ does not converge. However this is **false** in general: as seen in \nExample \\ref{example-algebra-of-limits-2}, we have\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1}{2} \\,,\n$$\nwhile numerator and denominator are unbounded.\n\n:::\n\n\n\n\n\nSometimes it is useful to rearrange the terms of a sequence, before applying the Algebra of Limits.\n\n\n\n::: Example \n\nDefine \n$$\n a_n := \\frac{2 n^{3}+7 n+1}{5 n+9} \\cdot \\frac{8 n+9}{6 n^{3}+8 n^{2}+3} \\,.\n$$\nProve that \n$$\n\\lim_{n \\to \\infty} a_n = \\frac{8}{15} \\,.\n$$\n\n\n> *Proof.* \nThe first fraction in $(a_n)$ does not converge, as it is unbounded. Therefore we cannot use Point 2 in Theorem \\ref{theorem-algebra-limits} directly. However, we note that\n\\begin{align*}\na_{n} & =\\frac{2 n^{3}+7 n+1}{5 n+9} \\cdot \\frac{8 n+9}{6 n^{3}+8 n^{2}+3} \\\\\n& = \\frac{8 n+9}{5 n+9} \\cdot \\frac{2 n^{3}+7 n+1}{6 n^{3}+8 n^{2}+3} \\,.\n\\end{align*}\nFactoring out $n$ and $n^3$, respectively, and using the Algebra of Limits, we see that\n$$\n\\frac{8 n+9}{5 n+9}=\\frac{8+9 / n}{5+9 / n} \\to \\frac{8+0}{5+0}=\\frac{8}{5}\n$$\nand\n$$\n\\frac{2+7 / n^{2}+1 / n^{3}}{6+8 / n+3 / n^{3}} \\to \\frac{2+0+0}{6+0+0}=\\frac{1}{3}\n$$\nTherefore Theorem \\ref{theorem-algebra-limits} Point 2 ensures that\n$$\na_{n} \\to \\frac{8}{5} \\cdot \\frac{1}{3}=\\frac{8}{15} \\,.\n$$\n\n:::\n\n\n\n\n\n## Fractional powers\n\n\nThe Algebra of Limits Theorem \\ref{theorem-algebra-limits} can also be used when fractional powers of $n$ are involved.\n\n::: Example\n\nProve that \n$$\na_n = \\frac{n^{7 / 3}+2 \\sqrt{n}+7}{4 n^{3 / 2}+5 n}\n$$\ndoes not converge.\n\n> *Proof*. The largest power of $n$ in the denominator is $n^{3/2}$. Hence we factor out $n^{3/2}$\n\\begin{align*}\na_n & = \\frac{n^{7 / 3}+2 \\sqrt{n}+7}{4 n^{3 / 2}+5 n} \\\\\n & = \\frac{n^{7 / 3-3 / 2}+2 n^{1/2 - 3/2} + 7 n^{-3 / 2}}{4 + 5 n^{-3/2} } \\\\\n & = \\frac{n^{5/6}+2 n^{- 1} + 7 n^{-3 / 2}}{4 + 5 n^{-3/2} } \\\\\n & = \\frac{b_n}{c_n}\n\\end{align*}\nwhere we set\n$$\nb_n := n^{5/6}+2 n^{- 1} + 7 n^{-3 / 2} \\,, \\quad \nc_n := 4 + 5 n^{-3/2} \\,.\n$$\nWe see that $b_n$ is unbounded while $c_n \\to 4$. By the Algebra of Limits (and usual contradiction argument) we conclude that $(a_n)$ is divergent.\n\n:::\n\n\n\nWe now present a general result about the square root of a sequence.\n\n::: {.Theorem #theorem-square-root-limit}\n\nLet $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ be a sequence in $\\mathbb{R}$ such that \n$$\n\\lim_{n \\to \\infty} \\, a_n = a \\,,\n$$\nfor some $a \\in \\R$. If $a_{n} \\geq 0$ for all $n \\in \\mathbb{N}$ and $a \\geq 0$, then\n$$\n\\lim _{n \\rightarrow \\infty} \\sqrt{a_{n}}=\\sqrt{a} \\,.\n$$\n\n:::\n\n\n::: Proof \n\nLet $\\e>0$. We the two cases $a>0$ and $a=0$:\n\n- $a>0$: Define\n$$\n\\delta := \\frac{a}{2} \\,.\n$$\nSince $\\delta > 0$ and $a_n \\to a$, there exists $N_1 \\in \\N$ such that\n$$\n\\left|a_{n}-a\\right| < \\delta \\,, \\quad \\forall \\, n \\geq N_1 \\,. \n$$\nIn particular\n$$\na_n > a - \\delta = a - \\frac{a}{2} = \\frac{a}{2} \\,, \\quad \\forall \\, n \\geq N_1 \\,,\n$$\nfrom which we infer\n$$\n\\sqrt{a_n} > \\sqrt{a/2} \\,, \\quad \\forall \\, n \\geq N_1 \\,,\n$$\nNow set\n$$\n\\widetilde{\\e} := \\left(\\sqrt{a/2} + \\sqrt{a} \\right) \\, \\e \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $a_n \\to a$, there exists $N_2 \\in \\mathbb{N}$ such that \n$$\n\\left|a_{n}-a\\right| < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,. \n$$\nLet \n$$\nN:= \\max\\{ N_1, N_2 \\} \\,.\n$$\nFor $n \\geq N$ we have\n\\begin{align*}\n\\left|\\sqrt{a_{n}}-\\sqrt{a}\\right| \n& = \\left|\\frac{\\left(\\sqrt{a_{n}}-\\sqrt{a}\\right)\\left(\\sqrt{a_{n}}+\\sqrt{a}\\right)}{\\sqrt{a_{n}}+\\sqrt{a}}\\right| \\\\\n& = \\frac{\\left|a_{n}-a\\right|}{\\sqrt{a_{n}}+\\sqrt{a}} \\\\\n& < \\frac{ \\widetilde{\\e} }{\\sqrt{a/2} + \\sqrt{a}} \\\\\n& = \\e \\,.\n\\end{align*}\n\n\n- $a=0$: In this case\n$$\na_n \\to a = 0 \\,.\n$$\nSince $\\e^2>0$, there exists $N \\in \\N$ such that\n$$\n|a_n - 0 | = |a_n| < \\e^2 \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTherefore\n$$\n|\\sqrt{a_n} - \\sqrt{0} | = | \\sqrt{a_n}| < \\sqrt{\\e^2} = \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\n\n\n:::\n\n\nLet us show an application of Theorem \\ref{theorem-square-root-limit}.\n\n\n::: Example \n\nDefine the sequence\n$$\na_n = \\sqrt{9 n^{2}+3 n+1}-3 n \\,.\n$$\nProve that\n$$\n\\lim_{n \\to \\infty} \\, a_n = \\frac12 \\,.\n$$\n\n\n> *Proof*. We first rewrite\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-3 n \\\\\n& = \\frac{\\left(\\sqrt{9 n^{2}+3 n+1}-3 n\\right)\\left(\\sqrt{9 n^{2}+3 n+1}+3 n\\right)}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{9 n^{2}+3 n+1-(3 n)^{2}}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{3 n+1}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\, .\n\\end{align*}\nThe biggest power of $n$ in the denominator is $n$. Therefore we factor out $n$:\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-3 n \\\\\n& =\\frac{3 n+1}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{3+ \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{n^{2}}} + 3 } \\,.\n\\end{align*}\nBy the Algebra of Limits we have\n$$\n9+ \\frac{3}{n} + \\frac{1}{n^{2}} \\to 9 + 0 + 0 = 9 \\,.\n$$\nTherefore we can use Theorem \\ref{theorem-square-root-limit} to infer\n$$\n\\sqrt{ 9 + \\frac{3}{n} + \\frac{1}{n^{2}} } \\to \\sqrt{9} \\,.\n$$\nBy the Algebra of Limits we conclude:\n$$\na_n = \\frac{3+ \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{n^{2}} }+ 3 } \\to \\frac{ 3 + 0 }{ \\sqrt{9} + 3 } = \\frac12 \\,.\n$$\n\n\n:::\n\n\n::: Example \n\nProve that the sequence\n$$\na_n = \\sqrt{9 n^{2}+3 n+1}-2 n\n$$\ndoes not converge.\n\n> *Proof.* We rewrite $a_n$ as\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-2 n \\\\\n& =\\frac{ (\\sqrt{9 n^{2}+3 n+1} - 2 n) (\\sqrt{9 n^{2}+3 n+1}+2 n) }{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{9 n^{2}+3 n+1-(2 n)^{2}}{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{5 n^{2}+3 n+1}{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{5 n + 3 + \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } } + 2 } \\\\\n& = \\frac{b_n}{c_n} \\,,\n\\end{align*}\nwhere we factored $n$, being it the largest power of $n$ in the denominator, and defined\n$$\nb_n : = 5 n + 3 + \\dfrac{1}{n}\\,, \\quad \nc_n := \\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } } + 2 \\,.\n$$\nNote that \n$$\n9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } \\to 9\n$$\nby the Algebra of Limits. Therefore \n$$\n\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 }} \\to \\sqrt{9} = 3 \n$$\nby Theorem \\ref{theorem-square-root-limit}. Hence \n$$\nc_n = \\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 }} + 2 \\to 3 + 2 = 5 \\,.\n$$\nThe numerator \n$$\nb_n = 5 n + 3 + \\dfrac{1}{n}\n$$\nis instead unbounded. Therefore $(a_n)$ is not convergent, by the Algebra of Limits and the usual contradiction argument.\n:::\n\n\n\n\n\n\n\n## Limit tests\n\n\nIn this section we discuss a number of *tests* to determine whether a sequence converges or not. These are known as **limit tests**.\n\n\n### Squeeze Theorem\n\n\nWhen a sequence $(a_n)$ oscillates, it is difficult to compute the limit. Examples of terms which produce oscillations are\n$$\n(-1)^n \\,, \\quad \\sin(n) \\,, \\quad \\cos(n) \\,. \n$$\nIn such instance it might be useful to compare $(a_n)$ with other sequences whose limit is known. If we can prove that $(a_n)$ is *squeezed* between two other sequences with the same limiting value, then we can show that also $(a_n)$ converges to this value.\n\n\n\n::: Theorem \n### Squeeze theorem {#theorem-squeeze}\n\nLet $\\left(a_{n}\\right), \\left(b_{n}\\right)$ and $\\left(c_{n}\\right)$ be sequences in $\\R$. Suppose that\n$$\nb_{n} \\leq a_{n} \\leq c_{n} \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nand that\n$$\n\\lim_{n \\rightarrow \\infty} b_{n} = \\lim_{n \\rightarrow \\infty} c_{n} = L \\, .\n$$\nThen\n$$\n\\lim_{n \\rightarrow \\infty} a_{n}= L \\, .\n$$\n\n:::\n\n\n::: Proof\n\nLet $\\e>0$. Since $b_{n} \\to L$ and $c_n \\to L$ , there exist $N_1, N_2 \\in \\N$ such that \n\\begin{align*}\n-\\e < b_n - L < \\e \\,, \\,\\, \\forall \\, n \\geq N_1 \\,, \\\\\n- \\e < c_n - L < \\e \\,, \\,\\, \\forall \\, n \\geq N_2 \\,. \n\\end{align*}\nSet\n$$\nN := \\max\\{N_1,N_2\\} \\,.\n$$\nLet $n \\geq N$. Using the assumption that $b_n \\leq a_{n} \\leq c_{n}$, we get\n$$\nb_n - L \\leq a_{n} - L \\leq c_{n} - L \\,.\n$$\nIn particular\n$$\n- \\e < b_n - L \\leq a_n - L \\leq b_n - L < \\e \\,.\n$$\nThe above implies \n$$\n- \\e < a_n - L < \\e \\quad \\implies \\quad \\left|a_{n}-L\\right| < \\e \\,.\n$$\n\n:::\n\n\n\n::: Example \n\nProve that\n$$\n\\lim_{n \\to \\infty} \\, \\frac{(-1)^{n}}{n} = 0 \\,.\n$$\n\n> *Proof.*\nFor all $n \\in \\N$ we can estimate\n$$\n-1 \\leq(-1)^{n} \\leq 1 \\,.\n$$\nTherefore\n$$\n\\frac{-1}{n} \\leq \\frac{(-1)^{n}}{n} \\leq \\frac{1}{n} \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nMoreover\n$$\n\\lim_{n \\to \\infty} \\frac{-1}{n}= -1 \\cdot 0=0 \\,, \\quad \n\\lim_{n \\to \\infty} \\frac{1}{n}=0 \\,.\n$$\nBy the Squeeze Theorem \\ref{theorem-squeeze} we conclude\n$$\n\\lim_{n \\to \\infty} \\frac{(-1)^{n}}{n}=0 \\,.\n$$\n\n:::\n\n\n\n::: {.Example #example-squeeze}\n\nProve that \n$$\n\\lim_{n \\to \\infty} \\frac{\\cos (3 n) + 9 n^{2}}{11 n^{2}+15 \\sin (17 n)} = \\frac{9}{11} \\,.\n$$\n\n\n> *Proof.* \nWe know that \n$$\n-1 \\leq \\cos(x) \\leq 1 \\,, \\quad - 1 \\leq \\sin(x) \\leq 1 \\,, \\quad \\forall \\, x \\in \\R \\,.\n$$\nTherefore, for all $n \\in \\N$\n$$\n- 1 \\leq \\cos(3n) \\leq 1 \\,, \\quad -1 \\leq \\sin(17n) \\leq 1 \\,.\n$$\nWe can use the above to estimate the numerator in the given sequence:\n$$\n-1 + 9 n^{2} \\leq \\cos (3 n)+9 n^{2} \\leq 1+ 9 n^{2} \\,.\n$${#eq-squeeze-example-1}\nConcerning the denominator, we have\n$$\n11 n^{2}-15 \\leq 11 n^{2}+15 \\sin (17 n) \\leq 11 n^{2} + 15\n$$\nand therefore\n$$\n\\frac{1}{11 n^{2} + 15} \\leq \\frac{1}{11 n^{2}+15 \\sin (17 n)} \\leq \\frac{1}{11 n^{2}-15} \\,.\n$${#eq-squeeze-example-2}\nPutting together (@eq-squeeze-example-1)-(@eq-squeeze-example-2) we obtain \n$$\n\\frac{-1 + 9 n^{2}}{11 n^{2} + 15} \\leq \\frac{\\cos (3 n)+9 n^{2}}{11 n^{2}+15 \\sin (17 n)} \\leq \\frac{1+ 9 n^{2}}{11 n^{2}-15} \\,.\n$$\nBy the Algebra of Limits we infer\n$$\n\\frac{-1+9 n^{2}}{11 n^{2}+15}=\\frac{-\\dfrac{1}{n^{2}} + 9}{11 + \\dfrac{15}{n^{2}}} \\to \\frac{0+9}{11+0}=\\frac{9}{11}\n$$\nand\n$$\n\\frac{1+9 n^{2}}{11 n^{2} - 15}=\\frac{ \\dfrac{1}{n^{2}} + 9}{ 11 - \\dfrac{15}{n^{2}}} \\to \\frac{0+9}{11+0}=\\frac{9}{11} \\,.\n$$\nApplying the Squeeze Theorem \\ref{theorem-squeeze} we conclude\n$$\n\\lim_{n \\to \\infty} \\frac{\\cos (3 n)+ 9 n^{2}}{11 n^{2}+15 \\sin (17 n)}=\\frac{9}{11} \\,.\n$$\n\n:::\n \n::: Warning\n\nSuppose that the sequences $(a_n), (b_n), (c_n)$ satisfy\n$$\nb_n \\leq a_n \\leq c_n \\,, \\quad \\forall n \\in \\N \\,,\n$$\nand\n$$\nb_n \\to L_1 \\,, \\quad c_n \\to L_2 \\,, \\quad L_1 \\neq L_2 \\,.\n$$\nIn general, we cannot conclude that $a_n$ converges.\n\n:::\n\n\n::: Example \n\nConsider the sequence\n$$\na_n = \\left( 1 + \\frac{1}{n} \\right) (-1)^n \\,.\n$$\nFor all $n \\in \\N$ we can bound\n$$\n- 1 - \\frac{1}{n} \\leq \\left( 1 + \\frac{1}{n} \\right) (-1)^n \\leq 1 + \\frac{1}{n} \\,.\n$$\nHowever \n$$\n- 1 - \\frac{1}{n} \\longrightarrow - 1 - 0 = -1 \n$$\nand\n$$\n1 + \\frac{1}{n} \\longrightarrow 1 + 0 = 1 \\,.\n$$\nSince \n$$\n- 1 \\neq 1 \\,,\n$$\nwe cannot apply the Squeeze Theorem \\ref{theorem-squeeze} to conclude convergence of $(a_n)$. Indeed, $(a_n)$ is a divergent sequence.\n\n> *Proof.* Suppose by contradiction that $a_n \\to a$. We have\n$$\na_n = (-1)^n + \\frac{(-1)^n}{n} = b_n + c_n\n$$\nwhere\n$$\nb_n := (-1)^n \\,, \\quad c_n := \\frac{(-1)^n}{n} \\,.\n$$\nWe have seen in Example \\ref{example-squeeze} that $c_n \\to 0$. Therefore, \nby the Algebra of Limits, we have\n$$\nb_n = a_n - c_n \\longrightarrow a - 0 = a \\,.\n$$\nHowever, Theorem \\ref{theorem-1-minus-n} says that the sequence\n$b_n = (-1)^n$ diverges. Contradiction. Hence $(a_n)$ diverges.\n\n:::\n\n\n\n\n\n### Geometric sequences\n\n\n::: Definition \n\nA sequence $\\left(a_{n}\\right)$ is called a **geometric sequence** if\n$$\na_{n}=x^{n} \\,,\n$$\nfor some $x \\in \\R$.\n\n:::\n\n\nThe value of $|x|$ determines whether or not a geometric sequence converges, as shown in the following theorem.\n\n\n::: Theorem \n### Geometric sequence test {#theorem-geometric-sequence}\n\nLet $x \\in \\R$ and let $\\left(a_{n}\\right)$ be the sequence defined by\n$$\na_{n}:=x^{n} \\,.\n$$\nWe have:\n\n1. If $|x|<1$, then \n$$\n\\lim_{n \\to \\infty} a_{n} = 0 \\,.\n$$\n\n2. If $|x|>1$, then sequence $\\left(a_{n}\\right)$ is unbounded, and hence divergent.\n\n:::\n\n\n\n::: Warning\n\nThe Geometric sequence test in Theorem \\ref{theorem-geometric-sequence} does not address the case\n$$\n|x|=1 \\,.\n$$\nThis is because, in this case, the sequence \n$$\na_n = x^n \n$$\nmight converge or diverge, depending on the value of $x$. Indeed, \n$$\n|x| = 1 \\quad \\implies \\quad x = \\pm 1 \\,.\n$$\nWe therefore have two cases:\n\n- $x = 1$: Then \n$$\na_n = 1^n = 1\n$$\nso that $a_n \\to 1$ and $(a_n)$ is convergent.\n\n- $x=-1$: Then\n$$\na_n = x^n = (-1)^n\n$$\nwhich is divergent by Theorem \\ref{theorem-1-minus-n}.\n\n:::\n\n\n\nTo prove Theorem \\ref{theorem-geometric-sequence} we need the following inequality, known as Bernoulli's inequality.\n\n\n::: Lemma \n### Bernoulli's inequality {#lemma-bernoulli}\n\nLet $x \\in \\R$ with $x>-1$. Then\n$$\n(1+x)^{n} \\geq 1+n x \\,, \\quad \\forall \\, n \\in \\N \\,.\n$${#eq-bernoulli-inequality}\n\n:::\n\n\n::: Proof\n\nLet $x \\in \\mathbb{R}, x>-1$. We prove the statement by induction:\n\n- Base case: (@eq-bernoulli-inequality) holds with equality when $n=1$.\n\n- Induction hypothesis: Let $k \\in \\N$ and suppose that (@eq-bernoulli-inequality) holds for $n=k$, i.e.,\n$$\n(1+x)^{k} \\geq 1+k x \\,.\n$$\nThen\n\\begin{align*}\n(1+x)^{k+1} & = (1+x)^{k}(1+x) \\\\\n & \\geq(1+k x)(1+x) \\\\\n & =1+k x+x+k x^{2} \\\\\n & \\geq 1+(k+1) x \\,,\n\\end{align*}\nwhere we used that $kx^2 \\geq 0$. Then (@eq-bernoulli-inequality) holds for $n=k+1$.\n\nBy induction we conclude (@eq-bernoulli-inequality).\n\n:::\n\n\nWe are ready to prove Theorem \\ref{theorem-geometric-sequence}.\n\n\n::: Proof \n### Proof of Theorem \\ref{theorem-geometric-sequence}\n\n*Part 1. The case $|x|<1$*. \n\nIf $x=0$, then\n$$\na_n = x^n = 0 \n$$\nso that $a_n \\to 0$. Hence assume $x \\neq 0$. We need to prove that\n$$\n\\forall \\, \\e> 0 \\,, \\, \\exists \\, N \\in \\N \\st \n\\forall \\, n \\geq N \\,, \\,\\, |x^n - 0| < \\e \\,.\n$$\nLet $\\e>0$. We have \n$$\n|x| < 1 \\quad \\implies \\quad \\frac{1}{|x|} > 1 \\,.\n$$\nTherefore \n$$\n|x|= \\frac{1}{1+u} \\,, \\quad u:=\\frac{1}{|x|} - 1 > 0 \\,.\n$$\nLet $N \\in \\N$ be such that \n$$\nN > \\frac{1}{\\e u} \\,,\n$$\nso that \n$$\n\\frac{1}{N u} < \\e \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|x^{n}-0\\right| & =|x|^{n} \\\\\n & = \\left(\\frac{1}{1+u}\\right)^{n} \\\\\n & =\\frac{1}{(1+u)^{n}} \\\\\n & \\leq \\frac{1}{1+n u} \\\\\n & \\leq \\frac{1}{n u} \\\\\n & \\leq \\frac{1}{N u} \\\\\n & < \\e \\,,\n\\end{align*}\nwhere we used Bernoulli's inequality (@eq-bernoulli-inequality) in the first inequality.\n\n\n*Part 2. The case $|x|>1$*. \n\nTo prove that (a_n) does not converge, we prove that it is unbounded. \nThis means showing that\n$$\n\\forall \\, M > 0 \\,, \\, \\exists n \\in \\N \\st \\left| a_{n}\\right| >M \\,.\n$$\nLet $M > 0$. We have two cases: \n\n- $0 < M \\leq 1$: Choose $n=1$. Then\n$$\n\\left|a_{1}\\right|=|x|>1 \\geq M \\,.\n$$\n\n- $M>1$: Choose $n \\in \\N$ such that \n$$\nn> \\frac{\\log M}{\\log |x|} \\,.\n$$ \nNote that $\\log |x|>0$ since $|x|>1$. Therefore\n\\begin{align*}\nn>\\frac{\\log M}{\\log |x|} & \\iff n \\log |x|>\\log M \\\\\n & \\iff \\log |x|^n>\\log M \\\\\n & \\iff |x|^{n}>M \\,.\n\\end{align*}\nThen \n$$\n\\left|a_{n}\\right|=\\left|x^{n}\\right|=|x|^{n} > M \\,.\n$$\n\n\nHence $(a_n)$ is unbounded. By Corollary \\ref{corollary-convergent-bounded} we conclude that $(a_n)$ is divergent. \n\n\n:::\n\n\n\n\n\n\n::: Example \n\nWe can apply Theorem \\ref{theorem-geometric-sequence} to prove convergence\nor divergence for the following sequences.\n\n1. We have\n$$\n\\left(\\frac{1}{2}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|\\frac{1}{2}\\right|=\\frac{1}{2}<1 \\,.\n$$\n\n2. We have\n$$\n\\left(\\frac{-1}{2}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|\\frac{-1}{2}\\right|=\\frac{1}{2}<1 \\,.\n$$\n\n3. The sequence \n$$\na_n = \\left(\\frac{-3}{2}\\right)^{n}\n$$ \ndoes not converge, since \n$$\n\\left|\\frac{-3}{2}\\right|=\\frac{3}{2}>1 \\,.\n$$\n\n4. As $n \\rightarrow \\infty$,\n$$\n\\frac{3^{n}}{(-5)^{n}}=\\left(-\\frac{3}{5}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|-\\frac{3}{5}\\right|=\\frac{3}{5}<1 \\,.\n$$\n\n5. The sequence \n$$\na_{n}=\\frac{(-7)^{n}}{2^{2 n}}\n$$ \ndoes not converge, since\n$$\n\\frac{(-7)^{n}}{2^{2 n}}=\\frac{(-7)^{n}}{\\left(2^{2}\\right)^{n}}=\\left(-\\frac{7}{4}\\right)^{n}\n$$\nand \n$$\n\\left|-\\frac{7}{4}\\right|=\\frac{7}{4}>1 \\,.\n$$\n\n:::\n\n\n\n\n\n\n\n### Ratio test\n\n\n\n::: Theorem \n### Ratio test\n\nLet $\\left(a_{n}\\right)$ be a sequence in $\\R$ such that\n$$\na_{n} \\neq 0 \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$ \n\n\n1. Suppose that the following limit exists:\n$$\nL:=\\lim_{n \\to \\infty}\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\,.\n$$\nThen,\n\n - If $L<1$ we have\n $$\n \\lim_{n \\to\\infty} a_{n}=0 \\,.\n $$\n\n - If $L>1$, the sequence $\\left(a_{n}\\right)$ is unbounded, and hence does not converge.\n\n2. Suppose that there exists $N \\in \\N$ and $M>1$ such that\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\geq M \\,, \\quad \\forall \\, n \\geq N \\,. \\,.\n$$\nThen the sequence $\\left(a_{n}\\right)$ is unbounded, and hence does not converge.\n\n:::\n\n\n\n::: Proof\n\nDefine the sequence $b_{n}=\\left|a_{n}\\right|$. Then,\n\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right|=\\frac{\\left|a_{n+1}\\right|}{\\left|a_{n}\\right|}=\\frac{b_{n+1}}{b_{n}}\n$$\n\n\n*Part 1.* Suppose that there exists the limit\n$$\nL:=\\lim_{n \\to \\infty}\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\,.\n$$\nTherefore \n$$\n\\lim_{n \\to \\infty} \\frac{b_{n+1}}{b_{n}} = L \\,.\n$${#eq-ratio-test-proof}\n\n- $L<1$: Choose $r>0$ such that \n$$\nL1$: Choose $r>0$ such that $10$. If $\\frac{b_{n+1}}{b_{n}} \\rightarrow L$, there exists $n_{0} \\in \\mathbb{N}$ such that for all $n \\geq n_{0}$\n\n$$\n\\left|\\frac{b_{n+1}}{b_{n}}-L\\right| \\leq \\varepsilon=L-r\n$$\n\nIn particular,\n\n$$\n-(L-r) \\leq \\frac{b_{n+1}}{b_{n}}-L \\Longleftrightarrow \\frac{b_{n+1}}{b_{n}} \\geq r \\Longleftrightarrow b_{n+1} \\geq r b_{n}\n$$\n\n(In the other case we assumed this is the case, so this statement also holds there.) Hence, for all $n \\geq n_{0}$\n\n$$\nb_{n} \\geq r^{n-n_{0}} b_{n_{0}}=r^{n} \\frac{b_{n_{0}}}{r^{n_{0}}}\n$$\n\nSince $|r|>1$, it follows from the geometric sequence test that the right hand side is unbounded and hence also $b_{n}$ is unbounded.\n\n\n:::\n\n\n\n\n::: Example\n\nLet $a_{n}=\\frac{3^{n}}{n !}$. Then,\n\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right|=\\frac{3^{n+1}}{(n+1) !} / \\frac{3^{n}}{n !}=\\frac{3^{n+1}}{3^{n}} \\frac{n !}{(n+1) !}=3 \\frac{1 \\cdot 2 \\cdots n}{1 \\cdot 2 \\cdots n \\cdot(n+1)}=\\frac{3}{n+1} \\longrightarrow 0,\n$$\n\nas $n \\rightarrow \\infty$. Hence, $L=0<1$ so $\\lim _{n \\rightarrow \\infty} a_{n}=0$ by the ratio test.\n\n- Let $b_{n}=\\frac{n !}{100^{n}}$. Then\n\n$$\n\\left|\\frac{b_{n+1}}{b_{n}}\\right|=\\frac{(n+1) !}{100^{n+1}} / \\frac{n !}{100^{n}}=\\frac{100^{n}}{100^{n+1}} \\frac{(n+1) !}{(n !)}=\\frac{n+1}{100} .\n$$\n\nChoose $n_{0}=101$. Then for all $n \\geq n_{0}$,\n\n$$\n\\left|\\frac{b_{n+1}}{b_{n}}\\right| \\geq \\frac{101}{100}>1\n$$\n\nHence, $b_{n}$ is an unbounded sequence and does not converge.\n\n:::\n\n\n::: Warning\n\nFor part (c) of the theorem we give some examples. If you try to apply the ratio test for a fraction of two polynomials, the limit will always be equal to 1 , so the ratio test is inconclusive for this type of sequence.\n\n:::\n\nExample 2.4.13. $\\quad$ Let $a_{n}=\\frac{1}{n}$. Then,\n\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right|=\\frac{1}{n+1} / \\frac{1}{n}=\\frac{n}{n+1} \\rightarrow 1\n$$\n\nso the ratio test is inconclusive. But we know that $\\frac{1}{n} \\rightarrow 0$.\n\n- Let $b_{n}=\\frac{n^{2}}{n+1}$. Then,\n\n$$\n\\left|\\frac{b_{n+1}}{b_{n}}\\right|=\\frac{(n+1)^{2}}{(n+1)+1} / \\frac{n^{2}}{n+1}=\\frac{(n+1)^{3}}{(n+2) n^{2}}=\\frac{(1+1 / n)^{3}}{(1+2 / n) 1} \\rightarrow 1\n$$\n\nso the ratio test is inconclusive. But we can compute $\\frac{n^{2}}{n+1}=\\frac{n}{1+1 / n}$, which is unbounded so $b_{n}$ does not converge.\n\n- Let $c_{n}=\\frac{n}{2 n+1}$. Then,\n\n$$\n\\left|\\frac{c_{n+1}}{c_{n}}\\right|=\\frac{n+1}{2(n+1)+1} / \\frac{n}{2 n+1}=\\frac{(n+1)(2 n+1)}{(2 n+3) n}=\\frac{(1+1 / n)(2+1 / n)}{(2+3 / n) 1} \\rightarrow 1,\n$$\n\nso the ratio test is inconclusive. But we can compute $\\frac{n}{2 n+1}=\\frac{1}{2+1 / n} \\rightarrow \\frac{1}{2}$.\n\nAs mentioned, the ratio test is especially useful if factorials and geometric terms are involved. It is important to make sure you use brackets correctly, it is very easy to make mistakes.\n\nExample 2.4.14. Let\n\n$$\na_{n}=\\frac{n ! \\cdot 3^{n}}{\\sqrt{(2 n) !}}\n$$\n\nThen,\n\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right|=\\frac{(n+1) ! \\cdot 3^{n+1}}{\\sqrt{(2(n+1)) !}} / \\frac{n ! \\cdot 3^{n}}{\\sqrt{(2 n) !}}=\\frac{(n+1) !}{n !} \\cdot \\frac{3^{n+1}}{3^{n}} \\cdot \\frac{\\sqrt{(2 n) !}}{\\sqrt{(2(n+1)) !}}\n$$\n\nWe can simplify $\\frac{(n+1) !}{n !} \\cdot \\frac{3^{n+1}}{3^{n}}=3(n+1)$. Combining the square roots and working out the brackets carefully gives that\n\n$$\n\\frac{\\sqrt{(2 n) !}}{\\sqrt{(2(n+1)) !}}=\\sqrt{\\frac{(2 n) !}{(2 n+2) !}}=\\sqrt{\\frac{1 \\cdot 2 \\cdots 2 n}{1 \\cdot 2 \\cdots 2 n \\cdot(2 n+1) \\cdot(2 n+2)}}=\\frac{1}{\\sqrt{(2 n+1)(2 n+2)}}\n$$\n\nHence,\n\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right|=\\frac{3(n+1)}{\\sqrt{(2 n+1)(2 n+2)}}=\\frac{3(1+1 / n)}{\\sqrt{\\frac{1}{n^{2}}(2 n+1)(2 n+2)}}=\\frac{3(1+1 / n)}{\\sqrt{(2+1 / n)(2+2 / n)}} \\rightarrow \\frac{3}{\\sqrt{4}}=\\frac{3}{2}>1\n$$\n\nHence, the sequence does not converge by the ratio test.\n\nIf the sequence is a geometric sequence, we can also apply the ratio test, which will give the same answer as the geometric sequence test.\n\nExample 2.4.15. Let $x \\in \\mathbb{R}$ and let $a_{n}=x^{n}$. Then,\n\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right|=\\frac{\\left|x^{n+1}\\right|}{\\left|x^{n}\\right|}=\\frac{|x|^{n+1}}{|x|^{n}}=|x| \\rightarrow|x|\n$$\n\nHence, if $|x|<1$ the sequence converges by the ratio test, if $|x|>1$ the sequence does not converge by the ratio test, and if $|x|=1$ the ratio test is inconclusive. Of course, we would have gotten this result immediately by using the geometric sequence test.\n\n\n\n\n\n\n\n\n\n\n\n\n::: {.content-hidden}\n\n\nUse abbot, marcellini, and analisi sapienza note. For next year remove integral test and add cauchy condensation test.\n\n\n## Divergence to infinity\n\nDo this from abbott or marcellini. For the moment we have only done\ndivergent as non-convergent. Would need definition of Divergence to $\\pm \\infty$.\n\n\n## Some notable limits\n\nMarcellini Page 101. Also see what is the english name for limiti notevoli.\n\n\n## Example: Euler's Number\n\n\nMarcellini Page 106\n\n\n## Recurrence relations\n\nMarcellini Page 110\n\n\n\n## Example: Heron's Method\n\n\nThe first explicit algorithm for approximating \n$$\n\\sqrt{x}\n$$ \nfor $x > 0$ is known as **Heron's method**, after the first-century Greek mathematician [Heron of Alexandria](https://en.wikipedia.org/wiki/Hero_of_Alexandria) who described the method in his AD 60 work Metrica, see reference to\n[Wikipedia page](https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method).\n\nLet us see what is the idea of the algorithm:\n\n- Suppose that $a_1$ is an approximation of $\\sqrt{x}$ from above, that is,\n$$\n \\sqrt{x} < a_1 \\,.\n$$ {#eq-heron}\n- Multiplying (@eq-heron) by $\\sqrt{x}/a_1$ we obtain\n$$\n\\frac{x}{a_1} < \\sqrt{x} \\,,\n$${#eq-heron-1}\nobtaining an approximation of $\\sqrt{x}$ from below.\n- Therefore, putting together the above inequalities,\n$$\n\\frac{x}{a_1} < \\sqrt{x} < a_1 \n$$ {#eq-heron-2}\n- If we take the average of the points $x/a_1$ and $a_1$, it is reasonable to think that we find a better approximation of $\\sqrt{x}$. Thus our next approximation is\n$$\na_2 := \\frac{1}{2} \\left( a_1 + \\frac{x}{a_1} \\right) \\,,\n$$\nsee figure below.\n\n\n![Heron's Algorithm for approximating $\\sqrt{x}$](/images/heron.png){width=70%}\n\n\nIterating, we define by recurrence the sequence \n$$\na_{n+1} := \\frac12 \\left( a_n + \\frac{x}{a_n} \\right)\n$$\nfor all $n \\in \\N$, where the initial guess $a_1$ has to satisfy (@eq-heron). The aim of the section is to show that\n$$\n\\lim_{n \\to \\infty } \\ a_n = \\sqrt{x} \\,.\n$${#eq-heron-convergence}\nWe start by showing that (@eq-heron-2) holds for all $n \\in \\N$.\n\n::: {.Proposition #proposition-heron}\nWe have\n$$\n\\frac{x}{a_n} < \\sqrt{x} < a_n \n$${#eq-heron-3}\nfor all $n \\in \\N$.\n:::\n\n\n::: Proof\nWe prove it by induction:\n\n1. By (@eq-heron) and (@eq-heron-1) we know that (@eq-heron-3) holds for $n=1$. \n\n2. Suppose now that (@eq-heron-3) holds for $n$. Then\n\\begin{align}\na_{n+1} - \\sqrt{x} & = \\frac12 \\left( a_n + \\frac{x}{a_n} \\right) - \\sqrt{x} \\\\\n& = \\frac{1}{2 a_n} ( a_n^2 + x - 2 a_n \\sqrt{x} ) \\\\\n& = \\frac{1}{2 a_n} ( a_n - \\sqrt{x} )^2 > 0 \\,,\n\\end{align}\nsince we are assuming that $a_n > \\sqrt{x}$. Therefore\n$$\n\\sqrt{x} < a_{n+1} \\,.\n$${#eq-heron-proof-1}\nMultiplying the above by $\\sqrt{x}/a_{n+1}$ we get\n$$\n\\frac{x}{a_{n+1}} < \\sqrt{x} \\,.\n$${#eq-heron-proof-2}\nInequalities (@eq-heron-proof-1) and (@eq-heron-proof-2) show that (@eq-heron-3) holds for $n+1$.\n\nTherefore we conclude (@eq-heron-3) by the Principle of Induction.\n:::\n\n\nWe are now ready to prove error estimates, that is, estimating how far away $a_n$ is from $\\sqrt{x}$. \n\n\n::: Proposition\n### Error estimate {#proposition-heron-error}\nFor all $n \\in \\N$ we have\n$$\na_{n+1} - \\sqrt{x} < \\frac12 (a_{n} - \\sqrt{x}) \\,.\n$${#eq-heron-half}\n:::\n\n\n::: Proof\nBy Proposition \\ref{proposition-heron} we know that \n$$\n\\frac{x}{a_n} < \\sqrt{x}\n$$\nfor all $n \\in \\N$. Therefore\n\\begin{align}\na_{n+1} & = \\frac12 \\left( a_n + \\frac{x}{a_n} \\right) \\\\\n & < \\frac12 \\left( a_n + \\sqrt{x} \\right) \\,.\n\\end{align}\nSubtracting $\\sqrt{x}$ from both members in the above inequality we get the thesis.\n:::\n\n\nInequality (@eq-heron-half) is saying that the error halves at each step. Therefore we can prove that after $n$ steps the error is exponentially lower, as detailed in the following proposition.\n\n\n::: {.Proposition #proposition-heron-error-exp}\nFor all $n \\in \\N$ we have\n$$\na_{n+1} - \\sqrt{x} < \\frac{1}{2^n} (a_1 - \\sqrt{x})\n$$ {#eq-heron-error}\n:::\n\n\n\n::: Proof\nWe prove (@eq-heron-error) by induction:\n\n1. For $n=1$ we have that (@eq-heron-error) is satisfied, since it coincides with (@eq-heron-half) for $n=1$.\n2. Suppose that (@eq-heron-error) holds for $n$. By (@eq-heron-half) with $n$ replaced by $n+1$ we have\n\\begin{align}\na_{n+2} - \\sqrt{x} & < \\frac12 (a_{n+1} - \\sqrt{x}) \\\\\n& < \\frac12 \\,\\cdot \\, \\frac{1}{2^n} (a_{1} - \\sqrt{x}) \\\\\n& = \\frac{1}{2^{n+1}} (a_{1} - \\sqrt{x})\n\\end{align}\nwhere in the second inequality we used the induction hypothesis (@eq-heron-error). Hence (@eq-heron-error) holds for $n+1$.\n\nBy invoking the Induction Principle we conclude the proof.\n:::\n\nLet us comment estimate (@eq-heron-error). Denote the error at step $n$ by\n$$\ne_n := a_n - \\sqrt{x}\\,.\n$$\nThe initial error $e_1$ depends on how far the initial guess is from $\\sqrt{x}$. The estimate in (@eq-heron-error) is telling us that $e_n$ is a fraction of $e_1$, and actually\n$$\n\\lim_{n \\to \\infty} \\ e_n = 0\n$$\nexponentially fast. From this fact we are finally able to prove (@eq-heron-convergence).\n\n::: Theorem\n### Convergence of Heron's Algorithm\nWe have that \n$$\n\\lim_{n \\to \\infty} \\ a_n = \\sqrt{x} \\,.\n$$\n:::\n\n::: Proof\nBy Proposition \\ref{proposition-heron-error-exp} we have that\n$$\na_{n+1} - \\sqrt{x} < \\frac{1}{2^n} (a_1 - \\sqrt{x})\n$$\nMoreover Proposition \\ref{proposition-heron} tells us that\n$$\n\\sqrt{x} < a_{n+1} \\,.\n$$\nPutting together the two inequalities above we infer\n$$\n\\sqrt{x} < a_{n+1} < \\sqrt{x} + \\frac{1}{2^n} (a_1 - \\sqrt{x}) \\,.\n$${#eq-heron-final}\nNow note that\n$$\n\\lim_{n \\to \\infty} \\ \\frac{1}{2^n} =\n\\lim_{n \\to \\infty} \\ \\left( \\frac{1}{2} \\right)^n = 0 \\,.\n$$\nTherefore the RHS of (@eq-heron-final) converges to $\\sqrt{x}$ as $n \\to \\infty$. Applying the Squeeze Theorem to (@eq-heron-final) we conclude that $a_n \\to \\sqrt{x}$ as $n \\to \\infty$.\n:::\n\n\n\n### Coding the Algorithm\n\nHeron's Algorithm can be easily coded in Python. For example, see the function below:\n\n```python\n# x is the number for which to compute sqrt(x)\n# guess is the point a_1\n# a_1 must be strictly larger than sqrt(x)\n# n is the number of iterations\n# the function returns a_{n+1}\n\ndef herons_algorithm(x, guess, n):\n for i in range(n):\n guess = (guess + x / guess) / 2.0\n return guess\n```\n\nFor example let us use the Algorithm to compute $\\sqrt{2}$ after $3$ iterations. For initial guess we take $a_1 = 2$. \n\n```python\n# Calculate sqrt(2) with 3 iterations and guess 2\nsqrt_2 = herons_algorithm(2, 2, 3)\n\nprint(f\"The sqrt(2) is approximately {sqrt_2}\")\n```\n\n::: {.cell execution_count=1}\n\n::: {.cell-output .cell-output-stdout}\n```\nThe sqrt(2) is approximately 1.4142156862745097\n```\n:::\n:::\n\n\nThat is a pretty good approximation in just $3$ iterations!\n\n\n\n\n\n## Fibonacci Sequence\n\n\n\n\n:::\n\n", + "markdown": "::: {.content-hidden}\n$\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\Q}{\\mathbb{Q}}\n\\newcommand{\\C}{\\mathbb{C}} \n\\newcommand{\\N}{\\mathbb{N}}\n\\newcommand{\\Z}{\\mathbb{Z}}\n\n\\renewcommand\\Re{\\operatorname{Re}}\n\\renewcommand\\Im{\\operatorname{Im}}\n\n\n\n\n\n\\newcommand{\\e}{\\varepsilon}\n\\newcommand{\\g}{\\gamma}\n\n\\newcommand{\\st}{\\, \\text{ s.t. } \\, }\n\\newcommand{\\divider}{\\, \\colon \\,}\n\n\\newcommand{\\closure}[2][2]{{}\\mkern#1mu \\overline{\\mkern-#1mu #2 \\mkern-#1mu}\\mkern#1mu {}}\n\n\n\\newcommand{\\Czero}{\\mathnormal{C}}\n\\newcommand{\\Cinf}{{\\mathnormal{C}}^{\\infty}}\n\\newcommand{\\Cinfcomp}{{\\mathnormal{C}}_0^{\\infty}}\n\\newcommand{\\Lone}{{\\mathnormal{L}}^1}\n\\newcommand{\\Loneloc}{{\\mathnormal{L}}_{loc}^1}\n\\newcommand{\\Ltwo}{{\\mathnormal{L}}^2}\n\\newcommand{\\Lp}{{\\mathnormal{L}}^p}\n\\newcommand{\\Linf}{{\\mathnormal{L}}^{\\infty}}\n\\newcommand{\\Woneone}{{\\mathnormal{W}}^{1,1}}\n\\newcommand{\\Wonetwo}{{\\mathnormal{W}}^{1,2}}\n\\newcommand{\\Wonep}{{\\mathnormal{W}}^{1,p}}\n\\newcommand{\\Woneinf}{{\\mathnormal{W}}^{1,\\infty}}\n\\newcommand{\\Wtwotwo}{{\\mathnormal{W}}^{2,2}}\n\\newcommand{\\Wktwo}{{\\mathnormal{W}}^{k,2}}\n\\newcommand{\\Wkp}{{\\mathnormal{W}}^{k,p}}\n\\newcommand{\\Lip}{\\mathnormal{Lip}}\n\n\\newcommand{\\scp}[2]{\\left\\langle #1,#2 \\right\\rangle} %prodotto scalare\n\\newcommand{\\abs}[1]{\\left| #1 \\right|} %valore assoluto\n\\newcommand{\\norm}[1]{\\left\\| #1 \\right\\|} %norma\n\n\n\n\n\n\n\n\n\n$\n:::\n\n\n\n\n\n# Sequences in $\\mathbb{R}$\n\n\n\nA sequence is an infinite list of real numbers. For example, the following are sequences:\n\n\n- $(1,2,3,4, \\ldots)$\n\n- $(-1,1,-1,1, \\ldots)$\n\n- $\\left(1, \\frac{1}{2}, \\frac{1}{3}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right)$\n\n\n::: Remark\n\n- The order of elements in a sequence matters. \n\n> For example\n>$$\n>(1,2,3,4,5,6, \\ldots) \\neq(2,1,4,3,6,5, \\ldots)\n>$$\n\n- A sequence is not a set. \n\n> For example \n>$$\n>\\{-1,1,-1,1,-1,1, \\ldots\\}=\\{-1,1\\}\n>$$\n>but we cannot make a similar statement for the sequence \n>$$\n>(-1,1,-1,1,-1,1, \\ldots) \\,.\n>$$\n\n- The above notation is ambiguous.\n\n> For example the sequence \n>$$\n>(1,2,3,4, \\ldots)\n>$$\ncan continue as\n>\n>$$\n>(1,2,3,4,1,2,3,4,1,2,3,4, \\ldots) \\,.\n>$$\n\n- In the sequence \n$$\n\\left(1, \\frac{1}{2}, \\frac{1}{3}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right)\n$$\nthe elements get smaller and smaller, and closer and closer to $0$. We say that this sequence converges to $0$, or has $0$ as a limit. \n\n\n:::\n\n\nWe would like to make the notions of sequence and convergence more precise.\n\n\n## Definition of sequence\n\n\nWe start with the definition of sequence of Real numbers.\n\n\n::: Definition \n### Sequence of Real numbers\n\nA sequence $a$ in $\\R$ is a function\n$$\na \\colon \\N \\to \\R \\,.\n$$\nFor $n \\in \\N$, we denote the $n$-th element of the sequence $a$ by \n$$\na_{n}=a(n)\n$$ \nand write the sequence as \n$$\n\\left(a_{n}\\right)_{n \\in \\N} \\,.\n$$\n:::\n\n\n::: Notation\n\nWe will sometimes omit the subscript $n \\in \\N$ and simply write \n$$\n\\left(a_{n}\\right) \\,.\n$$ \nIn certain situations, we will also write\n$$\n\\left(a_{n}\\right)_{n=1}^{\\infty} \\,.\n$$\n\n\n:::\n\n\n\n\n::: Example \n\n- In general $\\left(a_{n}\\right)_{n \\in \\N}$ is the sequence \n$$\n\\left(a_{1}, a_{2}, a_{3}, \\ldots\\right)\\,.\n$$\n\n- Consider the function \n$$\na \\colon \\N \\to \\N \\, , \\quad n \\mapsto 2 n \\,.\n$$\nThis is also a sequence of real numbers. It can be written as \n$$\n(2 n)_{n \\in \\N}\n$$\nand it represents the sequence of even numbers \n$$\n(2,4,6,8,10, \\ldots) \\,.\n$$\n\n- Let \n$$\na_{n}=(-1)^{n}\n$$\nThen $\\left(a_{n}\\right)$ is the sequence \n$$\n(-1,1,-1,1,-1,1, \\ldots) \\,.\n$$\n\n- $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ is the sequence \n$$\n\\left(1, \\frac{1}{2}, \\frac{1}{4}, \\frac{1}{5}, \\ldots\\right) \\,.\n$$\n\n\n:::\n\n\n\n## Convergent sequences\n\n\nWe have notice that the sequence $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ gets close to $0$ as $n$ gets large. We would like to say that $a_{n}$ converges to $0$ as $n$ tends to infinity.\n\nTo make this precise, we first have to say what it means for two numbers to be *close*. For this we use the notion of absolute value, and say that:\n\n- $x$ and $y$ are close if $|x-y|$ is small. \n- $|x-y|$ is called the distance between $x$ and $y$\n- For $x$ to be close to $0$, we need that $|x-0|=|x|$ is small.\n\nSaying that $|x|$ is *small* is not very precise. Let us now give the formal definition of convergent sequence.\n\n::: Definition \n### Convergent sequence {#definition-convergent-sequence}\n\nWe say that a sequence $\\left(a_{n}\\right)_{n \\in \\N}$ in $\\mathbb{R}$ **converges** to $a \\in \\mathbb{R}$ or equivalently has limit $a$, denoted by\n\n$$\n\\lim _{n \\rightarrow \\infty} a_{n}=a \\text {, }\n$$\n\nif for all $\\e \\in \\mathbb{R}, \\e>0$, there exists an $N \\in \\N$ such that for all $n \\in \\N, n \\geq N$ it holds that \n$$\n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nUsing quantifiers, we can write this as\n$$\n\\forall \\, \\e>0 , \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\,\\left|a_{n}-a\\right| < \\e \\,.\n$$\n\nIf there exists $a \\in \\R$ such that $\\lim _{n \\rightarrow \\infty} a_{n}=a$, then we say that the sequence $\\left(a_{n}\\right)_{n \\in \\N}$ is **convergent**.\n\n:::\n\n\n::: Remark\n\n- Informally, Definition \\ref{definition-convergent-sequence} says that, no matter how small we choose $\\e$ (as long as it is strictly positive), we always have that $a_{n}$ has a distance to $a$ of less than or equal to $\\e$ from a certain point onwards (i.e., from $N$ onward). The sequence $\\left(a_{n}\\right)$ may fluctuate wildly in the beginning, but from $N$ onward it should stay within a distance of $\\e$ of $a$.\n\n- In general $N$ depends on $\\e$. If $\\e$ is chosen smaller, we might have to take $N$ larger: this means we need to wait longer before the sequence stays within a distance $\\e$ from $a$.\n\n:::\n\n\nWe now prove that the sequence\n$$\na_n = \\frac1n\n$$\nconverges to $0$, according to Definition \\ref{definition-convergent-sequence}.\n\n::: {.Theorem #theorem-one-over-n}\n\nThe sequence $\\left(\\frac{1}{n}\\right)_{n \\in \\N}$ converges to $0$ , i.e.,\n\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{1}{n}=0 \\,.\n$$\n\n:::\n\nWe give two proofs of the above theorem:\n\n- Long proof, with all the details.\n- Short proof, with less details, but still acceptable. \n\n::: Proof \n### Proof of Theorem \\ref{theorem-one-over-n} (Long version)\n\nWe have to show that\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{1}{n}=0,\n$$\n\nwhich by definition is equivalent to showing that\n\n$$\n\\forall \\, \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n}-0\\right| < \\e \\,.\n$${#eq-one-over-n}\n\nLet $\\e \\in \\mathbb{R}$ with $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e}\\,.\n$$\nSuch natural number $N$ exists thanks to the Archimedean property. The above implies\n$$\n\\frac{1}{N} < \\e \\,,\n$${#eq-one-over-n-1}\nLet $n \\in \\N$ with $n \\geq N$. By (@eq-one-over-n-1) we have\n$$\n\\frac{1}{n} \\leq \\frac{1}{N} < \\e \\,.\n$$\nFrom this we deduce\n$$\n\\left|\\frac{1}{n}-0\\right|=\\frac{1}{n} \\leq \\frac{1}{N} < \\e\n$$\n\nSince $n \\in \\N, n \\geq N$ was arbitrary, we have proven that \n$$\n\\left|\\frac{1}{n}-0\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-one-over-n-2}\nCondition (@eq-one-over-n-2) holds for all $\\e>0$, for the choice of $N \\in \\N$ such that\n$$\nN > \\frac{1}{\\e} \\,.\n$$\nWe have hence shown (@eq-one-over-n), and the proof is concluded.\n\n:::\n\nAs the above proof is quite long and includes lots of details, it is acceptable to shorten it. For example:\n\n- We skip some intermediate steps.\n- We do not mention the Archimedean property.\n- We leave out the conclusion when it is obvious that the statement has been proven. \n\n\n\n\n::: Proof \n### Proof of Theorem \\ref{theorem-one-over-n} (Short version)\n\nWe have to show that\n\n$$\n\\forall \\, \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n}-0\\right| < \\e \\,.\n$$\n\nLet $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e}\\,.\n$$\nLet $n \\geq N$. Then\n$$\n\\left|\\frac{1}{n}-0\\right|=\\frac{1}{n} \\leq \\frac{1}{N} < \\e \\,.\n$$\n\n:::\n\n\nIn Theorem \\ref{theorem-one-over-n} we showed that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n} = 0 \\,.\n$$\nWe can generalise this statement to prove that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n^{p}} = 0\n$$\nfor any $p>0$ fixed.\n\n\n::: {.Theorem #theorem-one-over-np}\nFor all $p>0$, the sequence $\\left(\\frac{1}{n^{p}}\\right)_{n \\in \\N}$ converges to $0$ , i.e.,\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{1}{n^{p}}=0\n$$\n:::\n\n::: Proof\n\nLet $p>0$. We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{1}{n^{p}}-0\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that \n$$\nN > \\frac{1}{\\e^{1 / p}} \\,.\n$${#eq-theorem-one-over-np-1}\nLet $n \\geq N$. Since $p>0$, we have $n^{p} \\geq N^{p}$, which implies \n$$\n\\frac{1}{n^p} \\leq \\frac{1}{N^p} \\,.\n$$\nBy (@eq-theorem-one-over-np-1) we deduce\n$$\n\\frac{1}{N^p} < \\e \\,.\n$$\nThen\n$$\n\\left|\\frac{1}{n^{p}}-0\\right|=\\frac{1}{n^{p}} \\leq \\frac{1}{N^{p}} < \\e \\,.\n$$\n\n:::\n\n::: Question\nWhy did we choose $N \\in \\N$ such that\n$$\nN > \\frac{1}{\\e^p}\n$$\nin the above proof?\n:::\n\nThe answer is: because it works. Finding a number $N$ that makes the proof work requires some *rough work*: Specifically, such rough work consists in finding $N \\in \\N$ such that the inequality\n$$\n|a_N - a | < \\e \n$$\nis satisfied. \n\n\n::: Important \n\nAny *rough work* required to prove convergence must be shown before the formal proof (in assignments). \n\n:::\n\n\n\n\n::: Example \n\nProve that, as $n \\rightarrow \\infty$,\n\n$$\n\\frac{n}{2n+3} \\to \\frac{1}{2} \\,.\n$$\n\n*Part 1. Rough Work.*\n\nLet $\\e>0$. We want to find $N \\in \\N$ such that\n$$\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTo this end, we compute:\n\\begin{align*}\n\\left|\\frac{n}{2 n+3}-\\frac{1}{2}\\right| & \n=\\left|\\frac{2n -(2n + 3)}{2(2n +3)}\\right| \\\\\n& =\\left|\\frac{- 3}{4n + 6}\\right| \\\\\n& = \\frac{3}{4n + 6} \\,.\n\\end{align*}\nTherefore \n\\begin{align*}\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e\n\\quad \\iff & \\quad\n\\frac{3}{4n + 6} < \\e \\\\\n\\quad \\iff & \\quad\n\\frac{4n + 6}{3} > \\frac{1}{\\e} \\\\\n\\quad \\iff & \\quad\n4n + 6 > \\frac{3}{\\e} \\\\\n\\quad \\iff & \\quad\n4n > \\frac{3}{\\e} - 6 \\\\\n\\quad \\iff & \\quad\nn > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n\\end{align*}\nLooking at the above equivalences, it is clear that $N \\in \\N$ has to be chosen so that\n$$\nN > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n$$\n\n\n*Part 2. Formal Proof.* We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that\n$$\nN > \\frac{3}{4\\e} - \\frac{6}{4} \\,.\n$${#eq-example-limit-1}\nBy the rough work shown above, inequality (@eq-example-limit-1) is equivalent to \n$$\n \\frac{3}{4N + 6} < \\e \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|\\frac{n}{2n+3}-\\frac{1}{2}\\right| \n& = \\left|\\frac{- 3 }{2(2 n+3)}\\right| \\\\\n& = \\frac{3}{4 n+ 6 } \\\\\n& \\leq \\frac{3}{4 N+ 6 } \\\\\n& < \\e \\,,\n\\end{align*}\nwhere in the third line we used that $n \\geq N$.\n\n:::\n\n\nWe conclude by showing that constant sequences always converge.\n\n::: {.Theorem #theorem-constant-sequence}\n\nLet $c \\in \\R$ and define the constant sequence\n$$\na_n := c \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nWe have that \n$$\n\\lim_{n \\to \\infty} \\, a_n = c \\,.\n$$\n\n:::\n\n::: Proof\n\nWe have to prove that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_n - c \\right| < \\e \\,.\n$${#eq-constant-sequence}\nLet $\\e>0$. We have\n$$\n\\left|a_n - c \\right| = \\left|c - c \\right| = 0 < \\e \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nTherefore we can choose $N=1$ and (@eq-constant-sequence) is satisfied. \n:::\n\n\n\n\n## Divergent sequences\n\n\nThe opposite of convergent sequences are divergent sequences.\n\n::: Definition\n### Divergent sequence\n\nWe say that a sequence $\\left(a_{n}\\right)_{n \\in \\N}$ in $\\R$ is **divergent** if it is not convergent.\n\n:::\n\n\n\n::: Remark\n\nProving that a sequence $(a_n)$ is divergent is more complicated than showing it is convergent: To show that $(a_n)$ is divergent, we need to show that \n$(a_n)$ cannot converge to $a$ for any $a \\in \\R$.\n\nIn other words, we have to show that there does not exist an $a \\in \\mathbb{R}$ such that \n$$\n\\lim _{n \\rightarrow \\infty} \\, a_n = a \\,.\n$$\nUsing quantifiers, this means\n$$\n\\nexists \\, a \\in \\R \\st \\forall \\, \\e>0 \\,, \\, \n\\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\,\n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nThe above is equivalent to showing that\n$$\n\\forall \\, a \\in \\R \\,, \\, \\exists \\, \\e > 0 \\st \\forall \\, N \\in \\N \\,, \\, \\exists \\, n \\geq N \\st \\left|a_{n}-a\\right| \\geq \\e \\,.\n$$\n\n:::\n\n\n\n::: {.Theorem #theorem-1-minus-n}\nLet $\\left(a_{n}\\right)$ be the sequence defined by\n$$\na_{n}=(-1)^{n} \\,.\n$$\nThen $\\left(a_{n}\\right)$ does not converge. \n\n:::\n\n::: Proof\n\nTo prove that $\\left(a_{n}\\right)$ does not converge, we have to show that \n$$\n\\forall \\, a \\in \\R \\,, \\, \\exists \\, \\e > 0 \\st \\forall \\, N \\in \\N \\,, \\, \\exists \\, n \\geq N \\st \\left|a_{n}-a\\right| \\geq \\e \\,.\n$$\nLet $a \\in \\R$. Choose \n$$\n\\e=\\frac{1}{2} \\,.\n$$ \nLet $N \\in \\N$. We distinguish two cases:\n\n- $a \\geq 0$: Choose $n=2 N+1$. Note that $n \\geq N$. Then\n\\begin{align*}\n\\left|a_{n}-a\\right| & = \\left|a_{2 N+1}-a\\right| \\\\\n& = \\left|(-1)^{2 N+1}-a\\right| \\\\\n& =|-1-a| \\\\\n& =1+a \\\\\n& \\geq 1 \\\\\n& > \\frac{1}{2} = \\e \\,,\n\\end{align*}\nwhere we used that $a \\geq 0$, and therefore \n$$\n|-1-a|=1+a \\geq 1 \\,.\n$$\n\n- $a<0$: Choose $n=2 N$. Note that $n \\geq N$. Then\n\\begin{align*}\n\\left|a_{n}-a\\right| & = \\left|a_{2 N}-a\\right| \\\\\n& =\\left|(-1)^{2 N}-a\\right| \\\\ \n& = |1-a| \\\\\n& = 1-a \\\\\n& > 1 \\\\\n& > \\frac{1}{2} = \\e \\,,\n\\end{align*}\nwhere we used that $a < 0$, and therefore \n$$\n|1-a|=1-a > 1 \\,.\n$$\n\n\n:::\n\n\n\n## Uniqueness of limit\n\n\nIn Definition \\ref{definition-convergent-sequence} of convergence, we used the notation \n$$\n\\lim_{n \\rightarrow \\infty} a_{n}=a \\,.\n$$ \nThe above notation makes sense only if the limit is unique, that is, if we do not have that \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,,\n$$ \nfor some \n$$\na \\neq b \\,.\n$$\nIn the next theorem we will show that the limit is unique, if it exists.\n\n::: Theorem \n### Uniqueness of limit {#theorem-uniqueness-limit}\n\nLet $\\left(a_{n}\\right)_{n \\in \\N}$ be a sequence. Suppose that \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = a \\,, \\quad \n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,.\n$$\nThen $a=b$.\n:::\n\n\n::: Proof\n\nAssume that, \n$$\n\\lim_{n \\rightarrow \\infty} a_{n} = a \\,, \\quad \n\\lim_{n \\rightarrow \\infty} a_{n} = b \\,.\n$$\nSuppose by contradiction that\n$$\na \\neq b \\,.\n$$\nChoose \n$$\n\\e := \\frac{1}{2} \\, |a-b| \\,.\n$$\nTherefore $\\e>0$, since $|a-b|>0$. By the convergence $a_{n} \\rightarrow a$,\n$$\n\\exists \\, N_1 \\in \\N \\st \\forall \\, n \\geq N_1 \\,, \\, \n\\left|a_{n}-a\\right| < \\e \\,.\n$$\nBy the convergence $a_{n} \\rightarrow b$,\n$$\n\\exists \\, N_2 \\in \\N \\st \\forall \\, n \\geq N_2 \\,, \\, \n\\left|a_{n} - b \\right| < \\e \\,.\n$$\nDefine\n$$\nN := \\max \\{ N_1, N_2 \\} \\,.\n$$\nChoose an $n \\in \\N$ such that $n \\geq N$. In particular\n$$\nn \\geq N_1 \\,, \\quad n \\geq N_2 \\,.\n$$\nThen\n\\begin{align*}\n2 \\e & = |a-b| \\\\\n& = \\left|a-a_{n}+a_{n}-b\\right| \\\\\n& \\leq\\left|a-a_{n}\\right|+\\left|a_{n}-b\\right| \\\\\n& < \\e + \\e \\\\\n& = 2 \\e \\,,\n\\end{align*}\nwhere we used the triangle inequality in the first inequality.\nHence $2 \\e < 2 \\e$, which gives a contradiction.\n\n:::\n\n\n::: Example \n\nProve that\n\n$$\n\\lim _{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3}=\\frac{1}{2}\n$$\n\nAccording to Theorem \\ref{theorem-uniqueness-limit}, it suffices to show that the sequence \n$$\n\\left(\\frac{n^{2}-1}{2 n^{2}-3}\\right)_{n \\in \\N}\n$$ \nconverges to $\\frac{1}{2}$, since then $\\frac{1}{2}$ can be the only limit.\n\n\n*Part 1. Rough Work.*\n\nLet $\\e>0$. We want to find $N \\in \\N$ such that\n$$\n\\left|\\frac{n^{2}-1}{2 n^{2}-3} - \\frac{1}{2}\\right| < \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTo this end, we compute:\n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| \n& =\\left|\\frac{2\\left(n^{2}-1\\right)-\\left(2 n^{2}-3\\right)}{2\\left(2 n^{2}-3\\right)}\\right| \\\\\n& =\\left|\\frac{1}{4 n^{2}-6}\\right| \\\\\n& =\\frac{1}{4 n^{2}-6} \\\\\n& =\\frac{1}{3 n^{2}+n^{2}-6} \\\\\n& \\leq \\frac{1}{3 n^{2}} \n\\end{align*}\nwhich holds if $n \\geq 3$, since in this case $n^2 - 6 \\geq 0$.\nTherefore \n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| < \\e\n\\quad \\impliedby & \\quad\n\\frac{1}{3n^2} < \\e \\\\\n\\quad \\iff & \\quad\n3n^2 > \\frac{1}{\\e} \\\\\n\\quad \\iff & \\quad\nn^2 > \\frac{1}{3\\e} \\\\\n\\quad \\iff & \\quad\nn > \\frac{1}{\\sqrt{3\\e}} \\,.\n\\end{align*}\nLooking at the above implications, it is clear that $N \\in \\N$ has to be chosen so that\n$$\nN > \\frac{1}{\\sqrt{3\\e}} \\,.\n$$\nMoreover we need to recall that $N$ has to satisfy \n$$\nN \\geq 3\n$$ \nfor the estimates to hold.\n\n\n*Part 2. Formal Proof.* We have to show that\n$$\n\\forall \\e>0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| < \\e \\,.\n$$\nLet $\\e>0$. Choose $N \\in \\N$ such that\n$$\nN > \\max \\left\\{ \\frac{1}{\\sqrt{3\\e}}, 3 \\right\\} \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|\\frac{n^{2}-1}{2 n^{2}-3}-\\frac{1}{2}\\right| \n& =\\frac{1}{4 n^{2}-6} \\\\\n& =\\frac{1}{3 n^{2}+n^{2}-6} \\\\\n& \\leq \\frac{1}{3 n^{2}} \\\\\n& \\leq \\frac{1}{3 N^{2}} \\\\\n& < \\e \\,,\n\\end{align*}\nwhere we used that \n$$\nn \\geq N \\geq 3 \n$$ \nwhich implies \n$$\nn^2 - 6 \\geq 0\\,,\n$$\nin the third line. The last inequality holds, since it is equivalent \nto \n$$\nN > \\frac{1}{\\sqrt{3 \\e}} \\,.\n$$\n\n:::\n\n\n\n\n## Bounded sequences\n\n\nAn important property of sequences is boundedness. \n\n\n::: Definition \n### Bounded sequence {#definition-bounded-sequence}\n\nA sequence $\\left(a_{n}\\right)_{n \\in \\N}$ is called **bounded** if there exists a constant $M \\in \\R$, with $M>0$, such that\n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\n\n:::\n\nDefinition \\ref{definition-bounded-sequence} says that a sequence is bounded, if we can find some constant $M>0$ (possibly very large), such that for all elements of the sequence it holds that \n$$\n\\left|a_{n}\\right| \\leq M \\,,\n$$\nor equivalently, that \n$$\n-M \\leq a_{n} \\leq M \\,.\n$$\n\n\nWe now show that any sequence that converges is also bounded\n\n::: {.Theorem #theorem-convergent-bounded}\n\nIf a sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ converges, then the sequence is bounded.\n\n:::\n\n\n::: Proof \n\nSuppose the sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ converges and let\n$$\na: = \\lim_{n \\rightarrow \\infty} a_{n}\n$$\nBy definition of convergence we have that\n$$\n\\forall \\, \\e >0 \\,, \\, \\exists N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_{n}-a \\right| < \\e \\,.\n$$\nIn particular, we can choose\n$$\n\\e = 1\n$$ \nand let $N \\in \\N$ be that value such that\n$$\n\\left|a_{n}-a \\right| < 1 \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nIf $n \\geq N$ we have, by the triangle inequality,\n\\begin{align*}\n\\left|a_{n}\\right| & = \\left|a_{n}-a+a\\right| \\\\\n & \\leq \\left|a_{n}-a\\right|+|a| \\\\\n & < 1+|a| \\,.\n\\end{align*}\nSet\n$$\nM:=\\max \\left\\{\\left|a_{1}\\right|,\\left|a_{2}\\right|, \\ldots,\\left|a_{N-1}\\right|, 1+|a|\\right\\} \\,.\n$$\nNote that such maximum exists, being the set finite. Then \n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nshowing that $(a_n)$ is bounded.\n\n:::\n\n\nThe choice of $M$ in the above proof says that the sequence can behave wildly for a finite number of terms. After that, it will stay close to the value of the limit, if the latter exists.\n\n::: Example\n\nIn Theorem \\ref{theorem-one-over-n} we have shown that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{1}{n} = 0 \n$$\nHence, it follows from Theorem \\ref{theorem-convergent-bounded} that the sequence $(1/n)$ is bounded.\n\nIndeed, we have that\n$$\n\\left|\\frac{1}{n}\\right|=\\frac{1}{n} \\leq 1 \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nsince $n \\geq 1$ for all $n \\in \\N$.\n\n:::\n\n\n::: Warning\n\nThe converse of Theorem \\ref{theorem-convergent-bounded} does not hold: There exist sequences $(a_n)$ which are bounded, but not convergent.\n\n:::\n\n\n::: Example\n\nDefine the sequence\n$$\na_n = (-1)^n \\,.\n$$\nWe have proven in Theorem \\ref{theorem-1-minus-n} that $(a_n)$ is not convergent. However\n$(a_n)$ is bounded, with $M=1$, since\n$$\n|a_n| = |(-1)^n| = 1 = M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\n\n:::\n\n\n\nTaking the contrapositive of the statement in Theorem \\ref{theorem-convergent-bounded} we get the following corollary:\n\n\n::: {.Corollary #corollary-convergent-bounded}\n\nIf a sequence $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ is not bounded, then the sequence does not converge.\n\n:::\n\n\n::: Remark\n\nFor a sequence $(a_n)$ to be unbounded, it means that\n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nThe above is saying that no real number $M>0$ can be a bound for $|a_n|$, since there is always an index $n \\in \\N$ such that \n$$\n|a_n| > M \\,.\n$$\n\n:::\n\n\nWe can use Corollary \\ref{corollary-convergent-bounded} to show that certain sequences do not converge.\n\n\n::: Theorem \n\nFor all $p>0$, the sequence $\\left(n^{p}\\right)_{n \\in \\mathbb{N}}$ does not converge.\n\n:::\n\n\n::: Proof\nLet $p>0$. We prove that the sequence $\\left(n^{p}\\right)_{n \\in \\mathbb{N}}$ is unbounded, that is, \n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nTo this end, let $M > 0$. Choose $n \\in \\N$ such that \n$$\nn > M^{1/p} \\,.\n$$\nThen\n$$\na_n = n^{p}>\\left(M^{1/p}\\right)^{p}=M \\,.\n$$\nThis proves that the sequence $(n^p)$ is unbounded. Hence $(n^p)$ cannot converge, by Corollary \\ref{corollary-convergent-bounded}.\n\n:::\n\n\n\n::: Theorem\n\nThe sequence $(\\log n)_{n \\in \\mathbb{N}}$ does not converge.\n\n:::\n\n\n::: Proof \n\nLet us show that $(\\log n)_{n \\in \\mathbb{N}}$ is unbounded, that is, \n$$\n\\forall \\, M > 0 \\,, \\,\\, \\exists \\, n \\in \\N \\st \\left|a_{n}\\right| > M \\,.\n$$\nTo this end let $M > 0$. Choose $n \\in \\N$ such that \n$$\nn \\geq e^{M+1} \\,.\n$$\nThen\n$$\n|a_n| = |\\log n| \\geq \\left| \\log e^{M+1} \\right| = M + 1 > M \\,.\n$$\nThis proves that the sequence $(\\log n)$ is unbounded. Hence $(\\log n)$ cannot converge, by Corollary \\ref{corollary-convergent-bounded}.\n\n:::\n\n\n\n\n## Algebra of limits\n\nProving convergence using Definition \\ref{definition-convergent-sequence} can be a tedious task. In this section we discuss how to prove convergence, starting from known convergence results.\n\n\n::: Theorem \n### Algebra of limits {#theorem-algebra-limits} \n\nLet $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ and $\\left(b_{n}\\right)_{n \\in \\mathbb{N}}$ be sequences in $\\mathbb{R}$. Suppose that\n$$\n\\lim _{n \\rightarrow \\infty} a_{n}=a \\,, \\quad \\lim _{n \\rightarrow \\infty} b_{n}=b \\,,\n$$\nfor some $a,b \\in \\R$. Then,\n\n1. Limit of sum is the sum of limits:\n$$\n\\lim_{n \\rightarrow \\infty}\\left(a_{n} \\pm b_{n}\\right)=a \\pm b\n$$\n\n2. Limit of product is the product of limits: \n$$\n\\lim _{n \\rightarrow \\infty}\\left(a_{n} b_{n}\\right) = a b \n$$\n\n3. If $b_{n} \\neq 0$ for all $n \\in \\mathbb{N}$ and $b \\neq 0$, then \n$$\n\\lim_{n \\rightarrow \\infty} \\left(\\frac{a_{n}}{b_{n}}\\right)=\\frac{a}{b} \n$$\n\n:::\n\n\n\n\n::: Proof \n\n\n Let $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ and $\\left(b_{n}\\right)_{n \\in \\mathbb{N}}$ be sequences in $\\mathbb{R}$ and let $c \\in \\mathbb{R}$. Suppose that, for some $a, b \\in \\mathbb{R}$\n$$\n\\lim _{n \\rightarrow \\infty} a_{n}=a \\,, \\quad \\lim _{n \\rightarrow \\infty} b_{n}=b \\,.\n$$\n\n\n*Proof of Point 1.* \n\nWe need to show that \n$$\n\\lim_{n \\to \\infty} (a_n \\pm b_n) = a \\pm b \\,.\n$$\nWe only give a proof of the formula with $+$, since the case with $-$ follows with a very similar proof. Hence, we need to show that\n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|(a_{n} + b_n) - (a+b) \\right| < \\e \\,.\n$$\nLet $\\e>0$ and set\n$$\n\\widetilde{\\e} := \\frac{\\e}{2} \\,.\n$$\nSince $a_{n} \\rightarrow a$ and $\\widetilde{\\e}>0$, there exists $N_1 \\in \\N$ such that\n$$\n|a_n - a|< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nSince $b_{n} \\rightarrow b$ and $\\widetilde{\\e}>0$, there exists $N_2 \\in \\N$ such that\n$$\n|b_n - b|< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n$$\nDefine\n$$\nN : = \\max \\{ N_1, N_2 \\} \\,.\n$$\nFor all $n \\geq N$ we have, by the triangle inequality,\n\\begin{align*}\n\\left|\\left(a_{n}+b_{n}\\right)-(a+b)\\right| \n& = \\left|\\left(a_{n}-a\\right) + \\left(b_{n}-b\\right)\\right| \\\\\n& \\leq \\left|a_{n}-a\\right|+\\left|b_{n}-b\\right| \\\\\n& < \\widetilde{\\e}+\\widetilde{\\e} \\\\\n& =\\e \\,.\n\\end{align*}\n\n\n\n*Proof of Point 2.*\n\n\nWe need to show that \n$$\n\\lim_{n \\to \\infty} (a_n b_n) = a b \\,,\n$$\nwhich is equivalent to \n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|a_{n} b_{n} - a b \\right| < \\e \\,.\n$$\nLet $\\e>0$. The sequence $\\left(a_{n}\\right)$ converges, and hence is bounded, by Theorem \\ref{theorem-convergent-bounded}. This means there exists some $M>0$ such that \n$$\n\\left|a_{n}\\right| \\leq M \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nDefine \n$$\n\\widetilde{\\e} = \\frac{\\e}{ M + |b| } \\,. \n$$\nSince $a_{n} \\rightarrow a$ and $\\widetilde{\\e} > 0$, there exists \n$N_1 \\in \\N$ such that\n$$\n| a_n - a | < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nSince $b_{n} \\rightarrow b$ and $\\widetilde{\\e} > 0$, there exists \n$N_2 \\in \\N$ such that\n$$\n| b_n - b | < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n$$\nLet \n$$\nN:= \\max\\{ N_1, N_2 \\} \\,.\n$$\nFor all $n \\geq N$ we have\n\\begin{align*}\n\\left|a_{n}b_{n}-a b\\right| \n& = \\left|a_{n} b_{n} - a_n b + a_n b - a b \\right| \\\\\n& \\leq \\left|a_{n} b_{n} - a_n b \\right| + \\left|a_n b - a b \\right| \\\\\n& =\\left|a_{n}\\right| \\left|b_{n}-b\\right|+ |b| \\left|a_{n}-a\\right| \\\\\n& < M \\, \\widetilde{\\e} +|b| \\, \\widetilde{\\e} \\\\\n& = (M + |b|) \\, \\widetilde{\\e} \\\\\n& = \\e \\,.\n\\end{align*}\n\n\n*Proof of Point 3.* \n\nSuppose in addition that $b_n \\neq 0$ and $b \\neq 0$. We need to show that\n$$\n\\lim_{n \\to \\infty} \\, \\frac{a_n}{b_n} = \\frac{a}{b} \\,,\n$$\nwhich is equivalent to\n$$\n\\forall \\, \\e > 0 \\,, \\, \\exists \\, N \\in \\N \\st \\forall \\, n \\geq N \\,, \\, \\left|\\frac{a_{n}}{ b_{n}} - \\frac{a}{b} \\right| < \\e \\,.\n$$\nWe suppose in addition that $b>0$. The proof is very similar for the case $b <0$. Let $\\e > 0$. Set\n$$\n\\delta := \\frac{b}{2} \\,.\n$$\nSince $b_n \\to b$ and $\\delta>0$, there exists $N_1 \\in \\N$ such that\n$$\n|b_n - b| < \\delta \\, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nIn particular we have\n$$\nb_n > b - \\delta = b - \\frac{b}{2} = \\frac{b}{2} \\, \\quad \\forall \\, n \\geq N_1 \\,.\n$$\nDefine\n$$\n\\widetilde{\\e} := \\frac{ b^2 }{ 2 (b + |a|)} \\, \\e \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $a_n \\to a$, there exists $N_2 \\in \\N$ such that\n$$\n|a_n - a |< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $b_n \\to b$, there exists $N_3 \\in \\N$ such that\n$$\n|b_n - b |< \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_3 \\,.\n$$\nDefine\n$$\nN:= \\max\\{ N_1, N_2, N_3 \\} \\,.\n$$\nFor all $n \\geq N$ we have\n\\begin{align*}\n\\left|\\frac{a_{n}}{ b_{n}} - \\frac{a}{b} \\right| & = \n\\left|\\frac{a_{n} b - a b_n}{ b_{n} b } \\right| \\\\\n& = \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left| a_{n}b - a b + a b - a b_n \\right| \\\\\n& = \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left| (a_{n} - a) b + a(b-b_n) \\right| \\\\\n& \\leq \\frac{1}{ \\left|b_{n} b \\right|} \\, \n\\left( |a_{n} - a| |b| + |a| |b-b_n| \\right) \\\\\n& < \\frac{1}{ \\dfrac{b}{2} \\, b } \\, \\left( \\widetilde{\\e} \\, b + \\widetilde{\\e} |a| \\right) \\\\\n& = \\frac{2 (b + |a|) }{b^2} \\, \\widetilde{\\e} \\\\\n& = \\e \\,.\n\\end{align*}\n\n:::\n\n\n\nIn the future we will refer to Theorem \\ref{theorem-algebra-limits} as the *Algebra of Limits*. We now show how to use Theorem \\ref{theorem-algebra-limits} for computing certain limits. \n\n\n::: {.Example #example-limit-ploynomial}\nProve that \n$$\n\\lim_{n \\to \\infty} \\, \\frac{3 n}{7 n+4} = \\frac{3}{7} \\,.\n$$\n\n\n> *Proof*. We can rewrite\n$$\n\\frac{3 n}{7 n+4}=\\frac{3}{7+\\dfrac{4}{n}}\n$$\nBy Theorem \\ref{theorem-constant-sequence} we know that\n$$\n3 \\rightarrow 3\\,, \\quad 4 \\to 4 \\,, \\quad 7 \\to 7 \\,.\n$$\nFrom Theorem \\ref{theorem-one-over-n} we know that \n$$\n\\frac{1}{n} \\rightarrow 0 \\,.\n$$\nHence, it follows from Theorem \\ref{theorem-algebra-limits} Point 2 that \n$$\n\\frac{4}{n} = 4 \\cdot \\frac1n \\rightarrow 4 \\cdot 0 = 0 \\,.\n$$\nBy Theorem \\ref{theorem-algebra-limits} Point 1 we have\n$$\n7 + \\frac{4}{n} \\rightarrow 7 + 0 = 7 \\,.\n$$\nFinally we can use Theorem \\ref{theorem-algebra-limits} Point 3 to infer\n$$\n\\frac{3 n}{7 n+4}=\\frac{3}{7+\\dfrac{4}{n}} \\rightarrow \\frac{3}{7} \\,.\n$$\n\n:::\n\n\n::: Important \n\nThe technique shown in Example \\ref{example-limit-ploynomial} is useful to compute limits of fractions of polynomials. To identify the possible limit, if it exists, it is often best to divide by the largest power of $n$ in the denominator.\n\n:::\n\n\n\n::: {.Example #example-algebra-of-limits-2}\nProve that\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1}{2} \\,.\n$$\n\n> *Proof*. Factor $n^2$ to obtain\n$$\n\\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} \\,.\n$$\nBy Theorem \\ref{theorem-one-over-np} we have\n$$\n\\frac{1}{n^2} \\to 0 \\,.\n$$\nWe can then use the Algebra of Limits Theorem \\ref{theorem-algebra-limits} Point 2 to infer\n$$\n\\frac{3}{n^2} \\to 3 \\cdot 0 = 0\n$$\nand Theorem \\ref{theorem-algebra-limits} Point 1 to get\n$$\n1 - \\frac{1}{n^2} \\to 1 - 0 = 1 \\,, \\quad \n2 - \\frac{3}{n^2} \\to 2 - 0 = 2 \\,.\n$$\nFinally we use Theorem \\ref{theorem-algebra-limits} Point 3 and conclude\n$$\n \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} \\to \\frac{1}{2} \\,.\n$$\nTherefore\n$$\n\\lim_{n \\to \\infty } \\, \\frac{n^{2}-1}{2 n^{2}-3} = \\lim_{n \\to \\infty} \\, \\frac{1-\\dfrac{1}{n^{2}}}{2-\\dfrac{3}{n^{2}}} = \\frac{1}{2} \\,.\n$$\n\n:::\n\n\n\nWe can also use the Algebra of Limits to prove that certain limits do not exist.\n\n\n\n::: Example \n\nProve that the sequence\n$$\na_n = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1}\n$$\ndoes not converge.\n\n> *Proof*. To show that the sequence $\\left(a_n\\right)$ does not converge, we divide by the largest power in the denominator, which in this case is $n^2$\n\\begin{align*}\na_n & = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1} \\\\\n & =\\frac{4 n+ \\dfrac{8}{n} + \\dfrac{1}{n^{2}} }{7+ \\dfrac{2}{n} + \\dfrac{1}{n^{2}} } \\\\\n & = \\frac{b_n}{c_n}\n\\end{align*}\nwhere we set \n$$\nb_n := 4 n+ \\dfrac{8}{n} + \\dfrac{1}{n^{2}}\\,, \\quad\nc_n := 7 + \\dfrac{2}{n} + \\dfrac{1}{n^{2}} \\,.\n$$\nUsing the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we see that\n$$\nc_n = 7+ \\dfrac{2}{n} + \\dfrac{1}{n^{2}} \\to 7 \\,.\n$$\nSuppose by contradiction that\n$$\na_n \\to a\n$$\nfor some $a \\in \\R$. Then, by the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we would infer\n$$\nb_n = c_n \\cdot a_n \\to 7 a \\,,\n$$\nconcluding that $b_n$ is convergent to $7a$. We have that\n$$\nb_n = 4n + d_n \\,, \\quad d_n := \\dfrac{8}{n} + \\dfrac{1}{n^{2}} \\,.\n$$\nAgain by the Algebra of Limits Theorem \\ref{theorem-algebra-limits} we get that \n$$\nd_n = \\dfrac{8}{n} + \\dfrac{1}{n^{2}} \\to 0 \\,,\n$$\nand hence\n$$\n4n = b_n - d_n \\to 7a - 0 = 7a \\,.\n$$\nThis is a contradiction, since the sequence $(4n)$ is unbounded, and hence cannot be convergent. Hence $(a_n)$ is not convergent.\n:::\n\n\n\n::: Warning\n\nConsider the sequence \n$$\na_n = \\frac{4 n^{3}+8 n+1}{7 n^{2}+2 n+1}\n$$\nfrom the previous example. We have proven that $(a_n)$ is not convergent, by making use of the Algebra of Limits. \n\nLet us review a **faulty** argument to conclude that $(a_n)$ is not convergent. Write\n$$\na_n = \\frac{b_n}{c_n} \\,, \\quad b_n:= 4 n^{3}+8 n+1\\,, \n\\quad c_n : =7 n^{2}+2 n+1 \\,.\n$$\nThe numerator \n$$\nb_n = 4 n^{3}+8 n+1\n$$\nand denominator \n$$\nc_n =7 n^{2}+2 n+1 \n$$\nare both unbounded, and hence $(b_n)$ and $(c_n)$ do not converge. One might be tempted to conclude that $(a_n)$ does not converge. However this is **false** in general: as seen in \nExample \\ref{example-algebra-of-limits-2}, we have\n$$\n\\lim_{n \\rightarrow \\infty} \\frac{n^{2}-1}{2 n^{2}-3} = \\frac{1}{2} \\,,\n$$\nwhile numerator and denominator are unbounded.\n\n:::\n\n\n\n\n\nSometimes it is useful to rearrange the terms of a sequence, before applying the Algebra of Limits.\n\n\n\n::: Example \n\nDefine \n$$\n a_n := \\frac{2 n^{3}+7 n+1}{5 n+9} \\cdot \\frac{8 n+9}{6 n^{3}+8 n^{2}+3} \\,.\n$$\nProve that \n$$\n\\lim_{n \\to \\infty} a_n = \\frac{8}{15} \\,.\n$$\n\n\n> *Proof.* \nThe first fraction in $(a_n)$ does not converge, as it is unbounded. Therefore we cannot use Point 2 in Theorem \\ref{theorem-algebra-limits} directly. However, we note that\n\\begin{align*}\na_{n} & =\\frac{2 n^{3}+7 n+1}{5 n+9} \\cdot \\frac{8 n+9}{6 n^{3}+8 n^{2}+3} \\\\\n& = \\frac{8 n+9}{5 n+9} \\cdot \\frac{2 n^{3}+7 n+1}{6 n^{3}+8 n^{2}+3} \\,.\n\\end{align*}\nFactoring out $n$ and $n^3$, respectively, and using the Algebra of Limits, we see that\n$$\n\\frac{8 n+9}{5 n+9}=\\frac{8+9 / n}{5+9 / n} \\to \\frac{8+0}{5+0}=\\frac{8}{5}\n$$\nand\n$$\n\\frac{2+7 / n^{2}+1 / n^{3}}{6+8 / n+3 / n^{3}} \\to \\frac{2+0+0}{6+0+0}=\\frac{1}{3}\n$$\nTherefore Theorem \\ref{theorem-algebra-limits} Point 2 ensures that\n$$\na_{n} \\to \\frac{8}{5} \\cdot \\frac{1}{3}=\\frac{8}{15} \\,.\n$$\n\n:::\n\n\n\n\n\n## Fractional powers\n\n\nThe Algebra of Limits Theorem \\ref{theorem-algebra-limits} can also be used when fractional powers of $n$ are involved.\n\n::: Example\n\nProve that \n$$\na_n = \\frac{n^{7 / 3}+2 \\sqrt{n}+7}{4 n^{3 / 2}+5 n}\n$$\ndoes not converge.\n\n> *Proof*. The largest power of $n$ in the denominator is $n^{3/2}$. Hence we factor out $n^{3/2}$\n\\begin{align*}\na_n & = \\frac{n^{7 / 3}+2 \\sqrt{n}+7}{4 n^{3 / 2}+5 n} \\\\\n & = \\frac{n^{7 / 3-3 / 2}+2 n^{1/2 - 3/2} + 7 n^{-3 / 2}}{4 + 5 n^{-3/2} } \\\\\n & = \\frac{n^{5/6}+2 n^{- 1} + 7 n^{-3 / 2}}{4 + 5 n^{-3/2} } \\\\\n & = \\frac{b_n}{c_n}\n\\end{align*}\nwhere we set\n$$\nb_n := n^{5/6}+2 n^{- 1} + 7 n^{-3 / 2} \\,, \\quad \nc_n := 4 + 5 n^{-3/2} \\,.\n$$\nWe see that $b_n$ is unbounded while $c_n \\to 4$. By the Algebra of Limits (and usual contradiction argument) we conclude that $(a_n)$ is divergent.\n\n:::\n\n\n\nWe now present a general result about the square root of a sequence.\n\n::: {.Theorem #theorem-square-root-limit}\n\nLet $\\left(a_{n}\\right)_{n \\in \\mathbb{N}}$ be a sequence in $\\mathbb{R}$ such that \n$$\n\\lim_{n \\to \\infty} \\, a_n = a \\,,\n$$\nfor some $a \\in \\R$. If $a_{n} \\geq 0$ for all $n \\in \\mathbb{N}$ and $a \\geq 0$, then\n$$\n\\lim _{n \\rightarrow \\infty} \\sqrt{a_{n}}=\\sqrt{a} \\,.\n$$\n\n:::\n\n\n::: Proof \n\nLet $\\e>0$. We the two cases $a>0$ and $a=0$:\n\n- $a>0$: Define\n$$\n\\delta := \\frac{a}{2} \\,.\n$$\nSince $\\delta > 0$ and $a_n \\to a$, there exists $N_1 \\in \\N$ such that\n$$\n\\left|a_{n}-a\\right| < \\delta \\,, \\quad \\forall \\, n \\geq N_1 \\,. \n$$\nIn particular\n$$\na_n > a - \\delta = a - \\frac{a}{2} = \\frac{a}{2} \\,, \\quad \\forall \\, n \\geq N_1 \\,,\n$$\nfrom which we infer\n$$\n\\sqrt{a_n} > \\sqrt{a/2} \\,, \\quad \\forall \\, n \\geq N_1 \\,,\n$$\nNow set\n$$\n\\widetilde{\\e} := \\left(\\sqrt{a/2} + \\sqrt{a} \\right) \\, \\e \\,.\n$$\nSince $\\widetilde{\\e}>0$ and $a_n \\to a$, there exists $N_2 \\in \\mathbb{N}$ such that \n$$\n\\left|a_{n}-a\\right| < \\widetilde{\\e} \\,, \\quad \\forall \\, n \\geq N_2 \\,. \n$$\nLet \n$$\nN:= \\max\\{ N_1, N_2 \\} \\,.\n$$\nFor $n \\geq N$ we have\n\\begin{align*}\n\\left|\\sqrt{a_{n}}-\\sqrt{a}\\right| \n& = \\left|\\frac{\\left(\\sqrt{a_{n}}-\\sqrt{a}\\right)\\left(\\sqrt{a_{n}}+\\sqrt{a}\\right)}{\\sqrt{a_{n}}+\\sqrt{a}}\\right| \\\\\n& = \\frac{\\left|a_{n}-a\\right|}{\\sqrt{a_{n}}+\\sqrt{a}} \\\\\n& < \\frac{ \\widetilde{\\e} }{\\sqrt{a/2} + \\sqrt{a}} \\\\\n& = \\e \\,.\n\\end{align*}\n\n\n- $a=0$: In this case\n$$\na_n \\to a = 0 \\,.\n$$\nSince $\\e^2>0$, there exists $N \\in \\N$ such that\n$$\n|a_n - 0 | = |a_n| < \\e^2 \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nTherefore\n$$\n|\\sqrt{a_n} - \\sqrt{0} | = | \\sqrt{a_n}| < \\sqrt{\\e^2} = \\e \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\n\n\n:::\n\n\nLet us show an application of Theorem \\ref{theorem-square-root-limit}.\n\n\n::: Example \n\nDefine the sequence\n$$\na_n = \\sqrt{9 n^{2}+3 n+1}-3 n \\,.\n$$\nProve that\n$$\n\\lim_{n \\to \\infty} \\, a_n = \\frac12 \\,.\n$$\n\n\n> *Proof*. We first rewrite\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-3 n \\\\\n& = \\frac{\\left(\\sqrt{9 n^{2}+3 n+1}-3 n\\right)\\left(\\sqrt{9 n^{2}+3 n+1}+3 n\\right)}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{9 n^{2}+3 n+1-(3 n)^{2}}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{3 n+1}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\, .\n\\end{align*}\nThe biggest power of $n$ in the denominator is $n$. Therefore we factor out $n$:\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-3 n \\\\\n& =\\frac{3 n+1}{\\sqrt{9 n^{2}+3 n+1}+3 n} \\\\\n& =\\frac{3+ \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{n^{2}}} + 3 } \\,.\n\\end{align*}\nBy the Algebra of Limits we have\n$$\n9+ \\frac{3}{n} + \\frac{1}{n^{2}} \\to 9 + 0 + 0 = 9 \\,.\n$$\nTherefore we can use Theorem \\ref{theorem-square-root-limit} to infer\n$$\n\\sqrt{ 9 + \\frac{3}{n} + \\frac{1}{n^{2}} } \\to \\sqrt{9} \\,.\n$$\nBy the Algebra of Limits we conclude:\n$$\na_n = \\frac{3+ \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{n^{2}} }+ 3 } \\to \\frac{ 3 + 0 }{ \\sqrt{9} + 3 } = \\frac12 \\,.\n$$\n\n\n:::\n\n\n::: Example \n\nProve that the sequence\n$$\na_n = \\sqrt{9 n^{2}+3 n+1}-2 n\n$$\ndoes not converge.\n\n> *Proof.* We rewrite $a_n$ as\n\\begin{align*}\na_n & = \\sqrt{9 n^{2}+3 n+1}-2 n \\\\\n& =\\frac{ (\\sqrt{9 n^{2}+3 n+1} - 2 n) (\\sqrt{9 n^{2}+3 n+1}+2 n) }{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{9 n^{2}+3 n+1-(2 n)^{2}}{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{5 n^{2}+3 n+1}{\\sqrt{9 n^{2}+3 n+1}+2 n} \\\\\n& =\\frac{5 n + 3 + \\dfrac{1}{n} }{\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } } + 2 } \\\\\n& = \\frac{b_n}{c_n} \\,,\n\\end{align*}\nwhere we factored $n$, being it the largest power of $n$ in the denominator, and defined\n$$\nb_n : = 5 n + 3 + \\dfrac{1}{n}\\,, \\quad \nc_n := \\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } } + 2 \\,.\n$$\nNote that \n$$\n9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 } \\to 9\n$$\nby the Algebra of Limits. Therefore \n$$\n\\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 }} \\to \\sqrt{9} = 3 \n$$\nby Theorem \\ref{theorem-square-root-limit}. Hence \n$$\nc_n = \\sqrt{9+ \\dfrac{3}{n} + \\dfrac{1}{ n^2 }} + 2 \\to 3 + 2 = 5 \\,.\n$$\nThe numerator \n$$\nb_n = 5 n + 3 + \\dfrac{1}{n}\n$$\nis instead unbounded. Therefore $(a_n)$ is not convergent, by the Algebra of Limits and the usual contradiction argument.\n:::\n\n\n\n\n\n\n\n## Limit tests\n\n\nIn this section we discuss a number of *tests* to determine whether a sequence converges or not. These are known as **limit tests**.\n\n\n### Squeeze Theorem\n\n\nWhen a sequence $(a_n)$ oscillates, it is difficult to compute the limit. Examples of terms which produce oscillations are\n$$\n(-1)^n \\,, \\quad \\sin(n) \\,, \\quad \\cos(n) \\,. \n$$\nIn such instance it might be useful to compare $(a_n)$ with other sequences whose limit is known. If we can prove that $(a_n)$ is *squeezed* between two other sequences with the same limiting value, then we can show that also $(a_n)$ converges to this value.\n\n\n\n::: Theorem \n### Squeeze theorem {#theorem-squeeze}\n\nLet $\\left(a_{n}\\right), \\left(b_{n}\\right)$ and $\\left(c_{n}\\right)$ be sequences in $\\R$. Suppose that\n$$\nb_{n} \\leq a_{n} \\leq c_{n} \\,, \\quad \\forall \\, n \\in \\N \\,,\n$$\nand that\n$$\n\\lim_{n \\rightarrow \\infty} b_{n} = \\lim_{n \\rightarrow \\infty} c_{n} = L \\, .\n$$\nThen\n$$\n\\lim_{n \\rightarrow \\infty} a_{n}= L \\, .\n$$\n\n:::\n\n\n::: Proof\n\nLet $\\e>0$. Since $b_{n} \\to L$ and $c_n \\to L$ , there exist $N_1, N_2 \\in \\N$ such that \n\\begin{align*}\n-\\e < b_n - L < \\e \\,, \\,\\, \\forall \\, n \\geq N_1 \\,, \\\\\n- \\e < c_n - L < \\e \\,, \\,\\, \\forall \\, n \\geq N_2 \\,. \n\\end{align*}\nSet\n$$\nN := \\max\\{N_1,N_2\\} \\,.\n$$\nLet $n \\geq N$. Using the assumption that $b_n \\leq a_{n} \\leq c_{n}$, we get\n$$\nb_n - L \\leq a_{n} - L \\leq c_{n} - L \\,.\n$$\nIn particular\n$$\n- \\e < b_n - L \\leq a_n - L \\leq b_n - L < \\e \\,.\n$$\nThe above implies \n$$\n- \\e < a_n - L < \\e \\quad \\implies \\quad \\left|a_{n}-L\\right| < \\e \\,.\n$$\n\n:::\n\n\n\n::: Example \n\nProve that\n$$\n\\lim_{n \\to \\infty} \\, \\frac{(-1)^{n}}{n} = 0 \\,.\n$$\n\n> *Proof.*\nFor all $n \\in \\N$ we can estimate\n$$\n-1 \\leq(-1)^{n} \\leq 1 \\,.\n$$\nTherefore\n$$\n\\frac{-1}{n} \\leq \\frac{(-1)^{n}}{n} \\leq \\frac{1}{n} \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$\nMoreover\n$$\n\\lim_{n \\to \\infty} \\frac{-1}{n}= -1 \\cdot 0=0 \\,, \\quad \n\\lim_{n \\to \\infty} \\frac{1}{n}=0 \\,.\n$$\nBy the Squeeze Theorem \\ref{theorem-squeeze} we conclude\n$$\n\\lim_{n \\to \\infty} \\frac{(-1)^{n}}{n}=0 \\,.\n$$\n\n:::\n\n\n\n::: {.Example #example-squeeze}\n\nProve that \n$$\n\\lim_{n \\to \\infty} \\frac{\\cos (3 n) + 9 n^{2}}{11 n^{2}+15 \\sin (17 n)} = \\frac{9}{11} \\,.\n$$\n\n\n> *Proof.* \nWe know that \n$$\n-1 \\leq \\cos(x) \\leq 1 \\,, \\quad - 1 \\leq \\sin(x) \\leq 1 \\,, \\quad \\forall \\, x \\in \\R \\,.\n$$\nTherefore, for all $n \\in \\N$\n$$\n- 1 \\leq \\cos(3n) \\leq 1 \\,, \\quad -1 \\leq \\sin(17n) \\leq 1 \\,.\n$$\nWe can use the above to estimate the numerator in the given sequence:\n$$\n-1 + 9 n^{2} \\leq \\cos (3 n)+9 n^{2} \\leq 1+ 9 n^{2} \\,.\n$${#eq-squeeze-example-1}\nConcerning the denominator, we have\n$$\n11 n^{2}-15 \\leq 11 n^{2}+15 \\sin (17 n) \\leq 11 n^{2} + 15\n$$\nand therefore\n$$\n\\frac{1}{11 n^{2} + 15} \\leq \\frac{1}{11 n^{2}+15 \\sin (17 n)} \\leq \\frac{1}{11 n^{2}-15} \\,.\n$${#eq-squeeze-example-2}\nPutting together (@eq-squeeze-example-1)-(@eq-squeeze-example-2) we obtain \n$$\n\\frac{-1 + 9 n^{2}}{11 n^{2} + 15} \\leq \\frac{\\cos (3 n)+9 n^{2}}{11 n^{2}+15 \\sin (17 n)} \\leq \\frac{1+ 9 n^{2}}{11 n^{2}-15} \\,.\n$$\nBy the Algebra of Limits we infer\n$$\n\\frac{-1+9 n^{2}}{11 n^{2}+15}=\\frac{-\\dfrac{1}{n^{2}} + 9}{11 + \\dfrac{15}{n^{2}}} \\to \\frac{0+9}{11+0}=\\frac{9}{11}\n$$\nand\n$$\n\\frac{1+9 n^{2}}{11 n^{2} - 15}=\\frac{ \\dfrac{1}{n^{2}} + 9}{ 11 - \\dfrac{15}{n^{2}}} \\to \\frac{0+9}{11+0}=\\frac{9}{11} \\,.\n$$\nApplying the Squeeze Theorem \\ref{theorem-squeeze} we conclude\n$$\n\\lim_{n \\to \\infty} \\frac{\\cos (3 n)+ 9 n^{2}}{11 n^{2}+15 \\sin (17 n)}=\\frac{9}{11} \\,.\n$$\n\n:::\n \n::: Warning\n\nSuppose that the sequences $(a_n), (b_n), (c_n)$ satisfy\n$$\nb_n \\leq a_n \\leq c_n \\,, \\quad \\forall n \\in \\N \\,,\n$$\nand\n$$\nb_n \\to L_1 \\,, \\quad c_n \\to L_2 \\,, \\quad L_1 \\neq L_2 \\,.\n$$\nIn general, we cannot conclude that $a_n$ converges.\n\n:::\n\n\n::: Example \n\nConsider the sequence\n$$\na_n = \\left( 1 + \\frac{1}{n} \\right) (-1)^n \\,.\n$$\nFor all $n \\in \\N$ we can bound\n$$\n- 1 - \\frac{1}{n} \\leq \\left( 1 + \\frac{1}{n} \\right) (-1)^n \\leq 1 + \\frac{1}{n} \\,.\n$$\nHowever \n$$\n- 1 - \\frac{1}{n} \\longrightarrow - 1 - 0 = -1 \n$$\nand\n$$\n1 + \\frac{1}{n} \\longrightarrow 1 + 0 = 1 \\,.\n$$\nSince \n$$\n- 1 \\neq 1 \\,,\n$$\nwe cannot apply the Squeeze Theorem \\ref{theorem-squeeze} to conclude convergence of $(a_n)$. Indeed, $(a_n)$ is a divergent sequence.\n\n> *Proof.* Suppose by contradiction that $a_n \\to a$. We have\n$$\na_n = (-1)^n + \\frac{(-1)^n}{n} = b_n + c_n\n$$\nwhere\n$$\nb_n := (-1)^n \\,, \\quad c_n := \\frac{(-1)^n}{n} \\,.\n$$\nWe have seen in Example \\ref{example-squeeze} that $c_n \\to 0$. Therefore, \nby the Algebra of Limits, we have\n$$\nb_n = a_n - c_n \\longrightarrow a - 0 = a \\,.\n$$\nHowever, Theorem \\ref{theorem-1-minus-n} says that the sequence\n$b_n = (-1)^n$ diverges. Contradiction. Hence $(a_n)$ diverges.\n\n:::\n\n\n\n\n\n### Geometric sequences\n\n\n::: Definition \n\nA sequence $\\left(a_{n}\\right)$ is called a **geometric sequence** if\n$$\na_{n}=x^{n} \\,,\n$$\nfor some $x \\in \\R$.\n\n:::\n\n\nThe value of $|x|$ determines whether or not a geometric sequence converges, as shown in the following theorem.\n\n\n::: Theorem \n### Geometric sequence test {#theorem-geometric-sequence}\n\nLet $x \\in \\R$ and let $\\left(a_{n}\\right)$ be the sequence defined by\n$$\na_{n}:=x^{n} \\,.\n$$\nWe have:\n\n1. If $|x|<1$, then \n$$\n\\lim_{n \\to \\infty} a_{n} = 0 \\,.\n$$\n\n2. If $|x|>1$, then sequence $\\left(a_{n}\\right)$ is unbounded, and hence divergent.\n\n:::\n\n\n\n::: Warning\n\nThe Geometric sequence test in Theorem \\ref{theorem-geometric-sequence} does not address the case\n$$\n|x|=1 \\,.\n$$\nThis is because, in this case, the sequence \n$$\na_n = x^n \n$$\nmight converge or diverge, depending on the value of $x$. Indeed, \n$$\n|x| = 1 \\quad \\implies \\quad x = \\pm 1 \\,.\n$$\nWe therefore have two cases:\n\n- $x = 1$: Then \n$$\na_n = 1^n = 1\n$$\nso that $a_n \\to 1$ and $(a_n)$ is convergent.\n\n- $x=-1$: Then\n$$\na_n = x^n = (-1)^n\n$$\nwhich is divergent by Theorem \\ref{theorem-1-minus-n}.\n\n:::\n\n\n\nTo prove Theorem \\ref{theorem-geometric-sequence} we need the following inequality, known as Bernoulli's inequality.\n\n\n::: Lemma \n### Bernoulli's inequality {#lemma-bernoulli}\n\nLet $x \\in \\R$ with $x>-1$. Then\n$$\n(1+x)^{n} \\geq 1+n x \\,, \\quad \\forall \\, n \\in \\N \\,.\n$${#eq-bernoulli-inequality}\n\n:::\n\n\n::: Proof\n\nLet $x \\in \\mathbb{R}, x>-1$. We prove the statement by induction:\n\n- Base case: (@eq-bernoulli-inequality) holds with equality when $n=1$.\n\n- Induction hypothesis: Let $k \\in \\N$ and suppose that (@eq-bernoulli-inequality) holds for $n=k$, i.e.,\n$$\n(1+x)^{k} \\geq 1+k x \\,.\n$$\nThen\n\\begin{align*}\n(1+x)^{k+1} & = (1+x)^{k}(1+x) \\\\\n & \\geq(1+k x)(1+x) \\\\\n & =1+k x+x+k x^{2} \\\\\n & \\geq 1+(k+1) x \\,,\n\\end{align*}\nwhere we used that $kx^2 \\geq 0$. Then (@eq-bernoulli-inequality) holds for $n=k+1$.\n\nBy induction we conclude (@eq-bernoulli-inequality).\n\n:::\n\n\nWe are ready to prove Theorem \\ref{theorem-geometric-sequence}.\n\n\n::: Proof \n### Proof of Theorem \\ref{theorem-geometric-sequence}\n\n*Part 1. The case $|x|<1$*. \n\nIf $x=0$, then\n$$\na_n = x^n = 0 \n$$\nso that $a_n \\to 0$. Hence assume $x \\neq 0$. We need to prove that\n$$\n\\forall \\, \\e> 0 \\,, \\, \\exists \\, N \\in \\N \\st \n\\forall \\, n \\geq N \\,, \\,\\, |x^n - 0| < \\e \\,.\n$$\nLet $\\e>0$. We have \n$$\n|x| < 1 \\quad \\implies \\quad \\frac{1}{|x|} > 1 \\,.\n$$\nTherefore \n$$\n|x|= \\frac{1}{1+u} \\,, \\quad u:=\\frac{1}{|x|} - 1 > 0 \\,.\n$$\nLet $N \\in \\N$ be such that \n$$\nN > \\frac{1}{\\e u} \\,,\n$$\nso that \n$$\n\\frac{1}{N u} < \\e \\,.\n$$\nLet $n \\geq N$. Then\n\\begin{align*}\n\\left|x^{n}-0\\right| & =|x|^{n} \\\\\n & = \\left(\\frac{1}{1+u}\\right)^{n} \\\\\n & =\\frac{1}{(1+u)^{n}} \\\\\n & \\leq \\frac{1}{1+n u} \\\\\n & \\leq \\frac{1}{n u} \\\\\n & \\leq \\frac{1}{N u} \\\\\n & < \\e \\,,\n\\end{align*}\nwhere we used Bernoulli's inequality (@eq-bernoulli-inequality) in the first inequality.\n\n\n*Part 2. The case $|x|>1$*. \n\nTo prove that (a_n) does not converge, we prove that it is unbounded. \nThis means showing that\n$$\n\\forall \\, M > 0 \\,, \\, \\exists n \\in \\N \\st \\left| a_{n}\\right| >M \\,.\n$$\nLet $M > 0$. We have two cases: \n\n- $0 < M \\leq 1$: Choose $n=1$. Then\n$$\n\\left|a_{1}\\right|=|x|>1 \\geq M \\,.\n$$\n\n- $M>1$: Choose $n \\in \\N$ such that \n$$\nn> \\frac{\\log M}{\\log |x|} \\,.\n$$ \nNote that $\\log |x|>0$ since $|x|>1$. Therefore\n\\begin{align*}\nn>\\frac{\\log M}{\\log |x|} & \\iff n \\log |x|>\\log M \\\\\n & \\iff \\log |x|^n>\\log M \\\\\n & \\iff |x|^{n}>M \\,.\n\\end{align*}\nThen \n$$\n\\left|a_{n}\\right|=\\left|x^{n}\\right|=|x|^{n} > M \\,.\n$$\n\n\nHence $(a_n)$ is unbounded. By Corollary \\ref{corollary-convergent-bounded} we conclude that $(a_n)$ is divergent. \n\n\n:::\n\n\n\n\n\n\n::: Example \n\nWe can apply Theorem \\ref{theorem-geometric-sequence} to prove convergence\nor divergence for the following sequences.\n\n1. We have\n$$\n\\left(\\frac{1}{2}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|\\frac{1}{2}\\right|=\\frac{1}{2}<1 \\,.\n$$\n\n2. We have\n$$\n\\left(\\frac{-1}{2}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|\\frac{-1}{2}\\right|=\\frac{1}{2}<1 \\,.\n$$\n\n3. The sequence \n$$\na_n = \\left(\\frac{-3}{2}\\right)^{n}\n$$ \ndoes not converge, since \n$$\n\\left|\\frac{-3}{2}\\right|=\\frac{3}{2}>1 \\,.\n$$\n\n4. As $n \\rightarrow \\infty$,\n$$\n\\frac{3^{n}}{(-5)^{n}}=\\left(-\\frac{3}{5}\\right)^{n} \\longrightarrow 0\n$$\nsince \n$$\n\\left|-\\frac{3}{5}\\right|=\\frac{3}{5}<1 \\,.\n$$\n\n5. The sequence \n$$\na_{n}=\\frac{(-7)^{n}}{2^{2 n}}\n$$ \ndoes not converge, since\n$$\n\\frac{(-7)^{n}}{2^{2 n}}=\\frac{(-7)^{n}}{\\left(2^{2}\\right)^{n}}=\\left(-\\frac{7}{4}\\right)^{n}\n$$\nand \n$$\n\\left|-\\frac{7}{4}\\right|=\\frac{7}{4}>1 \\,.\n$$\n\n:::\n\n\n\n\n\n\n\n### Ratio test\n\n\n\n::: Theorem \n### Ratio test {#theorem-ratio-test}\n\nLet $\\left(a_{n}\\right)$ be a sequence in $\\R$ such that\n$$\na_{n} \\neq 0 \\,, \\quad \\forall \\, n \\in \\N \\,.\n$$ \n\n\n1. Suppose that the following limit exists:\n$$\nL:=\\lim_{n \\to \\infty}\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\,.\n$$\nThen,\n\n - If $L<1$ we have\n $$\n \\lim_{n \\to\\infty} a_{n}=0 \\,.\n $$\n\n - If $L>1$, the sequence $\\left(a_{n}\\right)$ is unbounded, and hence does not converge.\n\n2. Suppose that there exists $N \\in \\N$ and $L>1$ such that\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\geq L \\,, \\quad \\forall \\, n \\geq N \\,. \n$$\nThen the sequence $\\left(a_{n}\\right)$ is unbounded, and hence does not converge.\n\n:::\n\n\n\n::: Proof\n\nDefine the sequence $b_{n}=\\left|a_{n}\\right|$. Then,\n\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right|=\\frac{\\left|a_{n+1}\\right|}{\\left|a_{n}\\right|}=\\frac{b_{n+1}}{b_{n}}\n$$\n\n\n*Part 1.* Suppose that there exists the limit\n$$\nL:=\\lim_{n \\to \\infty}\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\,.\n$$\nTherefore \n$$\n\\lim_{n \\to \\infty} \\frac{b_{n+1}}{b_{n}} = L \\,.\n$${#eq-ratio-test-proof}\n\n- $L<1$: Choose $r>0$ such that \n$$\nL1$: Choose $r>0$ such that \n$$\n1 0 \\,.\n$$\nBy the convergence (@eq-ratio-test-proof), there exists $N \\in \\N$ such that\n$$\n\\left|\\frac{b_{n+1}}{b_{n}}-L\\right| < \\e = L - r \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nIn particular,\n$$\n-(L-r) < \\frac{b_{n+1}}{b_{n}}-L \\,, \\quad \\forall \\, n \\geq N \\,,\n$$\nwhich implies\n$$\nb_{n+1} > r \\, b_{n} \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-ratio-test-proof-4}\nLet $n \\geq N$. Applying (@eq-ratio-test-proof-4) recursively we get\n$$\nb_{n} > r^{n-N} \\, b_{N} = r^{n} \\, \\frac{b_{N}}{r^{N}} \\,, \\quad \\forall \\, n \\geq N \\,.\n$${#eq-ratio-test-proof-5}\nSince $|r|>1$, by the Geometric sequence test we have that the sequence\n$$\n(r^n)\n$$\nis unbounded. Therefore also the right hand side of (@eq-ratio-test-proof-5) is unbounded, proving that $(b_n)$ is unbounded. Since\n$$\nb_n = |a_n|\\,,\n$$\nwe conclude that $(a_n)$ is unbounded. By Corollary \\ref{corollary-convergent-bounded} we conclude that $(a_n)$ does not converge.\n\n\n*Part 2.* Suppose that there exists $N \\in \\N$ and $M>1$ such that\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\geq M \\,, \\quad \\forall \\, n \\geq N \\,. \n$$\nSince $b_n = |a_n|$, we infer\n$$\nb_{n+1} \\geq L \\, b_n \\,, \\quad \\forall \\, n \\geq N \\,. \n$$\nArguing as above, we obtain\n$$\nb_n \\geq L^n \\, \\frac{b_N}{L^N} \\,, \\quad \\forall \\, n \\geq N \\,.\n$$\nSince $L>1$, we have that the sequence \n$$ \nL^n \\, \\frac{b_N}{L^N}\n$$\nis unbounded, by the Geometric sequence test. Hence also $(b_n)$ is unbounded, from which we conclude that $(a_n)$ is unbounded. By Corollary \\ref{corollary-convergent-bounded} we conclude that $(a_n)$ does not converge.\n\n\n:::\n\n\nLet us apply the Ratio test to some concrete examples.\n\n\n\n::: Example\n\n\nLet \n$$\na_{n}=\\frac{3^{n}}{n !} \\,,\n$$\nwhere we recall that $n!$ (pronounced $n$ factorial) is defined by\n$$\nn! := n \\cdot (n-1) \\cdot (n-2) \\cdot \\ldots \\cdot 3 \\cdot 2 \\cdot 1 \\,. \n$$\nProve that\n$$\n\\lim_{n \\to \\infty} a_n = 0 \\,.\n$$\n\n> *Proof*. We have\n\\begin{align*}\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| & = \\dfrac{\\left( \\dfrac{3^{n+1}}{(n+1) !} \\right) }{ \\left( \\dfrac{3^{n}}{n !} \\right) } \\\\\n& = \\frac{3^{n+1}}{3^{n}} \\, \\frac{n !}{(n+1) !} \\\\\n& = \\frac{3 \\cdot 3^n}{3^n} \\, \\frac{n!}{(n+1) n!} \\\\\n& =\\frac{3}{n+1} \\longrightarrow L = 0 \\,.\n\\end{align*}\nHence, $L=0<1$ so $a_{n} \\to 0$ by the Ratio test in Theorem \\ref{theorem-ratio-test}.\n\n:::\n\n\n::: Example\n\nConsider the sequence\n$$\na_{n}=\\frac{n ! \\cdot 3^{n}}{\\sqrt{(2 n) !}} \\,.\n$$\nProve that $(a_n)$ is divergent.\n\n> *Proof.* We have\n\\begin{align*}\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| & =\\frac{(n+1) ! \\cdot 3^{n+1}}{\\sqrt{(2(n+1)) !}} \\frac{\\sqrt{(2 n) !}}{n ! \\cdot 3^{n}} \\\\\n& =\\frac{(n+1) !}{n !} \\cdot \\frac{3^{n+1}}{3^{n}} \\cdot \\frac{\\sqrt{(2 n) !}}{\\sqrt{(2(n+1)) !}}\n\\end{align*}\nFor the first two fractions we have\n$$\n\\frac{(n+1) !}{n !} \\cdot \\frac{3^{n+1}}{3^{n}} = 3(n+1) \\,,\n$$\nwhile for the third fraction\n\\begin{align*}\n\\frac{\\sqrt{(2 n) !}}{\\sqrt{(2(n+1)) !}} & =\\sqrt{\\frac{(2 n) !}{(2 n+2) !}} \\\\\n& = \\sqrt{\\frac{ (2n)! }{ (2n+2) \\cdot (2n+1) \\cdot (2n)! }} \\\\\n& = \\frac{1}{\\sqrt{(2 n+1)(2 n+2)}} \\,.\n\\end{align*}\nTherefore, using the Algebra of Limits,\n\\begin{align*}\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| & = \\frac{3(n+1)}{\\sqrt{(2 n+1)(2 n+2)}}\\\\\n& = \\frac{3n \\left(1+ \\dfrac{1}{n} \\right)}{\\sqrt{n^2 \\left( 2 + \\dfrac{1}{n}\\right) \\left(2 + \\dfrac{2}{n} \\right)}} \\\\\n& = \\frac{3 \\left(1+ \\dfrac{1}{n} \\right)}{\\sqrt{ \\left( 2 + \\dfrac{1}{n}\\right) \\left(2 + \\dfrac{2}{n} \\right)}} \\longrightarrow \\frac{3}{\\sqrt{4}} = \\frac{3}{2} > 1 \\,.\n\\end{align*}\nBy the Ratio test we conclude that $(a_n)$ is divergent.\n\n:::\n\n\n\n::: Example \n\nLet \n$$\na_{n}=\\frac{n !}{100^{n}} \\,.\n$$\nProve that $(a_n)$ is divergent.\n\n> *Proof.*\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \n= \\frac{100^{n}}{100^{n+1}} \\frac{(n+1) !}{n !}\n=\\frac{n+1}{100} \\,.\n$$\nChoose $N=101$. Then for all $n \\geq N$,\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| \\geq \\frac{101}{100}>1 \\,.\n$$\nHence $a_{n}$ is divergent by the Ratio test.\n\n:::\n\n\n\n\n::: Warning\n\nThe Ratio test in Theorem \\ref{theorem-ratio-test} does not address the case\n$$\nL=1 \\,.\n$$\nThis is because, in this case, the sequence $(a_n)$ \nmight converge or diverge. \n\nFor example:\n\n- Define the sequence\n$$\na_n = \\frac1n \\,.\n$$\nWe have\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| = \\frac{n}{n+1} \\rightarrow L = 1 \\,. \n$$\nHence we cannot apply the Ratio test. However we know that \n$$\n\\lim_{n \\to \\infty} \\, \\frac1n = 0 \\,.\n$$\n\n\n- Consider the sequence\n$$\na_n = n \\,.\n$$\nWe have\n$$\n\\frac{|a_{n+1}|}{|a_n|} = \\frac{n+1}{n} \\rightarrow L = 1 \\,. \n$$\nHence we cannot apply the Ratio test. However we know that $(a_n)$ is unbounded, and thus divergent.\n\n:::\n\n\n\nIf the sequence $(a_n)$ is geometric, the Ratio test of Theorem \\ref{theorem-ratio-test} will give the same\nanswer as the Geometric sequence test of Theorem \\ref{theorem-geometric-sequence}. This is the content of the following remark.\n\n\n::: Remark\n\nLet $x \\in \\R$ and define the geometric sequence \n$$\na_{n}=x^{n} \\,.\n$$\nThen\n$$\n\\left|\\frac{a_{n+1}}{a_{n}}\\right| = \\frac{\\left|x^{n+1}\\right|}{\\left|x^{n}\\right|} \n= \\frac{|x|^{n+1}}{|x|^{n}} \n =|x| \\rightarrow |x| \\,.\n$$\nHence: \n\n- If $|x|<1$, the sequence $(a_n)$ converges by the Ratio test\n- If $|x|>1$, the sequence $(a_n)$ diverges by the Ratio test. \n- If $|x|=1$, the sequence $(a_n)$ might be convergent or divergent.\n\nThese results are in agreement with the Geometric sequence test. \n\n:::\n\n\n\n\n\n\n\n\n\n\n\n\n::: {.content-hidden}\n\n\nUse abbot, marcellini, and analisi sapienza note. For next year remove integral test and add cauchy condensation test.\n\n\n## Divergence to infinity\n\nDo this from abbott or marcellini. For the moment we have only done\ndivergent as non-convergent. Would need definition of Divergence to $\\pm \\infty$.\n\n\n## Some notable limits\n\nMarcellini Page 101. Also see what is the english name for limiti notevoli.\n\n\n## Example: Euler's Number\n\n\nMarcellini Page 106\n\n\n## Recurrence relations\n\nMarcellini Page 110\n\n\n\n## Example: Heron's Method\n\n\nThe first explicit algorithm for approximating \n$$\n\\sqrt{x}\n$$ \nfor $x > 0$ is known as **Heron's method**, after the first-century Greek mathematician [Heron of Alexandria](https://en.wikipedia.org/wiki/Hero_of_Alexandria) who described the method in his AD 60 work Metrica, see reference to\n[Wikipedia page](https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method).\n\nLet us see what is the idea of the algorithm:\n\n- Suppose that $a_1$ is an approximation of $\\sqrt{x}$ from above, that is,\n$$\n \\sqrt{x} < a_1 \\,.\n$$ {#eq-heron}\n- Multiplying (@eq-heron) by $\\sqrt{x}/a_1$ we obtain\n$$\n\\frac{x}{a_1} < \\sqrt{x} \\,,\n$${#eq-heron-1}\nobtaining an approximation of $\\sqrt{x}$ from below.\n- Therefore, putting together the above inequalities,\n$$\n\\frac{x}{a_1} < \\sqrt{x} < a_1 \n$$ {#eq-heron-2}\n- If we take the average of the points $x/a_1$ and $a_1$, it is reasonable to think that we find a better approximation of $\\sqrt{x}$. Thus our next approximation is\n$$\na_2 := \\frac{1}{2} \\left( a_1 + \\frac{x}{a_1} \\right) \\,,\n$$\nsee figure below.\n\n\n![Heron's Algorithm for approximating $\\sqrt{x}$](/images/heron.png){width=70%}\n\n\nIterating, we define by recurrence the sequence \n$$\na_{n+1} := \\frac12 \\left( a_n + \\frac{x}{a_n} \\right)\n$$\nfor all $n \\in \\N$, where the initial guess $a_1$ has to satisfy (@eq-heron). The aim of the section is to show that\n$$\n\\lim_{n \\to \\infty } \\ a_n = \\sqrt{x} \\,.\n$${#eq-heron-convergence}\nWe start by showing that (@eq-heron-2) holds for all $n \\in \\N$.\n\n::: {.Proposition #proposition-heron}\nWe have\n$$\n\\frac{x}{a_n} < \\sqrt{x} < a_n \n$${#eq-heron-3}\nfor all $n \\in \\N$.\n:::\n\n\n::: Proof\nWe prove it by induction:\n\n1. By (@eq-heron) and (@eq-heron-1) we know that (@eq-heron-3) holds for $n=1$. \n\n2. Suppose now that (@eq-heron-3) holds for $n$. Then\n\\begin{align}\na_{n+1} - \\sqrt{x} & = \\frac12 \\left( a_n + \\frac{x}{a_n} \\right) - \\sqrt{x} \\\\\n& = \\frac{1}{2 a_n} ( a_n^2 + x - 2 a_n \\sqrt{x} ) \\\\\n& = \\frac{1}{2 a_n} ( a_n - \\sqrt{x} )^2 > 0 \\,,\n\\end{align}\nsince we are assuming that $a_n > \\sqrt{x}$. Therefore\n$$\n\\sqrt{x} < a_{n+1} \\,.\n$${#eq-heron-proof-1}\nMultiplying the above by $\\sqrt{x}/a_{n+1}$ we get\n$$\n\\frac{x}{a_{n+1}} < \\sqrt{x} \\,.\n$${#eq-heron-proof-2}\nInequalities (@eq-heron-proof-1) and (@eq-heron-proof-2) show that (@eq-heron-3) holds for $n+1$.\n\nTherefore we conclude (@eq-heron-3) by the Principle of Induction.\n:::\n\n\nWe are now ready to prove error estimates, that is, estimating how far away $a_n$ is from $\\sqrt{x}$. \n\n\n::: Proposition\n### Error estimate {#proposition-heron-error}\nFor all $n \\in \\N$ we have\n$$\na_{n+1} - \\sqrt{x} < \\frac12 (a_{n} - \\sqrt{x}) \\,.\n$${#eq-heron-half}\n:::\n\n\n::: Proof\nBy Proposition \\ref{proposition-heron} we know that \n$$\n\\frac{x}{a_n} < \\sqrt{x}\n$$\nfor all $n \\in \\N$. Therefore\n\\begin{align}\na_{n+1} & = \\frac12 \\left( a_n + \\frac{x}{a_n} \\right) \\\\\n & < \\frac12 \\left( a_n + \\sqrt{x} \\right) \\,.\n\\end{align}\nSubtracting $\\sqrt{x}$ from both members in the above inequality we get the thesis.\n:::\n\n\nInequality (@eq-heron-half) is saying that the error halves at each step. Therefore we can prove that after $n$ steps the error is exponentially lower, as detailed in the following proposition.\n\n\n::: {.Proposition #proposition-heron-error-exp}\nFor all $n \\in \\N$ we have\n$$\na_{n+1} - \\sqrt{x} < \\frac{1}{2^n} (a_1 - \\sqrt{x})\n$$ {#eq-heron-error}\n:::\n\n\n\n::: Proof\nWe prove (@eq-heron-error) by induction:\n\n1. For $n=1$ we have that (@eq-heron-error) is satisfied, since it coincides with (@eq-heron-half) for $n=1$.\n2. Suppose that (@eq-heron-error) holds for $n$. By (@eq-heron-half) with $n$ replaced by $n+1$ we have\n\\begin{align}\na_{n+2} - \\sqrt{x} & < \\frac12 (a_{n+1} - \\sqrt{x}) \\\\\n& < \\frac12 \\,\\cdot \\, \\frac{1}{2^n} (a_{1} - \\sqrt{x}) \\\\\n& = \\frac{1}{2^{n+1}} (a_{1} - \\sqrt{x})\n\\end{align}\nwhere in the second inequality we used the induction hypothesis (@eq-heron-error). Hence (@eq-heron-error) holds for $n+1$.\n\nBy invoking the Induction Principle we conclude the proof.\n:::\n\nLet us comment estimate (@eq-heron-error). Denote the error at step $n$ by\n$$\ne_n := a_n - \\sqrt{x}\\,.\n$$\nThe initial error $e_1$ depends on how far the initial guess is from $\\sqrt{x}$. The estimate in (@eq-heron-error) is telling us that $e_n$ is a fraction of $e_1$, and actually\n$$\n\\lim_{n \\to \\infty} \\ e_n = 0\n$$\nexponentially fast. From this fact we are finally able to prove (@eq-heron-convergence).\n\n::: Theorem\n### Convergence of Heron's Algorithm\nWe have that \n$$\n\\lim_{n \\to \\infty} \\ a_n = \\sqrt{x} \\,.\n$$\n:::\n\n::: Proof\nBy Proposition \\ref{proposition-heron-error-exp} we have that\n$$\na_{n+1} - \\sqrt{x} < \\frac{1}{2^n} (a_1 - \\sqrt{x})\n$$\nMoreover Proposition \\ref{proposition-heron} tells us that\n$$\n\\sqrt{x} < a_{n+1} \\,.\n$$\nPutting together the two inequalities above we infer\n$$\n\\sqrt{x} < a_{n+1} < \\sqrt{x} + \\frac{1}{2^n} (a_1 - \\sqrt{x}) \\,.\n$${#eq-heron-final}\nNow note that\n$$\n\\lim_{n \\to \\infty} \\ \\frac{1}{2^n} =\n\\lim_{n \\to \\infty} \\ \\left( \\frac{1}{2} \\right)^n = 0 \\,.\n$$\nTherefore the RHS of (@eq-heron-final) converges to $\\sqrt{x}$ as $n \\to \\infty$. Applying the Squeeze Theorem to (@eq-heron-final) we conclude that $a_n \\to \\sqrt{x}$ as $n \\to \\infty$.\n:::\n\n\n\n### Coding the Algorithm\n\nHeron's Algorithm can be easily coded in Python. For example, see the function below:\n\n```python\n# x is the number for which to compute sqrt(x)\n# guess is the point a_1\n# a_1 must be strictly larger than sqrt(x)\n# n is the number of iterations\n# the function returns a_{n+1}\n\ndef herons_algorithm(x, guess, n):\n for i in range(n):\n guess = (guess + x / guess) / 2.0\n return guess\n```\n\nFor example let us use the Algorithm to compute $\\sqrt{2}$ after $3$ iterations. For initial guess we take $a_1 = 2$. \n\n```python\n# Calculate sqrt(2) with 3 iterations and guess 2\nsqrt_2 = herons_algorithm(2, 2, 3)\n\nprint(f\"The sqrt(2) is approximately {sqrt_2}\")\n```\n\n::: {.cell execution_count=1}\n\n::: {.cell-output .cell-output-stdout}\n```\nThe sqrt(2) is approximately 1.4142156862745097\n```\n:::\n:::\n\n\nThat is a pretty good approximation in just $3$ iterations!\n\n\n\n\n\n## Fibonacci Sequence\n\n\n\n\n:::\n\n", "supporting": [ "chap_6_files/figure-html" ], diff --git a/_quarto.yml b/_quarto.yml index 5e05956..31f95d0 100644 --- a/_quarto.yml +++ b/_quarto.yml @@ -48,7 +48,8 @@ book: - sections/chap_4.qmd - sections/chap_5.qmd - sections/chap_6.qmd - #- sections/chap_7.qmd + - sections/chap_7.qmd + - sections/chap_8.qmd - sections/license.qmd - sections/references.qmd diff --git a/docs/Numbers,-Sequences-and-Series.pdf b/docs/Numbers,-Sequences-and-Series.pdf index 939ac8c11659d019d1a79358f56f2848051b9fa7..a2819a5016c15ca098058adcbb770467122bac81 100644 GIT binary patch delta 110778 zcmY&~4olsDuGa>LFhu?B@w|2Yu2Iw!_e!_-9S z9lmq}@-|RIyReuA+vopWE2{ayo+oDfPNMUZ@(+1<^eggeT<7E51q$hbtf}xDs`Ul6k{@ENZ z+i>+Cql*|{e7yqwJ{3y;x%Zb-T6M_Hul=3<;cd!IVW@H1{x^J9P!zHdS1A!GOlpJCz8#z5O_nA4^L}$w zAENU#gVql;-gIt^&~zV-DT*_Vx8c!7(<2@2|InaKMY5S5YC|~;`mvpg5&t!7e$C^o zQ$7X7N(LsN?$09?E%L4HJZ>jJx++EJ1hhseT zAHuEYA_pU-#lon>uWDouIVzF=bnpHCph|pl1fy;Z+texz4fGGT*hXWn5`0BI1ovXM zAW==F5qMbo@hkcX+UPv^VE;t3RO!5>FMlFYRInA<(|TzuD5V7}OMaZ8@XG_W_@9oH zKnJMU#i7xeF;i~C!U^7n)O2ipm??p|O^O-4Z>jGMO5!{7iXcV|*@8r3zp%LC2p#if1chXi0r2TG-4L z+3_x)-xMENM8r^c>WpU{wCJ2D&IbMHM~?D*Pjt9+@idj{@W^snOi18Q|!-XFK$3bJrpdp@(lSCbaW!F?P!!=*;9f@#)p z+4$DRda_Qx_n8^!)FM6KSATU$A`4I3yg6GmrY-0&PKNsl2H0dkpe$gF1e1a&*`^)u z%d)sE584yr^s_E*=ny4!J?iIgS;(JRW1u9FQIuAwpNEs(7gfX5Mk%VTtH7Uhg>7&v z1*eAjGs)>sK2cOcep;TY+Ek@|jjpd@oP1{W;cXff8Wi_938XiR+xaj%P3KFHI;H3P zqRbZlQ~EPx5`&1FdO6Xn4PV)S7gJ&1$jl4~4Sspq{C?Y~ zH+qgQDw}6eWUrCiOYP|LNY?9cu77@fm)#JPvNdlm27qtHv2v`z?)h%p3ln(=)%6=hTn{lCqTDRr5 z!F7!6d`T<7O%E0i#JRNUjL%e*-b_9h3^7$Jdqs-psfNvC#b2=4soNb898YAsL?yKo z#otuVl>w{sc5hkvb0~mI-<8RyBcy(Dr8gx__ToJ}LGznht_wkc9}JSg1)ib_{vD@A z)* z%I99Zv1K(DsooP62@ZHfPCuOcllt&I8S^DSRKvcoqrh(FhobP$Gp^R}E zNe|;>YLdM-Z$Vqm_V6Ja?4Eo*Byj4`%3fwN1>k4kO zAu={d1+O)|G@0ZXW7Z@R!km@aduA4V+5Bzg;8Z6`6@5ap*INFwVVw$nSEUfy8cR0| z*Kt!WtXd%HymqZfEmM$m?51OwOMgI~Wn z#Y}w%1V^-1@%mQ`j}`M&lRv+w`3_)52p=dyYsAHP2ORj&Ct0+t6WQ++3U` zdassr`3J8*WwePhZj|YpeGBjSP#u~#C4oArU+uNpCH^zRq(ewX*|*UHqw}p&cBbKr z$e5slRflY0Sj#6DwaYxf)Z7*)@*|eVjCpi#u?|xl|X_1An~kwD_2r z_su;MNxVsgM3qD}0cY!MnN*@MSfbR@BJw(6FXWq_SYBSni)*QFGjw5Tly+YZqQadb z%xw{Qm1Jf)-}B%EiU5VU*em;pZ%WXI15M=bx?}z9bLj1LRy{sLK1>n4(Wl%9YcW13 z9WBZq`W$jR0=2uAUf{KSTF!5RvG!`n5Zym$eObo$y720K8^_f%FZ1p?TYOhf$8cgR zzdGty_?LEmp_fOrI}*&f5TZptFVS=MwHPXCx+7K_7sHi2vGr0OMdN^xz!ZNdOsn^g zX*k5OdrIdgSzlCES)cB;#p>@z<+LN?!`}d>&P=fuoW}){=qCMKJJz2*4rA#U=xuAC zdCm5k_C0Z4ad70LrPg>7lz`(oYva&#g!=Hwds4$s9az89$&XK-Ue&q$(H?-UFe+_I z)|h|DWjS{`+G9C1S4v6zRKi2Y=TNN7gW*AFeiP#j*8ZTKAKF9zK9bS+=%E6!GTV$j z1-paeT%2sA*E;Dt6EK(@{4UiNO}j!J`l)X{%E}(ZALCAPEerpKXIGxux{j~zJ&iBaBYA(a{v@#vYfjtha%|ILnUqFPOk6wpY_o0>NGkSgjSYb3N zTY9h1Op80Ks%^F|PWEhD>Y#7*=N>PDTJ0 z_}2zl5LOgT%35#NWo~o3H4uE82>>U86{WGWzy~3Kbga8=!lAMNCQN`3jQ>iE1^z(| zu!VR3eEKoq3KuBC51aVT3WEQ(1AIWtN?#!Y!MEH2GdTB?HbMYG*g(;{Ni1;rcz_Z1 zZOB;RJud){3Ge5~lmim+5ev9i;)7t$U+4+oKsca|;Qo&@gMfHEAphT0;-&yj2)8`J zEO6=-fEFIC$dQ@_p7sl%je`hc5d;8&V_X5g;oeWdzyd1c0tNZu+T_4=JVX?3qYRT` z0bamb6M@+2CSnY*;739(%*m{2zIIY1Ovw9CZ>>nO&=f}5ydk{Sc}?%fmm7v};( zqPI5R#HgJhBL)g$pdtnuVxYs-PB5ai5xcV50vf|Ol`$`1Zk71hu*zL7#((XCZ|#!f z|BGA!h~T|h*%Hhc*%BMZ>c0%XokIejDT$06H-ec%*CD* z8#b?msR{G8BRz-xNFu{QAe0fFV^6w719L+}fk1@s-;9ay#~=zAUKCBHf_`7Xc*$g0 zI57S^c23wIs3<4w>Lu9~jGC7G{z$oZj5n98oEVY7Tdd=Y2>-_*%o3A;6^8H(7tU8p zw(WeIX9$1=E=x;3i3M}uKo~-ta9S{TcJgxo{- zcv}laZ^ivNQ({eNes{94!r7cDmGBV-i9jYN{ACa&I{>yYM|pQ#z<&i(VqqZ?eQT6Z zQ1D+^3JTuAk_CpCLjX63rHs*q@hwo^|EB;GoTt172*VKo!NrFaxyq3e(F+Pf{)xVz zpzwVGnj+qTXYNwgX2WE&WI*s|(Nr>M0C4&N+XJYODBpiRI82>gAHWI!ELzmj%^|J2 ztKeCLcd4xQy$)l1SVF?Kj56?8YK~l8%uuXf6&hR+6UbX>GV9FsHiHD!X+aI%Hs)q4 z;`%_qw~2V^=~ZH0#=Pow`!bVn_gab9n{T3X{p(_^W*i-!Z#jv?HpT1A#h~P3gb(w+ zJTe_H^V6AKOJq|{ zR)b^~Zzz%gIMQCWo@YQZJ%Gk4OY|OJ8rOQf3lVJTwX`YOpSKQLG-tw#DT+SM- zRA{Bx=fHsg8G#w8>}e%_`f)VT54c4WYf$(?GLT(R)1a2JEOZ`y+{@&J z_2`{^>knke6`qs!S=x)r>303jWw;7AB<1T|{v7_8LZ?WI zh1`!(_8qW6E)8pjV`?gg$hD6G^$m*TQG4e;<&a{eFPjpFmcl$X1e=uNc#V3c9;D5S z{fqmn#^OpvJw+=97#V7qKNc}2w?Nvj68ViI?iXt@vt#9EFr_^45Bj%6HT$-97u?61 zZ-DB{N6Bj#3Z+C^g{#0N^7BZ!$|$g0&-v@VjZ%W|^-(raf8sX#p2xGD%qei3a~B+j zk;pFfRUW#Yj}DG>u9z2yzBF=Rwq<^rIUgFWn%d(ZYge>>js}FjAW#uK#`ZcAU8H7w zy{RIwf)LLbtC`5C&x`G9B9@ z0N!?J-8h!fJT;9H%7BMn)Y5a8s0TFOOiFBAtn5lr{30vFl)pUWs2mtI3`{!vef;p5LCbC*V^Nu|o7(E&f}18A|7t2??S(J_R(@#W zvJF?~tN9|LX6S1DWD$y^V%YUz;e@|&yrxvPq-ow;p5&zwO)|4k_?6G8y?4jJ5?%M= z(HT0v?UHHLqh#_O)_T_tKk%i?!BN2JxzitygW8+(_8Y&e-UxJPm*>*;p)LRA?p07@ zK8=N>$q~GhYs_Ly%EC;-!c?Npul(BTbaQrXwwLwu4fK$bRy;qr@wbc6ZMP*vGlEv>ht{^%n>nHVC(LNt%V6ko0LIUv83W3^t}22Bj>K7o#1tkk zd%q{8X799r4+48vZH^ou?-nq062I=Vb{jH)RVGRqN5i~P9#|S>vD*vK6245a)EM9B za!0|*v+dg|+J1qD)7~Jw;t_9?}L4qY)&A^Q8xV>%}PBPQ={a zkUAFX53L)uO!y!i|E$9~Yn``>;%i_CI;}q&MiW{6yPEto|0kL34V)?ZIR|(NWMoh^ zv;?5?if`Q?acn#;`BP|@#(dC=)UtVH(pAgQlC5-0ej`2)+A_`!o=HCXhY?aA*%+VX z7=mn1UwJeqv>y!mB~vJ&%a?=<=c&1)6GWFT2f&_STnOGRh22LpdZ zem?~2$6I;lM}kKReY%*S56lWA+{r*t1^Nl$hxvC;9;a9db=aTaPCQH#j-qxnf0`}~ zBC~CF11m0)3_McREf5xc_Rt#hjRxY+b-JHtHXnA^HxIt3kM{rK!?9H{gid0xx^mR= zs4%uo&Y^ljEMIM#Ai=E;=qbX)&&puH%7%^A0Dfw3BX{1y(8Fe_kj!Y`u-ZLx(JFjl6NZ@0din8jXV-cKGA zBRT?mhRd{mv#<9tibJyaTcmE&fF?j~4|-5coW8X^-tHi(l)cF!7gUG&6orJ%&jnB7 z-Q(mUP0RWiLDN1~21v_B7gJ7@A64k;BxMF(b)s$$VC312{JvaeknGS@Op&~S zNks~FNDK4Eo5tXN=A{sU@9y3cIUQygZ~Db>oD6yP^4!~B6EG(F&8UT&iq3X?&5kHQ z3pQPkC{V$Ggg0rW8N2n(6&)E%#FP8Jes1OJBZH7ek^f{EE_jl zror*4{EQz2WW~4qNbs<#Q3hGvhOM4GX@W;X4)y2R;EWcC)*3R z`F#mbxwuKOJNmvAaN_RkL_0cm(1(dpTQXkPE ztpE=uP|ehiFpO@@mi6eUU;}2WIk@}88^N?T=k}Mj!oPUMML8+Oj$1EL&ExbaSEQtMFrDh=wXxFqOwRs>77enzcb}cygr`2vJP&Yu}WZc zvs$u?te}u(cv2~OjT!bGT~X^-cfNFBlX1=25eW;!`MX|d^a-C8O&Ecc+;iHrO z?F;=z191V0%*znm6i5sGKm|_N;N0P#;eu%knwrfW)VASD?{obfo}7)b_sTCNt!rB5 zV?2$ojvUQPaQJ-)tR|z7e7*-LeA+!RK+A9n7vgEaD!uV(Y-T>4pq=KF6ZPRlu2EUq zCEn)26KWlXel|Y3G0*Nu!3?q`cRJC7M4Vv+Rh5@p%kn=A+lw*&)m-<~BvM9Z`FUkt zXmVQ3b=Y|+T?d=y<3sai5DRfd-K_M-EpPb2p zu42fz{OW@Iz3cc`V|CdgWve&|ls7`?M&vDa0-M~>p@b-f-%}ZX`H%z?xVpRq-kk5$ z)5&7G1O*M`F*Yq8oL4oWEvPTIi`^Xj@Iris<9wG$l(oI_nw%I4(60}_{5@&yT_+;m zYE(UiEU8%NM0$|16Zn|R)SVG^_ZwEsXUxwU76THN9Ur(A7MZw~qj5(HM=1Ny3RcUW zMqqrM@Pw}A{kjfMpbr=7`#R2VTCaUc0tDp5)t&XvA2K+BKY4#4^jPBK7P&NWPNNZd z&QUTi??t}+^5KFzn)mR0j@=4QOUs9MUSix}bt49H+ZBkCi!6dPqYc-kPC_@b=_KYI29Z%ed~AvCuDcKAqv7ml}C#{z!`~dR?f7)`z$O{?Okr zbO)+LO%5SiLxX;!Rrvf_?%ZU~QWT9<)Q3NPji;?!6HmszFOTTCW9^Gjj$+8AG0N|%?olUl>0_~a*E7JPG8c7J3P2U=F53VZMqs`&}9-8bCv*|=0L9%t{i?^4GY3N z5jT4a6$SqOUTB1-+Y7=S$df2${{1a*aB?}T$5r7sZaHnlh%63C+8@p<>!oh>PUz4Y zC*z!YdZ!?}NMs3W*m))%y2XdlXU<#ApQ2=q-#9XA#uB<*?;*u@5p)BCo?t$8bW2E$ zRGy@lT}dP0VNjFd=;=wk%1;`*Nm^RCxQsUclUWf63)IvefLa|6m+{oZCNWiN@txHD zLd64Jy`@={b&zP5&C=KCu}`mN6@&UQhbgMVtZcm)_um&B$j(SKAsg~&oU3-n=qroB z8v4r`{JCZ`W+FP`j30lC@GPh`@9i+06Ju)@r~4g#+1UBrR`Gl@fqeKV#JHnbth2-P zfdXfs5!G6q?=A-1X*_)0X=zxnl;eDkd%k_i824G3gcpZ%rdxBbF=RRxUmn^{3ZHDE z>K)CfxB9Y_+ykD9VRNpKqKB-E&b@e-xZ}pzV?#@vKhGRV4#{wWopZsjm*PFLUWw~C z{mdWxY0$SJvUkWnCNcb7cv)es(4ae-Y>H5x|M_gvsDPLN`pgN}&s0T_M&kwz`e@a> zI})u&3GWzv16O&i6&Dp}^+#v|xm``l#u$%bx#3R#gyzwg%KnM(ymrVP8Q%umKs|N7 zIn-vS3OMJh)pv-*Eq!km4#_R2b=A;BlS`Uu)c$e0Jry8LdffXLp3G zZN5Wm1L9$l;o+i^k3T8ZugDtSBev2glTG~5EY3M)(>W9T!TTG|3l0ouUfEDjP1rPU zsDwqG43f^+Ty5>H?2MQY?zyGEk${Xh`p=8%9FicBL#GV>mVKx6)=Qb$zO9CpM?=2J z^N)KY_~Fa6SewU4S3WG(&1e@qo<+>d`8yuF84qT37jmCy{g%&d)&vTs?db2}xd#Xb zSPu$ryr&pUFJmB!NR-m~rTUfD zPYNRL3g#wl{Whn~lYs(l-nh9w3Cj4MCRmzzwhtR@KHAd&?vel%`mNq zj%5pCjBh6l=p%N_&9|U6$tRo_d6ZkkjJAhvaA~@G{A0vC|XXunEE7e>q4n_%8>En28M^(xwsV zL-5J~GFoi_Lhs>%BOY)4kIn;w|E2T5;JRyqg9+x@Y?AF0tf{Eh0o zA>9rBZE9HH0DC%iyjvxQ1+L{o7lUz64qt`P4PoAkGTX6qi~rMDemfb0?fw@HseL3dt>LsZB#hAo?$72^JNEr;X5YT*7o_ zI6?5`L3%svd!q;)rjr0!i0`lPqPI@}6&n_KfUtW%{OwtL$4^bJ0_U{STrBeniTm)1QUO$G#p)meNFs=sxHtzp(If(>W zh#x_g-&*7U*J&Ys!5DWcMz}i_Q<>Xe$w@MSDd(@`bPZ$jz`w`Wi*lwRocoAIG%!8J zypJ=mgDC}}VX4Tmz~LiI-h}s0brzX|ZdE9RMq~tI{mJwjv6EYW;F`af2uc4^wnG2O zu@EB1h;6aO)SxiKYfwP`VX(j$&|eZiJQ{Qk6ypD9PxUdNPErJ_Z+C<*^e>e!Bm_&n z4bN~Mh;#hD3aMRKB5`1HC(x9V^e9%(94e>oGZ^l)%|6 zws`lo+*!_oL3n!xu)z14S$qlZOCkOP3o#x7CAYdYylH>s_u-vio5TSpe2NAl1 z-o4$JC}K8v6frxq`#lCfMY4anlW;-sfi(7K*Z`5+^y|Z7^4PC#g(5`$xnO(m*|Fel z`Rr@7e}y7a0tn<^H39NhDyq$A$BsFB&kjF(&jFRYLserg=jmNRf#7f)PKUed2Ei4n zIq_}<2ES1^WOOgy*1$A&L)a<&lMi+!Yo5Yd0tK8PqH*XUe`Dw5!|%(>61 z-wY@7y;Yc|jVvK-R+kzZzOca=j0>wqn7h@JG+=edoR_ys$Q_&!t7sD5%1LB|!uh{#xcM(6gmJvBx_BPw^mC2@8v zmmy^0v%e6rWlG~v1U-TVce=92DK|W)pAs#5)l=KD-ZJuYcizs&smQ0Jo-NP5uiPiT zPH~6pC~&uU^K2fpX166UK=#ZK>!)f5F)skQU8V|ZUFfIVQ^M|bF3Ycyr+}K8A+8!G z4144;u%okA`W0x@p*x1TY}mg*VO0JSz)}7vVzbcFC0e$7bauZdd^U4L_D6$(xmsSF zM`$M%pmKRHlfN#!b7Cz3WZAp^%!Ii^e^J>;$fr9nsPZ*-u^%uUo9d$8E6fwK`2pii zcbgnkryuETeTdaf^FuT9R8)K;dLavthN6_mv1d%D%^p?wjTfP?m8F@6oJcb(wae7! ze&7`^tsAa3_d4TC7>jxP;4&8m>UU8ZzmSi*EknRU}2%|6aT6%gyS6|kKCO)HBe*Iiz$m}gjST&b(wBNf5 zt3xDR6*h)vhCstGN$w9v2xZzytsyKq*4&aVGW5){@(sc4xsEJ=Ld8%uD@YNyFg(=k zZCXWd{?tfd=#H_7KiBKbK7h(_pwq)+H7bxta9^w*p=6DtOIw6?YNGb)kjUy}ET#fI zR4Hh~q*i?udy4dh>+3is0&sLYz9v$_jE)l}MVKr9I}~lQx%_`e>F8o|` zG{S=M;>*|cjeT3e5ebL^$XUViQP*w|6!;67bRV-FwJLh4w#3rm6RJ3SVIUD#J}S3o zB&$q?A6-6-fDeCFOD>Sk5?dvlNy>pSB}J;Fi2idl^Zxp{ER8NA6heB?ZWXft)PiWF z;Q)iSx1w~wo?=pMv9~^3JY5C!_(O0ZC7?|ykuPF^J?{AVMFWtRF| zBX1z8iVgWbpVIu60u@I_MI2a9LEVp@5>R`Sc5GRq)htj?{ae#~19)m<7 zF(UeFdV=mM@q7YGTIe;hkIrg+l*lXa8E$#AVRv$KN;nNpxNyV;DGnA+*kz+blHNr}>KU)C!sOUws0)h9}9CW40v~K+mPx&0d^q z6q2Y=RB?t?@&QM7FBJN71uIl>N0!pCzamjGjdbD6j23dLw0vacL#~iqjG?4(U_-|1 zvQ0i$c>O?;LtwnWyx>#EpRKBb;3m_zka|0EUg4|L>HfpZ+0Dw6%8=`MdDcr;J7~6K zwqyv;9B;u&on5_jO^5kt2lTx3W~@J`-iSM|bsK!WGEp-7<&WRdgJB;fp|w%{R2Z7O zDGN$&!pfX-N{BGXO+DF|YS{ZLL23h!jjJf71#6f~2>N?wLls=@2M@7QYR)r@BR*!M z_{?^nuBs$0+moxJZkvHD9K5Wzh<+C=y8O9v5?neSr;CP5=SiC9RY9l5K5YyJlYhgv zc$-N*e*r>WJ4MGB+(Yskfk|ugktG9eDo?i0A9wmoU2Z4v+F6{r3fHriAN~40IF~X8 zr_*FH?@S$G!v}}Wv)R2LR`XxW+X9PQ_>ObdYWjO((j4~dV>8K1Z)s|7Dj&f%E7KDm zLXUf|){B=O0_Y`Cu%RR+oO-6lGDv!%%i@!-DaXjsqhvi%>kA8!^^n_qirkSunvsZ~(4Jn2d%pRF_3H9N&gjPORZ9KiPA_Sm4vXBA8Zu9~ zF;sXBK5KX#gdiOGp>0Na`8R(KhXd;TJ-@k<4f1Ym@|yEbZRV7q?e=dx>@>asFBc%K zG5ad5$firldk8#{+tU8d!`4oePFHgQl;@5NV@7uGwJD=A{0$;}V)jE>{@q1NOg^i8 zXqK4fG*5cXYe}o|iT7{zS;3EzZ;E-Q$=cjP9nEQizGgw)b>F1dNZPTwjUu0@mI>kr zp(%rP%KQx6S|Z_7~>96b%OhOki#Pe zP2>fi^~{w*f%C_O;*@xyq>4WH=X!azgKMeZDs8^9bcshU$S8iQC?hp&c$9Rpj4T2F z#37P2h0P4jT@Iwzewkb?%&IpdP9w(1GSA1G+N25TT0gs&(@pcsVD0W^J!=XbR7(1nh4(T0{yChki}IiTTs-vV3o8XrpY(P318JH14j?7$syE9XIQPbIZCET?-z*??hZ_-YD7!KuKzb+Pi za$XN*ViBQuv6X{jHRRM-sU)3MaFRFMw=vu8dc_jUKu*;Djf+9DWx82;z)8Y4}`ZL3BN z(2_cbc^uin^!^0_f*&9egGbrj zI`$y;{MVuevtkpfej3qb5iv1+4fbwz&}_U?S0WR40o?ttJtSW49mssDgE(KsXpfi( zvybrH3UUl3t9t^zB^cK%o5R=hX~^iAji@{B87q~aGIM+SUeHpK)#Hl>YGm|JOL0EM z8V|+MC{}Lxr-V{p5e8VZs#_7&^GSFA!s6mAGuF3NcHxF3%__uJRt9g9JOJycMi zNj+ZuNkvWe8;?B{X_OtnFzr{pfbBiM_fFbIxGbI$7K1S<3Kds8ZYmw5Mahc}$^riFaWGC?M=y5cF5UIwre}V}^8J}y4cpZ8|&oInp zu_DXbY$Fj;njF(f^u#2|AM3}qtAe?)u~_WU{&3bssQe6yn%YzAAB6F_$5=52Z-)G);Oid8kG-@u(wj7~{fU|-8;yr?Z`Hs()= zK%ixH;`gw{Ij&EfhV9EqF6cdiSg(Z z_iG@}tmI_Zj0>VLOx|?C4Pj_wk?C?uv2A!bk;2gDJvLl`w}qEq@JaL0?<3r+9z*iM zoPPZ4Bn2{j6IOiw-rmKq@{WBodfRu2nx4ZK8`hH2qQ>UA9lO(;;;Pv1dB}`cf+n1! zBGH^T`Q$ay)o7Os-yO)zLdhI3@Lg)H0A;J+!yf#(Ogbiz^TjNdfc5ur(o-tFv2IbfY%0Foq;AP#mDeupcCb` zk{$tm5(g$YRc@s>PZi6@Odh8f<)zI=pQw&0N`$<6fY_dCYjl zNFh|QOc6J>bnU2_9`)6F_TALI;KaNtjxnc)j*E4REwvI+vcxq`-KeZUGL{k+7JRuk z@(ny8Sp~<#qZ7j7=uq0lh;qpABV+Fj(Wbs42xo}XN|OXtqy~z4qMh!$+N5kY94Cl$ zL=ZKv{kxLJy{!dm|AP4dcB{1u)w&*L6#?>Vqf)%_qmwhZ489R_a24l|La)=!7R>7o z6FsExz@z=d*WYCQd`zP|XFXiHm)7iNK zziV(*{g^Vv=TMaHBT3X(>o^&7oK&-IdKzdeeiWhQD4o8J6J}?bjTHMSX6lKnNjCfb znzH9w$WtQ2J`1bXx_T-uY8wZRCuxqY(`vTTa09d!NtNFpr)ctHsN^bpxq8T+OMJBq z%;q-W>rf_pMlJ@OEn217o*%OUHF-$blQD@<=E{doAag31T<5docg@hwl#g0C2Ke=F znRd*_y6uPhg_nE?@n;Cv9HP@GAkEI#QB8a8t<>D`P~$-ki;k1+@MQ+oU?o#qqu451 zwXF}e8rPiz29k%8ER#;nq!933Cz4y8(=eMA7V__;Wfvm0C??0)x7ei3JLf zgbjx#F>WVl7+@)Rq&rI}v+zsZla9VX!`@zz{-#cAgSa|R0eE|ZAnooYbv9dtzp>aC ziagxV`T)WDx?dGtHP;n?f&>%47&)SbJ0-KsX>q-hANRqsGM))XwFN$P!4ASo*9rCsFNZ1c%vkVR3S7|F_?ZX3#_^Q+{hO&Z0$4gykVVgqv6#1~HXU-`520 zd|HiNKSugQc8=oYm;c7bD#wHTbH{cyBvUmYf#}bLwG5<16+LsbSJ#h3HH@Z7wi3rK zTzci&6&k1iBtCMbpYnWT_4vp6Xpp4z;_*&D)V1l2m0M2rv)R)snzt#*H-a*b*DPO1 zeo*8N;8Y{=`|ctQ=Kp5sb+d7GHV{i0Xz#>jsN#QA{Y7{~r-{XDM}xNeLSQ4;C;c&( z1@FG-k9mMPCXWI(RQ1`kuCocMX_@sN*q#VY@}*cW>2a6wn&c1kx2<%snY%mZ!E!x| z+K(!xzEa6;kmWvwC}mMw_Uq;!yZzD1&EAAg9pt2)NPptWJ%g>-@(?4~#yhGovY*Qv z4g7t$5mKR5YCUv zJ^%Bb=@U5S#v;Dw=B&|qtZ%9O+e`fLZBian0$Abg)nO+V9*aAk8U)`L;^D%+C$(i| zc@RwUU8g~e22U#HJ?AWGzyl}v+bqBer?KOCf_=|RmwE8S{-x1$LwMd`Ba86y-*p;* z;(2lr)^Ga(HnVy7{xX-6_q=g!Ay|m$o(#vX2Rq@wK6Zhz zVG?=l>afvH@HIdLu|+P}vk@>B9MBDZfQ=xN?+8~B(SL7|i-?Nc^_9R86WQ~TMgOND zv^xqJ-EzP8A@dTtzPmuq4S(S+R7?9m?pE|avVkZbML;RftcJKBhLc=Y%j)p zCo+NHEPi5N5hy^k3&H7P#r6<=Y`4;rK%Q9lU-f{ZN(_hS{*JwRhZxh}U1yAnx!u8p z70$URwuq2VZZF~U?TOvoHs`<*y+OTq&sgA8*y31!>rjnCy!2jcWPy{ii8tZi`p5=9 z5)yB_Rrdg!Es4I1Md0(|0VH*H|z!9iop+Z0vVTzm({IANu&j-GT zDr{6&3M+=eMGDT~B8~d&97?SpZHu19$Q^iy@grd4@rG!FEi{Pl|KDiXXNo%{IT>T)p^c_ z8SrFJbxAO3J--s#Lmq9CTB*^8=eKp4_xx4XWQ!6ei}5pq4bSR|$^f6UWX_aV24Ah9 z`V8wob@ku*tCg-PwCiPkls?!rHM4*73Nwifm%})Z{G>Budm8(Z}^C&n5|tl>m%D%6lQ`TR=B>z7B-O#H#|$W!V`^4D#Go`(;QY>LCepq$a|n| zLATS)G@5a1o)k6I(l_iBg}61OoAst{B%Du#wxP%NBpZP8svZrT&A=ZdlPXBbkx`WoE0aNXsT!wga7VJ`tEu;VCj*gmT2NJ?@5)(* zOd;#j=cWlg+jPT+rgNEXPZwev*%pOVdvRyy`Z3GFR5#uzbuwp!3o-V!WF{a@J_;=asmibyA{bW)43Z9WX4k?sF5)z^*P!+xl+xTS~ENV-TWtFLbo z_2#$nLF=Re?)4m=9?SQ%mrPKitWlw>KLUhg$9L)%-=JLlW=g!3r81M*%LHy(Cvci=h6=^67h4seM9Eimj)SG! z%w?&f15eZ6lo(|)VS3Z*sIuAidY!R4Hq~JLJrIyq$ zngd!b^}DXsttEw#k0Va>GW=}{YK$8A*-7;*L84)t{g}Pu-XtShfi}VzZ^u=;Z9y|6 z-O$UX#JpqzEsSnEDOE{%8p!N^9k8_|XKQM{Mv? zg{eU&Z{o!^jv68OF_kGeK4Kfo>~$+->aEvLlNfpw<{{d+pKKJ+7W-o@NcF5tq>)!w zF=OJmnwOGcu^@&hgPL%21rF;dW{bePozR)dgUc!YAM`ZABA@5A|9n>rq!asC^@7p$ zv7mvnY|^-zr;_1Ib?tnaJX*w3=|6DHM8hWiT@A~(;K^2cN+RZ)uL)5>G$dQehxCYB zXjX+(R;n(MER&?rJUw`^ocb!A{mTR;cb&W<&Lh2tt{{d^@5uDZO|QDCd2Is5d|UC4 zRos5HPn=)Sg}zuud3(GO4ul>>PCD|=i^TzRGg{vh$YvTM$gwlAX!e&E5C{>rT3IjO4RB8xtPEmXCbn(c_Tb4V zM~J!kt1cVew+jf5Z8E-zJ--i8x^7uL{%G)SRjJxG08m{38y>K)0xGyy6Ee(%j6sTD z?f*)f*9Xb~DFS~@8^09JX z^DO4h>d1ziiUt=CHAJnvX~sL2DQS8IeY~)^98v(CO9epsPj|pJhq8054j}8lO(DoV zUf7Fe%VG1fHy|wLZ1Fj5+~~`CVs-)!DissN&N|8H+|)@+lXhvZAb3);n@SAn#pWN8 z3afVECgF%jL#i*$=QMgZLS=vr+=3=0ll7gi zY8D_ozyVMd9Z+R3WzNSADM@*DcqK8}+>UxFt+~53N}Bdo(Esc<)V!hZrA%_P(8@{coe@OU!iRxpDB>Npsb9G4=irCq3sqp zrt`W(gtK(P9U`jbkj${hvAH8! z9Kb+r1GZ)WMv%!JnwIR&6a3EcdX+IVLICD+Ofxbm1J*^LtahwV8piY zWU|sGj2X*jW?Cl@O>Ct8777T>q2l0=_r~-~>G3VUJratps$e|y-rDYWr2C3#{^njHqbBilSO-2)mgx@TkXIzJ6%e@l$D+`a4 zq-<=cO`5MV>nz4Ol0;0`?_7F(WeHj+e#wF&d>!Sy1RB#jq26xx#xzjA6Lgtz7uUb5b(5MCk2Xu zi;hwZVI>5|T9Y2s3d?R1I_qXERr5o6567#MgF|2!4y^6?s@z8}=xyz`!(6aS0Z|o{ z+qMOhiHGPYsY?&YihVcBh7jz1&Z9DZozbaUT1&S1$m-c}VbBzt`Y@FEWKM(tB4 zd;sA)J3{oc$ov@`i!QXWjZ=sukaVPH3lF~?J>hl>L1~_KJ$GnHdrxob0g%+#UOEQ= zp3e)r(z4ugERxQE788UNO!qm`K)OdpBg$jwV3O5 zImRymNZZAhq{aefZ!L+~rTSzhZy}Hyo~eGrBJ&}}_VqloL*TAl-=KJrw(jK(JF}4C zgBcCx+)gYuOeasBG)BMW4MYVM2QD?tRilRV+}4Rm2@Z7T%P=h`Xbugzp@&8cHDn5v zPyTkDIdp z2J-m6J%<8@`L{QbdG2<5Mwy}2G^mjr_9?Nn@e_pyCXbPytsXR4vOOkW& zY73Vmp1tbSj_CNyDHA(br%hG>GhW0&McKN4wjl&)0H+*ZWkn>FBRLF8*N;-l627P; zEo@(R_KAE6|R2+B30F^+q z1uMUB>MK|V7Xz$|j)}H~#}&d57TxT-2nIQX91w;rJV2ZU(n)qOT!*$$>V90(-vAH# z{oV(N@$!eIq3%ry?oo_5f>L6F_auA6yP=w*ILAq$lCN<_5mQ-`XyQ}ulTjjKk-Wn9 z&3r$;91$rf@`Inb3PEAQGJ=z;$Me%ytjlI*0)AR?)+VDbY}@NB0slTEq`23X4u5;ZOj?V5^oTYdQ`pJaG4caZM^AhParQm`dGy z>Licg*}ofO3Z)b8hwKGa+G75sHGpW3^vlH#y3F%;5P}$k65%b%wR&4@2ipb3CA|Re zqeF2e@i+^XCFRI^5fvw@*W_P1gEvm@v(OT}at%;9NUaikeHsa{7Q`@y84)H#kp`p) zHre*F3l6``&BWcer5b>u(CKAkgX3Y|a(Cr#$d3~K(l^#tXkO<^q)liZ3Ib!Pl|A{x z<)8XSWnrB1i?z;3Czn|R!wlDPm5&v2RYGvCTAUq~oXvbu=ckwrg9wv_^wfPSu`tMK z5PTsDBo`lRMEtKh`(92WGu4YZJa|CSD<3QDEP0%h!Olhj1LQu8G%(ees!`(+tdr5BoGIFOFHQP@|!{Qio@gfPZ%~sANFyM%7|GPkdh`2=AL$ofh zPFz_6Uf(+>8GJQjG*==1JoASw4`kDua)?z_VLWeT`Cdj`t~F{)mx=sHE*s%~XE>o$ zMN5ASE16>bQ2Q(sWo$^R#u@Ms;&x)g9oFUVcL4JkL`T;AILB2-t1%F6!%94D{VpUb z-tV%p2qx%%E*b|U@#!uN!M5$~xa*-G@D*-!K5t>Q*hq*hQo%4p%_OK<8*G=OQF}OO z@MWKq+|-30ur>TRZ;-aC1zTdQb@7#M)t;jQZ|SvZg!feQVN#=9Qw!++eSnCKAZfSQ zYJ)YlpAE7bsoWGX%G?x{yReQ;BU;R+DOWVVh#d1)v#K}#GNU~k3Q|l2vm&t4tEZEcz0B7 z>tFa+`Y1g{CVeqp?*Y<|{D*zxBffN)MoVQ9&y>N^N!A2923HRO*&3T$quhcB`+qcxYFm%*%2cXpj66ajb>0`o>^JB@duy)9gE z{f^i?w4^k$foanf=WE-n_QY<`=frG5jZ7Fg$&mMM#LK*TkWHNO`6Cc#lwV8O%n{gT zQB6cRI$!$c+Bc(fxhJhVIRpzDd?3Zw^7FJv`!}8_y-!6#-K@)`jRdF>CJIKfGLn5p z#H)*E+ik0?6emF0l)mSv&n4y1cdcxfa&R2Oo;!oC(YA~Eyf7=j;4tm#(EPeG>*^|~ zGz&V^B7bue#w)BO%)q#DL4}tz^3~7c{wHYpss&q*q#>F{SP7a=L z-YqI>fcOv_tWFB?fl|}_S!{k*%+|!(>B&@O7Trc#(=;GmBG$ynSK!onnJv9={)cKr zbJF~E56BpD{toFYzdVAo!rD7^$wzGnp>VJKJdOohs62>NQHewOH&nQB>SDEQDaSq9O( zezeZ4jX3~C7G~|V(6^Z@91%?uv0L#Jbun@#qtZATm~EFOFiU)_S5(ZPObF!AYC)#0 z3Zg@G9(&DsKERcTk{+wI65q_6z{jVZa!xc0JLgqBS7o8nyu|x04Tm1sdFIb6wu@47 zYZXq;`~RKsbPndi*3APu|ED)A7r|-(g<9=cI@krNqMdhTCK%RWnFF-W*9hKVi8^dJ4wr;6^cv`b1`?AddC!X zy!qLT_+?6Xv31hGMB%y?X?qvbG)(ak^4`I1*;Gncf>xQXL0h*-CXH7vDt|Vh;^9_C z-lIYZHR{TXmI&Q0Iac!bvQt-FJYGcKZD%_YT68BlB~=)WHOAoYy-%(B_?A@s5e#!z znvkI4#H#1JU&2hZY<^k#w(mOnf$j}O%HqCwOs?wOx+SM#`mzpVf{uE8u6Nd7slDGQzYl-yA zFlmu6pVFPMy#zPz266qMdD!thL|W@CT&o)J+`QGky6_F@DO8`!+R+#F8*=ddGhFDG zk;{i%6?Ba_ZOqpsVT^WSR{@=Fsspaiz|@A2@(u8&ZuF>P@;I+{MhbyJ7%7vW^*CJws}msvD|?hiO)_3p8VyK8jY%$*;<1JD zB5~Avuv4$-2&dz=u4*CK2F6HU>JSMuO$F(@*?2?bw0{~@YJ@5OMD4LDl0p8hY|+|X zhUD|5;E`ivx~(JMO#!%E-gK$yIM;Ps?z*b>+SGY&@3?Yt+dRK&|30DC*l{(eG;nR_ zmE{;u|Db_=FPnPP-gULt5V_gBT&F^!tRZpavLA=x*unbPexs$5ANrgkA08v;+ATu5 zCiw_G&Qc-bFGfC%b{3+J%HTZs1EqLE_K4NyeTV<6yh{UyAF#nb2GzYjsHmHf+RSBJ zRY@G54`EIHh@st^Qc|_k5#2@2a;2kTi?%<^^=MeveO0#Z){i#W*4v#vj07e$EtoO5 zM49Zi_qX#h@wF|V(7=Vpz{|9c3YPMmS*aOeR3hld^+tUkTzooLc?-{cT;?IU(6pWS zr;pHCQ8qdlGe9X_A!%;Ou80RvP&|Bqrt7&YDx=44Sq~U(-;kYIxV?Yx@Ft`Z=o@|C z$0qeazk3-e2+Y^Qh#&7NYf_n2c$6Q%e_n=LCsskH@8Dgdd`H>pNZUX+GE^EivaL^1 z?pTi<%`Ud3<~8`Kzi~8nnQn$do7haWgV>CFzo*2)1Zb+6H`?-F&b6UpjdF~=48_St zHqVZ}>uJ9|RDNDpeP{ZL_emIc1e8NbT#vumv7djvSp+j_`;KZG;8?~Un{`!v=z~<$RC^&o?PWpP zz1a$#KB-4J6fM&g4PqNZl^uQN^DoC!C+K!Y@qo@(61V&)QAU&YP!UK^F0#7sx^3xL zWU+becEHf~+I#_O*nUZ$e(Sr9fUUvV_N;piUs>n>#9s@JDE?Rc_x*M0-@wC(sDKRe z_klqJ4as-T;~zZ_2BJhJ767!U%;kS5Fz9Pi0 zFRvUkiEy!Xi;Nf9#)aIlw(mr*soR#BSqbOClpE&)-N3>jX1h61&YVQw^DI{tSWcUi zf6p?V)kXb4HL9h(SEN5H5`dmOZ>8sJjs)_bL0 zKA69V&U3%NEz%#c(OH3~n{oTsAv3za(VjqiDl}k@E|~yx=aK58*m)1dw0TXU)E$#P zOkac3z`_#8oIKf|FgxMmRpzYF9*xpX5s18Gt!z4#Ayihl7ye)c2<9WPND0liAdAhL ziH#ZwU3Uig1zophL#=X&2cQ}!bwXq8OPmGOQmt-=eS>bwPJE{xUo;?iNux%fYGj7i zII7Zd047oj1qwvhwnR60))CMa|2F3!oB(9ri%)3~D|MqY21NprstnW9n*qeF8W2!Q zpa50Kq^dv!wSNn{ixsB2R*m-8SX*(B0Ezrh1RUNGq43KD&^BlnG(f#T{2ii{qPf|R zU2<RjL zGyn|rx^4oP2?7CrKzuYq8ygb06PfeE_Q%!-S|);QuNxN5dD}6mQ}UP_5c`hQUgWFL z!QX(b6|Q{n8GYB-G=ShOV*H)j1O^j@w!r<5rGBRs?#}WL_=W)iX~8GN;8ep^piDSe zDw84P=YVNaKDAdIC^f2_ij|JD3~SPDWBM?9b-q%(pv1~<$Dl_;Vn$$Mqk&`CAQC=7 zWc513lt8~)TuvC`DdblxFbgUYwo*A913ozYUMfGBBRO0XRzN8-HYEO^zaQ`%fnSWw zrFe-rDrNAE@jQvXRcXY37%oUfXRw#-!TB(e%nFhTzEt*|3KdxS#IPNTXG8)j5QflH z=Wwh|jG?1|DKsT4!oao&iV}eDB_+v0qNymekj)h&ENa4CSIm6YFP)p-{o6vC5kvsFZ8$0)Tvwc-s<@gYss0+&h1eB?F!W^3vI+5MQnLt~{_28pJ*8(m8~&>8&){t*JYRo zun15PHvr89rRdU9zwiF=M_79Kk&Pppjd;^Gff+>RCpPC!m}M+@ltz{gaOod2z#gzL z!Pw}W`hK3T9&hVBHf+oa`#3y!m$6z>@u<<`yKB(>nbN>Nkv)~&3AxVi z8@QZ3?c4L_&H8>x|JJiT!5+CdSB8SIN6-Ii`~;}v-|U1Wi#ZWjDKQSg!GWW&4!bYc z^Sv9L77fLFn(=WFEHkPfmuX0|3c$%6Y6SV)!Je_r|J@63+K&YO3|E!SgZ%&?)kH`IQlrb=(}3S6?nHm6yqsBh&2K`c;a1-UvK?_HmvhS zSY*;;To&V7FtBq{Cjj8SziAZFxiv^+RXP?>M_A&2k3xTkxE_dHohO&$%hG!`vo~Eo z*Nf@oh92r!$DLfE;Tnj?RjFUv37RuU1b`;}Hov!Y@NKx-JpCx&{qc1H?~j=PgZKwo zCx1`zn#kHy2L8y&I^<(dPVWm&;C5$Ts{Jm1cxPeq+_&k9Uhe38emQddZ)Fbsb+d3~ zEA%z7Abzi(I2*bAC6qL*D4w43A6PbhaMBrEYZ3UVz=q-A&m44w*s0mOv_C9=xByg* zj3mps1$nh(8Xwt6Fca_xXn2JUYf-L7;+B$_7vcV)!2825GQ@>>oWEpu9ZIoWN#vy6 zS|ww2W8ZcvIhh$C>>2cv{SR2I~b$o&`>-WK1D--U&O`eDoy zC7R~BZ4hk`T!0?xM`-Doq-zpEcLYFS9=dK4Z?NVBQs~E}A_Jv>kp=rU3gK)z--b z9BB$}Lo%=~(gk@%Sd6X}^qH|3_|}wcjBygP4k-PqKQMOXZbBrB5IR&0i@K|71MyCQ zOt%{yTcaz`7O$7q`kn9rVq)LU3VG1=K5Abz!Tb@?Gz-+#Q!K$e4js_0l!STla{($K zi3RF`C+_M3`JPh)XBrG`E#cVsVQ27S7o`m+jCsEv^q2&Td0bf^D*_hJiSn6ZI-C(| zBUQ^o7E4lgf8e|)=~(L|@wm`V7=K*qz0UWJ<0ck0$tMSZ)72h8!6UTh-VCvg8IyOL z`SZ3Ok5$P#6YdM@Y#1;w*DXBZIz9*Rc}o2H+

2a`~)St<-A=&~$5PKbl3hX;n>| zeONsicW+cK(d+rn0=57SzPFo;=U0d0hm$5>N0ytH-F!a0dUk-fwr9p3@3t%YBfECM z-}5)>372loDf;d{6nBd@tN~QSi2Nd{uzaQs_`q+%D^x#I2|zxUhajEL;89b@49a|F zL@vG6ud7})C6$T?1Uk!e!X`E4eiHj*I=6-PeSP9~M?H|dv1J&0-uOwwB0k0k+^xM` z!}dr|?}40M>Z9v98#DL^@1W_RHBY9fah%p(n`ahk!g)qb&AWd*hUrG?Ju+xv?bXD< zEeC@!XyL6OJ^-S7vWh7zXqWTuWviS+^@-uH>7mHost3NPYeh2e#rdkPs)72Xks9h0 zld*`tI?8z?@(RJodOh-e=;+vUI3#t^2V+AoV71|pfE{3 zw~H@Oy&D3Aw9-CQ(C~+jnCNb(ITQ?9e%f^-XzWmc93XbTa0}<6pI}KqoVpEn0!GTE z^|Z)2-(K)iOys%+{?mAMwT|gwcpO0(`RLqER<~*?)@66C)ZKR>)Ne*r77M<@~Zo2*3-MD)i?G) z%_NNObMmJ%<&s#UG=%+msqJhIoP)!#(elYn@p}=)Sk8k5LK>Kd+&cnm{{6Y08o98D zC++Xeq*Xp5Y@~J#cytomf z)HvwX+*B}lW)W5_P%=SAa^8@Ua)NT8BK7rtZt`+STP-9qHfkKO0(Es2;BYwF6Qd6_ zB0$aQN|@j_!n~C~7z595urBkx!IpYWWTXWm~hr|@f`E`z(60`Kk~ znB49x%?y^qF;%#RTFwZ{Ox8VA~(Cl7IyATg_+6|L#O3@bnL9$jKdX555Yw)t_BQC z7r=>}`YL%|k00R5jKbGf>^+%SJakIn8(l&Mg8b6fbI({$LN4~}q8~{xo}4uakMW>z zqj)VWLt6(QRr;}Q1*)4DhkETtouBX8v%}{H5oGGT&DX$!$Mc9V%$HDo3y`V%70Vw3KkBT?1p$@^h7^mw zCr)R;klt=gdO6ohAY(LkHo*th{(V0+s|Gsysv=`a6`Z8}{~qP*<&8E zO!f!aQ(vO1ep*UFzGLEdoLp8%Y8bet&`RTQPyG3<|2Xt1FQ8Ah(kV{cF^0KXd+%Jp zG#(^&Z@e|(f$dqZK|iH7z6dah?X{3fhwDtQ`Wiyz?ZY6f5OgGiPfmXK6zF4_Ies921r;po9M zp7l^s%NKZ91sao}UKyc7{h9U!zO%i@SGmy=B8DgEV#VDkQ_#Qsln;n4VgZjZ$ypS? z%#2)=XlqQCr<1=)RfYWKuLnDpc+4}Y%y-$aqk0F-bP}gKWg;@r+ZUy;K_Spz%@!0o4Wi(M zC&;(MQ%)vwU+dkc8=DSen09>bBp(E}>~(5-*|!ephDrz2Q71E|2N~t?v}loqOwDa0 zTUjyw$>f_XO<7pkH1u5wu`+AAmSsWkqGjM}aXpe9rWDB4SOtuxn}wrLB=J~3qUEU+ zx~Le%qP0>Fg!rrlwUFZJv;?=P>A7Phr{uLjSnu6x{JDcPt{;@h9R}&)oQdx>DIOjn zv$OUc`^ik)9`yy+Znv7p`|!g{^B_Byc^>Z$kIQ`)?MtcaK$wxNe+9CTPb+Y3-S6ed za7T!M!t5EF3=$9(Ex;@z*B^lWa_Zq14c_Xo8WRL}jmD_4H#lf{$>kdY z%(l|Si<9d-`G%iShIVE1f!q#4HkMg!(6H-3gG`PfyN;Yc@fnWw(23Vl_|o zXhg7<%L?z6Ur$&`cx0qYIz-kqXxpF-@w15Qj&=%U+oIL2iuY#rp7Ai(DZ{pbD14K; zXwj{r$_%tWW+XmWiM843qmb*i-mMKN(8g$*#oIWim(XP**`h;y zuaaNy`4bS1_aIJlp*V6u{Ql6e9NriSWp7?W=KjN;?F^!KH82CN0kf8wJjXj5^sRPZ z()nT#7sP9|7`>onX&P}xEa8Sn`?i{&Id&l9KFa6VLaF{OZ|Z)y@yK%q)LG2Lv|yz- zQ^!Zs&drksoiBcFc~n);slvCXh=bdyzN~jx;8w`%lI)?tw)G0?W2*kTt@-t2kG0j_ zzTNQGr$^65rgq@<%F&VEcHt*LMSL8pJ~e|^kvhfWQ=tTfw{05x=RpXnd3UvHOU5l3pApZ-yexsy~0^t9Nb;^eX zrojJ)-eye-sKNaoa*Vw$APDzAX4mgTUzcin|(+S>OaQcWKq!e`}X_;PX86h!WD{v{HHis%Ot7Lw@u|ARvDC;<=Zg+$svFZ;PnrK3Qnmd{|}MS zUHBJ~=>O=}GlVE#kx{%r;@yv1`NfCsHz7iVGHyhxhu#MHkpM&afid3C%=hWHTyp8s z^Z^gxrv?12^?qjW5N`vwTD;q};4H1h?xE0Zav2XD&gsSw;)OEELOdeYecL4b!Te&) zsw)b4`vSPit^83A2e`iyaJN&T8>C;*m!>lr+Y~*tyHMv_w7xp~o3bw|ywe6slTH-gTx5Y#vXKZ>KyDTTLvR zyLX8Fl>Vp8eunblJ!0; zEDO{qK{_TNzt5+8*A=S!YWu!nrHG;a z1*(zbPNFJNDAOo(sZdbX=BJ!J(+Xg2|!{gEH6 z84OTWYY}1$YT2^FLlFWWCiF+$+wYkjar=6Eco+`lhRX1MldF%`t#ZR$ntm;StZ*dZ ze zHbv`u)k~yq6*yS!cmtuV7;z_tN+0|}+yi)u^k&0IwuduTl*Fu{J|n zAPqcN!X~?&;?UfIT#CP%=mioyt7817O^4IN>Uw3Dl*2lktqO|3q5(f^>5P)Ob zNA58JyK>jr&YZv^{o54&+nLB&B8b?xR|3^CBxiVNHUHN=r~X9kQK@|S0X_Un< zLu9isBjaCHeLD$ja{a<=XRZFKhz|f^?yIoLa-M|qlP$i{Sd6Fw4Wiu?k8FQA3 znunRhaKJy_9Dl_*@{wi-2_j8sB>}c6Hs!;DN`VNe#~h8|=`_p^dDGyrRAN>N9R?U& zv+jy3x+Iq=wQ~!gGb9WW(AcO>)baXCGc8bxIi@h_*`e7{i6qRhhlHp{@-+0yl3;mR zs51XZ?1T16m@qWGQElYf1;m_5C3Gh~l9stU_yr-4khl;R4q!Jfn9ene5dvZmjkSe2 z&p}T>A)c%V!WM+Py1{TBXbI|(R`om3%l!h!pty?bGr=AI!fFH>WsPSXhX^8>jm(Rl zhUD9Iq4BXK9=f7x>lbyw_C3y&Is=mzp@gZIpe>D61ydQ6IQvg2x38SVc|ErYMnEL4 zJ~@FA#=?lUaPK?ADN?9nHUI)CoP$M!Q8*|w1xoi4>LfvawF_>CWu7jXu;7fX_}F4L zBH~f+MEAi33#4kq*-=Q*7749{jH!|wSI(3=0+T1*XW?+~=TgurLqTMrIGbKj5njs^ zJvjBtbGkhx=7FOUSkg$qHV~^d4bxi`+VXHpIQ!TVi<;vCS(Eb$(}JR)#jNMpH(U1Xq^*mdXtYp>K*Urw zbNmT?F@gV`r?3htyLQB_Mn1nm z$}T@}z9=JJW0%&b(+Ge)Qqu)?x?m7h9Y$9-3qdmJ4O7&VrI5Pr4B@~3v8?+JZ)l}n zuksuOU$N?Gr8AjKwrANK@jIo#hn)CC<5)vjH_hWt^b5Qxv+?x^26}4TlJEfea}VCN zC!EU7wWdHBI*;5A?LNj_e0?CsO&si+p{JlT+J>*2n*ya9<1b*}XwCG~eVSMt(gVLm zu7uX{dI!-4-_wpb*~-g=_-W;l3#J5c#J*hq2%h!JPzMQEFDQ@KjnlK$;YJ>K*}MHV zwPW;Xs<;~xJa<<)tg*xi==T&l!@1ar)yrmA1sXvi7pz2Li#$iQsLj@VkC(jH<;_r> zX#Px$B(s~>lo&wWYNdM7oq%}XBEssJ>XBw=@jg{EL{2OFiDcgiW5Th%C&6b8MT&@2 z{wM0}p^hyvEICRZY)V)2$c;6Iu7P{mXSxpM>Z3`&p=2SV&AN~H8)DcBiDI8?%=Rr( za+F<{GiJ-RBRtZ9hL2t(&!n*D@a|3)H1K|eg(`qzn9JMLRq}Qbl0PY0%-C9! z`gIYkF^`*EY1;hURkCQ($dk}>5ZdP!l24x+h<3|4Wg6)EEkeP72K^3$tjXjZlMB8= zf0q74AiA+g3Smp(3d;^p{%$|J!~jxjou_KFai7EzLcjS`~6hI;s1szB0(+ejFI4M$*wvYeJfo{x%6l z-SZT@s9^Afte|sAUv^ygXhms3WeD!teYlF3Dz6x`w>Lcqu}}&Wt%K0t3we_0#R3+1 zjcorw7t^CA1|<8)G7|e0k~s2`?`;`|swE!MND$B)S{~x+g5H^+=!$%bylV4;`EYx3C!AF>3pFbTA$ z=G+qI_x3fIOS1O&nT`FN5?&NuMTMJHnwI*U$?k3teoWLJ+oC^AO+`aId>i%=)`+~< zlAX20uE2h7F(#%&HBd(Aa)gWgtblW{6eI!5I5l3?Cb9x$VyBkE*8*m*ee$%JV1 zW}E`i6q)RQfmUE8piRB`Dt%K?cnk=8Yv#tfchO2=o)~y%9R;l#q@G*lIEwH5Q0@Xi zJ&I}voLgp%TFZAP-S+R+;th zKTL}9_J@{{+{UYc@ua{Vv2(UHH_=gXCUD?P;mANsckY%j#JEjVnf53b`&n0!OB^ZX ze&}gF^G24YBVIjlYPi$}$ctW8naLh5sw#v}MeU|F#ptb9FST~IF*k8Vv(I%9WGwSC zpL@D2(@CL&oejfiH>nt4!=4!v{~noryub2vU;t;L^I8v9)42Mo9*6(mr-x2pz2o%r zh=EH->fo9KSI&Zc1e^6~zp9wws?ItMc-1?ooupS)F$`8c;g&T(*~613eL@vO8`~34 zb4d7asm(~ zkVDa~8n?E*5%>M>YWftq5U~kP3`GZt>sV-!q+6~4+8 zj_REGRPaLa^~af^sJ+waV;EhVB+7Y3?5_*F>L1#^XC?^{ZAL+zQTjeYIf z_KXy<`{Rb}S{Hl&*#0stOv3b42H8!S7)9yHl2-{iZwl=d{-^F*7vz2khXXd@?%@+I zMbK83iJ0>>JD``p?sjxPd%RXED~8RC6>^`#Dg%lC{bodx%?-^nDQ+*MM{AO;6nm#AO;S*#Pt~&fCs=cO9YQ5ZvstO)_zQZ z>%RB)CZu>~iuDSWb zxP2zSJ@uk*Odj_JX?fu&S~&e) z2kz`Eb@4vl6=;1buHHkS;80U*V_Q%29Hw8!7`s|I{`z<*u%DIuiQ6n6RNsyq7F^_j zNZnQ#&%6Jgit)K`k%Ij+@k&-Gr4Y&A9uf7h6<*Uvn*RAW_9exAqmTnvxyTWcPTY(* zXNCRu@nQImrP71`aQ~s4gbHA}V%QUKEFZR1BYoQ;FGE^ zxBz8US-1dOb74T#)a6UCVDzc>{0wNfAx{Wj`Ccg60&LryAILaHUL#6;fRp9;emefW zIxNjgpzp!hyg9aNgN-RHNd$&fbVo6UKG;}dsQL4!CzykMiRLjqG>I=nA3F!|bRSSk z*m}8i-THU=UIw>qNdmBgyhTvFsMpYQUs$@bP5R7l0<=8 zhe}}9o#|P3`^PTfO{TJaRslF*x@P6?saHBPv@Uk5@~^jjMqZpu@T5{b!Pq^sUwli! zFi^DUmfON2N66(=N=mvZ4W-V1z65G19cq6#Ydw3!kWDuthmhsND%;`YlqL9eftI8N zB%s1sD|uF(cVd75!CGDXqO?hGM^X)gEG_m)gjypd$8}Jjjq7XYli!mB@FfM;Vhb2o zqJ^F?nr_iA3IJiJiYl0s8quH>gwu5I?o$-H#LfEA&cr5j-L3pans1%U#7BhPJFxd# zszZNMz|+$wQSD%j4TQHA%G5gX#&X%|m3M)1>%}Y*4XGNSYG!r8TOI19hy?{6j;Jfl zXmE^oxFXYbipX4fNe^HF5OXzo2}cK0B>6i6;jRsNt%H|xj}J&#%KJMEP#C3(vQ-5l zCh^iYF=%F8nc+3s;2nw-8`X$i)Zjauh)Ju(awL-$5HF32I|lKBx|dooAXfC_FU!Y? z>7KXc&?(B|^a>QrE+mlA+O!TU=-CS>%NjOY7D?{Uql=N`C136VE`>!-l?nM)dvrzxQVz#+&y{=UCam#0Xog#xh&si>G0iMX^L3W3q9^SWS@EZo4D+Rdz( z`aQwzL)<~^cZ%)?TVoOK%9^Xg1o06-faq^kgk`7WE(hMR16Lvr<<6$pjA1c^>VUQM z=9T3?PHJ%w1LUL@k02*XT&?hX!~Vpq8jPlb3H{PJME_c90qx z%p#MzdxRssBxI`iP`pM!XI#&Fk6VI;{`xB{(~M#u_vSZG|1h|s$s(9|6HT%zd#dj* zpqeoZ-hrc=e|2}nrsv{LAWv%pu0#7!(E zht@|U>n(#i#DfBjnYkZbx-02FazRSesbidi}DSDyh(@~x<074p-{ z9{auUNc$80@KPJRCbhN~?1or6BXX#T9N1CAY^NSMKiJ9CZU-*N%<&ZC!Qf2Vcg@cU z+BXPfAbC4chrpW+-YNk8`4BI4uECa8DmWA}Cv5A#?N}_$^(^SjW zA7EkFu&5Y_Y^?5LW-1e4&^6&tx*!by8CSE);3$1%{sG0dald18g?H-o*3gRJg3ZEW zq^7w!8+bO|QNlNIF@;lGbJz}$Xk>z}j{Sa{vRVBdvNw4d1l3H?_?4eEN~x_>v-2)o z?Yeumj2v6h!Se$K#15I2h&2fGk`JLl4uz>OOL|5H*B_oN0q(?2J2~k^<0P!WO4{O z>fCbIU<}5?H(P7@$cr9>9-USXIbUR+TPRe({xGq)CFpJBj5lv~U7ULu@9T-*b4u#v zpBV@+6WhP*$|>J_)gk~EHP>Ts+TeVq)fNyMD`CoD7%)MB>S3(2!P8m>`5H?~a0wg` z$q`;Zan2Ogk~)s|nn2__Di)A`{YFKQuy|og72MCk3K-16%jVm^H1p=O=|LMu`TNE4 zaq94LgMu(rI$#|-d~RPap@3s8AM<(R{`x3u<+YgJwe%1b+rbYYZA98y-4)h6AO9S! z7p)+EJ^YJ$GtnFqk3fOAsIcIfP}Ote=$$8hT=!)c+XIVQCCO+26-;SH<*!~m0g6nT zwV_fHyUcSk9UD4eUpSp2s1RZLa!o;0k!tb6BM;s141fjT;<-}FMwBbdW~!4)<=4>* zU!`yxs-_SbaajQ90Gg+7x;c1f^d&-#z9y0g!^IzG;=CVBA8$Xq=`cT-`MO-xuLTmp zGx80O(+`t=NjE-0Ik$S2ew_gWW?WFh20O1HJKV2bT8bc=!_l|-LUy-P5BhufbiQ7k z+2Te^zED>=24}rs3MOh`#}~5Uq8#GQ`^r(bQ0Z^lqAte0Xu9;XS=0Z@FB zUlE4*zR>rh-tx1tsjhq_?UD5HW^{h8LgvOf@$5VYIgF-4Ij>d1*v#e>Za;v=HVKC@{sYl)i3tD%klJtiNDKdZ-f(mh>;lKnNOwlK>-L+wYI0s7u8t9M9iGK)>1wqdHBhcd( zME3!@(OgjHhAPY%tC;9$Oa|0{;}*Nx42S~5?g`1~694WimCRG4m_BkJ^CHRM9>U%a zG{=v&Z&pcOAu)%sAW0~sMQD4n-Zy6LbWx~)Yqn8zrI0RMSgaAUlEMbB!|!LeKv)>#k0!CEJPM-~`Z#>`k{XM=(3=kI6bs;Wdc zZ(QLCDyg%W-l0i0^@k-F{!{zXfvG+FzJw_>jM+DbN#|o^4;A^RMU9ZvXh)s5-{X?m zaomYDZk!A{)SUY#N?uzt(TqTZzmMHBMh2E&xkYO9+|il{gKgg5sIYOJ2QlZsQiwG` zww&VPj$VGqRd%C25&W#7)5;1lj4?8!k=Dov3S)kNfQK0=_tmzP3g|Ut*iONNb|Gce zrf6(kP&5+|R4YH{u`!=kR4x{9P6Z>R?64^v{r8_;_5RnNp!BHH5QV4SpoJP~C#uE~ zMwEYT0!#qxZOzGbrpDQOarNCuZ2Q=NxqYFBPu?H+q5+mmqD8%HUL28-8F@Yx+lp+J zJa39qBgycJ+V{pFQv49yC~|!Gu8FsNzj)qQkEd&PI;l}W7`X?`cU>y!X8dzm2OekA z{{(>&qqmA8|7b4OasHz&;l67itZQ?)=GJE5sLy2%P_hL#_~rbug*P&gs9-k@0P*RZ z;*CS^jE<|qJcZ=9c`HfR7QW2*K-RKSmLVcs zyRb1CA>W={_0vPMg$D**0oA5m zw=Y<(6m-MKI(};Ypna#vQZhDSnk36@+8B-%XG~MViM097_;S1X$F$iv8~WP1)c@n^ z9fKrkqi*e)wr$(Cr)}HrY1^!}ZQIkfZQHhOo_@~zorrV3ANi*uGAr+hy0iAqwb!)} z70$%tKR61vnn;oUWw~P`&xof%WLQ0$xpLRelw!c%`n$_fG`Ck!A<) zXj4vhDs0D)7m+5lMkNi(qxWhp%f{Jr|Cw4xkMODTi6!z#Ao&$un$)ia`H_6dB{sZS zyrUk8Q{6778Cg= z#EHz9{==O?f;!%D8ALrN2q+ukt#hZ;@5N>_SKlEFEya=8>{l$^ZDy-iCK%+W^Wi?OFEAyVK zF;seS@n-of#}dhk_CI77^bnr4LL(JoN?xCYIt4aKs58Z`A(4n=5~bxr-rh4^2IGM+}N zDrH+f0tCSjFYU@A6oJ-bZ)A&sCjM_cbLY5xZ>(6aZroxMB3R@ij&=WtCND8?Tx6YS ztSh*$atrn1S-!p(z+e>7`hD759@_SNA#d!%RE>Q~iDo-*@|W84PMe%>L$fgSZ!fbM4y5F?(Wk@w7fh)8C9LB*!>W+GG1f(g ze2qAH*qRHRfSNeh;M~mxW~4uyD5p8^OSP}fB~b{;&80$6^Q319@RT{iQOl*n$%`Uq zTh5mO*6@HAeE)i$vj0=c{YSk6uraXw|7Z$7Mcscig*$Mj5Ggz0z+iMYFpM0KbGDnj z#RwR6YxSqz?rZdogftD6%Bt+yNG-)OCOy(o^%4D8FO~Te30WY(;Q`85*y$Cd>z|!R z^Y<={uD;!0Z2y{o$jf|;PF~nqEB`ksz@I3k;GVAhHBd2Ll78C6_uUNtNA}>+P{tQZ zf`Zl&l#jIx!VnaS=tKEWx6OfDH^K4xAH z(7(a?7c*2{MEz1IimQydAy`bwVrpiV_8My)TyxZ*Ol(t{lt*;;mV@2dH2soz55b zI@NgCn1AJ2$2!DEpq4^~>Wsv>Hd+Z?6^~MMn$dfO`20m7(lUSF6I~@$7h7PRGZKkc zHxF{m$nmTRUD7m|{YT;zAStQPC3346YWuplog$`ic0K=~ZZ&R$8KoXogHZ`G+%g5A zgXkwoJUGIFxE>D9t!I>VMeA*k_pp?k6TQYjsh3~~5J>8$nfdSX=~go^rmcUT363}{ zDV-{Fxj{>W$Yp<2|K$Hv|C1lp-@DAMVNL%;&n34`{$x{>o>0Dgx0xMzR3u@~N|aFj z<6By|`aju!I#99WWgcH26cZRA8jb(xBRVjIA-d^?KKCEc;Esga8_t!9223JDv!I3W zn1pqKB9gBxDkD)nQEkpOR=5sJu!a%>MVY?O6RNBaD8Hs=%vnYmF@pvbOVn;&6ISyd z&$IZRvVL*|xutiyFH-PR16w?sCVQeSM-OY_p(quNhIv_J5-g^3^bR1`VSvG-@@_#z zZ}6OjZYFPt#Y|emNKs(;Zpb33WaCGAH6S^|VYQ*KDJ%;9N#1rift&`%{^1!2><7Y8 zkt2L6gOxw3ovK2SpU4}qQ(V;b$r7Ck*&q5B6xs$RYG*zgRbTNhDRR`I9+;D>)8bm5 z?{4F1P-@L2)qxH;9RQ>mbbwXblDZ(d=G5STIk%yu(UVc>(B)tQ@WelGt(AYixC8M& z&A$n*%cQ81(Et=yliX>B%g^vu6LXPOLFA%=Zicy$ZYaIpHU}&4C^2@-Ch_MaD}qg4 z?0Pnce06gu!ebmvtVG!#axhR{v|K#7@c_?)e^25Z7O5c`t--A+rZrEbs zqUd?BAW4+pKkTu9nSZ%^sYhw!&oh$e{#6ZCF?3iO)+gzuL{$y4Gt9?jOr3|2uVsWY zLPiW}QB$yhL)l4%raYQPKb(p>`QA}DOqS@KTssfD-fu>p#It%knQ$1Kv$mWt{qz(r zy4cvMg6co45Ks{34cip!^5Vo5DX_+VNh(w$1*M`Cfy7_?f@B3-)M zfe%nA7nlE%2S3K745xfLP#SHaD>(bHOnNh=>Kz3E8Xo7YB93k$r%eGXIHBTQC)qQL zV@-UTYE4C9Ep?TK2SwJ`CIc)LS+4^49ii7hc3SKOr6`9@9S=h#&hBAY zlh*n?oFXKQM0cq)b{C!U4K?$)p0u6u~r_>5i?tD75K3{|x|ucloss+HTh zdPRExbyVCS376se5HVn8Lc!Iuk@pU%9PNkA=PLSqmSgYKj>16*)v}38F|C}#at8UE z(q6A?w^I}2s`n?^%f-{$$X<2pX~VYOr|#?=-Yy zoa86T) z8%<@yQ~^ArJ@wZP5Rg$=EFPQJ3F4T>Xq4x26pj}M&?V$M9sWQm&(_&&6l1HT^MSPR zkQ)$lvwh}+qD-}bSBr2D*k%tpA?yr97TlZ z%3a@Jj_qI);uarrwPWNe-q|;=sfuIvM+oUbL z+yQYt2R*vjBq&A;@!L-E2!a61sXtSMW7|l3m?Qc3PGumwl>{LU`B|m0Zx&uKdD#j! zE9;P~Eqb~?S;6{@AEl3^+EwafM_PU{2o)8?B_`D`VWE0IOYV4+%{$C@J`n_X+K5bT zUs)f@rF~@yXV|2;L~}wBwhpu)G3XKyv)AGhw{Rbi=iw^jBTvI6U9Sg9u8`Ly@+NI; z^79)Bl~H`(l!!bYm!BXrehY<9g!q(S882q{&Ra!cr&_VVmYyE`)9(q zsI?gMismwN#U;IX3dBd)drAsuQ&nKIIz*n)4%w<4tNDG}p@oWOvQ_`x8hBfjGyrec zQEVKMZWk2!yB_JUSwmoSp5mBq{1)p8hqjsg&nsAF1wXiUz8upKaY zm=_mnRVqf-73U(eEt>uRk}# zo}>>hd$j7ER=c`2U2J!<$*Yuur}?xPTen+3uDYPR;|at3L>)W5txV9Nd2Gfl;DjSe zdO;rNjsXvU73E;XHokfJR{!GWiK%-v!DpU_`Tc+$5X)5k8BCICM#^_*eRQ0e^5112 zgAgs}qy8evCv4Jd8Uo~TM&9ckYeQPk7&2Mg&_=Vt{OGToF2Fw519>^ipI_fm< zw4jn6w{$vl?pw7Uv%#;@NUucp4y)uflkSx=Aa&Uko~W@~Hm|1wA65{L@3J`@{CoFk z%(yVpC=V*5gh8HcB0ra2}x@!C-MQ=OpW3#$J<#)uC}DWT~&e3_`Q%5?mG)FqWv+t9NW zpB}e72~Szx8Tw}#^`IVSJUBjH*e12=pwUQ1iAPXkJ)O9}L<>_)l~FNL3cX+Po4Qy# zKux+8jJ;UvXJ{~-g}QhnI=tJeLdhPLiA~NO(}4yE%*CUc!_KxrQ%C8zv1hB_nC{SHuvp>5My;TN&az zN_L0#ut3EKgnumkfr!1evF zGXwQC7Hj>Gj&b4Z@#GmpCSy6`Mhd}+uvvVzd2g*GHoQve!G3bjcqb5Ulj3;arf#XT z8JBGjT5V+11ZFl$(jQdus7UkKiDOWKa>0bqzhg571eGRf28Ro}1WA~E5fh9l2(TJADX&elM#k!j>+Io(99E1T` z!oE12E?YS~!Q8|6FeRtJLOXTj_W3mejFsJvGvc%hA~uxO#92NfMz64irm}`elx^y> z$W5ZArbD4`o1<5Mj*1Kl&`THHEvJ;bj|pq!n>K^y-3RU3Qx?%H_}S4bn5(!|Z==b0 zFYhqTU7|vQ4bE=%xTn7>@z|Shy03K2S-;QucXUME)}LwQ`0LjGm;>g+wd>}z7?X!WJqx8w4@IeIUdpRj9F*U5^CRI> z=kFi1nZs=SBCoHl?UPJKpYK+5El>AW^@oLYflt8JsF*(a*4H6BbOT%8SAb)f#^wJy z$&{=nLGm9e9}~y_-A5j3jm8r<|JO&JfkXTb8$ioTy+KMQa>}^bK;e3LVB%}RP4=F- zekXmRQjNRF#xtjp$`|jV`}O+k0E{Fh2fg0x!!nuwMUMV?`sImNH)m=)DM9Y#yX0^h zKiRg+F@lkbQ*1n>x$d)HwHHUA8t0cdUEKXIUy1D+h}6sQHe z)oXK7KD2!h3f4f{x@mw?z8mHqJwG41z7CbSDs5X!o||FaYm0P!)O|i6ZQ;#6cy&E_ zMzoy9A|y0H=h<|38QQpPx``Lw-)s+`lji;=QTR70tPQdsZd<^(~jki!NW0o+G1C-}c z&#gvcssdN3-5d0sWnLopOX6K)mS0Kdb)0eiL>wj*Ch*lP$d zvhnPb22c3he1hiZ$qD@@(u+9UjQwSrmmwDM5lJbhONR5yKsj*=8Uyu+x9k$0`(iX^JPoLnVO81!>Wom4q?YCD z)}q`e06@jOO$<$1by0);oX~T+qb0}_mBEkhx-|wfBrXS`08mVEd|*`yitWE=N2o-& z%6%oZf-4bJ`t5pJd0R{ZT@CHbP0XfhhM6R>GmvL8H4H~?TNIm2_M+S(5?=nKs#EK~ zaTR;|3^Fi~RUZDv__Z1w!AzJP@X&RLAaW6_nNF#n;H_qqRQW_a$H3|}+jC<-N@h$h zoml!mqnLM+0jBheVR?k>Hooc#?q`biO$0KPUWl}yes&@LOrGddlfXj|T`8}DwYRP- zdfwo<0+R#JXJwHb)fUUU%wctP>4Pd)KI8`}T+~(GrWX z1H-EQi>s)YG7h()AqQawIt&2?t;QrKl;4<**L+J9kmWy=RF`swX zSQyx9>9R)!kYl(?tLpv~QK68P)gII38lT$+0Wu5T6z&(VFO*)Mks!Nuea*Wf7-m{S zhDP;w0CT0Zq6xU|z@EqjUVySS>;q}krR2BPFG6r8u%>efJA^be(AyXepZ`;sp?{1s!jnAI86B`_3K06`IWr}hWVakT0c^VQ6(N<0QjlPe3PqDKdDgB{7 zV49PmuQ*f12`*G54n+5OMhnmW#*-WQCuAva5Rz@!mSyp1#jBufaGDD9$ua3+&d@&{ zU8H`fcj@>918*oip6!I=$KH7unK$@#JZ^3)uNd(__m+A|O{Ok50j8s-2qLt!u9di8 zSVfz$$bi~bUZ`3JHo3gi+cl=1E^J2zAcE@`Zp+*!eHn=bbHY(CkdyqUa&d^zml}6|y`eUq_{mL1K(c>qqYSK^iimA5k zolWM{YT}V>@E}ixM{HlLY|_U+8biaeUde(V5fs4hyk4?zF3cGI8+}` z7JoO)r4`F?!Hj7nuw%A$m}0g8sNSL29WRlQD$lXvhwuLt3ta?Fqtjkf*nh7V8eYZ; z{;v0F`7|69>a>1gy;d0twRNimf}fV(SKFqC$?KYF99yreYNpc1jWzdTTrxfAuHp>6 zfk#qwm$c;tx3#YgR7bOrly#_u>IrmnOZQn8A_)lz^O%R*px^&04S2Nx6zecLJ8cL> z{r+1aVgKFj5kuNq*>pkToXStbld02faCWaipVy?MLHDo8QG>2g)ltKy%j27Q;h^RF zjDE^T=@2DNkWagrF&WRt)dSUxDurazZMub7y+4)Os5r42;BsIST^>P;F*HAQ zAZ;<}miuDJ11}v&Hex{fD$8g7M+kcebW@&=;HgYvF3E0$d^aAX zq$kKWc%+m7UEZ<@nS#cdzi)-#o?}#tvsQF0>@h12bv3wZgiXGxUB_Ymmrfh%HW2PD zE4E10cB4OnV2igK3?7CX!4SNcsC(`UQi|OcKN`RR``8RCKZ2vyW(HcLd6a9h(HjpT znArI4EAoN=c96VjzMfMtfPkcsvk1#t*-WS{7kdsABuhOpA9j{R+kR>Un%!kSL`iA; z*su4E1X*y+E?XgfJ&3>_AS7a8BtB&x-%`@HOWm-mJp+6ER*E5STSC|tN<9bak@sow z_ZqM;@o?YMBP{5`WyC8VYMj^NlA9kGhh&n4HjQd(_Jbg$UiwtvjA1kXxycqoom}*{ zvZJkXAs@US$tZfE%!U(QnXOTM)h~QO_6Lp6pP(%SXWY*bfZcZ}z)3NAl;^A$gsrH& z6MODM0>o}>B^!<~axOoD1_9Cl&z2pB3!pgkM`h+mOzptAk#d))2{twBZ_34PdsHav ztNj}}bCB_hW=yu>->g>Ddv`|3Fi|_}ZEJauW*!x;Pl$4@Eg!cf#@R^92^7?xMUV!k zUbxbN?vyn7B<9Js9z3#Yg-$Hrzf!83_EmUkPul}0cDw5b^42U}y zXj4!6qo$Rf75+h^+^xDqa$NJspkX1GnRZ5ZxWmTBH&RBk^=Ho+(1_D@K8Rh&z23hz zeerOvwa{<43N2Ev0+ZZc>CzbYFXUs^*%!yINc-ZHgv2djE+Z5rIOVj}=NfrdBbENV zxGuj_5Y~-nEQg&zbIlR@JkS%H9#Y%=wI^JQoxgx9pn$;er2oNu53zek_bXZof}{auOLfd_e_drj=O+sa+Z%R|o}CnE8HGZSk;5jOPPHD%M0J9N+PF}D zMlUCMOA%^Z(XCT4hjx8c{3d`Boj}@TGsSZMiF&f5^jrUoAx#mwu5_5lZ$x+`*C5F-V zK|s1?q}Y1eZQ2|LsaO#;Z+E95sAToZkw?pDnBv-(jfUPnGy z;h&9iYdET(G>fKI6pIM2IGV%3>*kNxw}S+b0Nx$f)vuO@CN&-(j^jQT&4abZPvtdl z?a!;IB5i9bjQHr-dt8>^HsyX#lQ&7n>vHE#??un(B2R%F)Te#K0QLZS7Kf)keD&@n=SB z1OLR*W)PGikY)si!JTQZxtC`|6NfOb5VZIr(h5*X z(Ba$q`p|`NrU%g=oWS*YSp4z+y2)Yv5rwe#be1Rawde=5a&dH!C28HldocVYCmos> z-07KF<#@0yKfdbmeKlZIt07@gk>oW@;J&aJUl61c_;;c2iVlhbzTDz5W!;a?>(X}) z?<`s4G{YwDYEpOFp7oNu>F}eURsdvF&ki#JmGQ^t=SVr>F$U7OJO&KG^WTQ3uiie7 zgx`m;Z4=#wa`>{CH?uB=uja3>=pSt&^Z2**B>{C-t7Y(4)&dBbyFll91CUF_Vy zr#{ycbW!s~)wM28$|qn`X?F1t6$!%<)F~sM(_SJ?>>!cq_#12|#q>KZ7W$|c+V6+! z@dC5QW|LO>rbCIe|1`aLfU19irYU+YR^S?iHEjDf`z8UeYT+o@q+Rm66ug6_r67B_`fL_l76+(+t;Usq?!SC3zwoD`{Z)&E zyzWCHlemriEbXG_vXE=)`wgbeHmInq* z{kVDSGtnG<=$8;^sC9ICSYXoiv5O~vG_$=Za=!;1h2(XvlOfFlp#0zI4YDVN&Oi!K z79!=?`Qa<(KdkZ}X^-pR)!Qr<=l}%mvD7K1P6~XfF~3$bfFL{xZ3%o^C}9pVD^ZqU z;Z|S;U=vETo9ie%<#bg?24@2KhXuw1<9b5$5K0hd0hQtldW1--3}L8HFF;xJd8W`# zkUZ$V07szmO0@J27K{93;+N{)R^GsANHC==+DI677WNqQs#Fp781>9QUlia<+&EWW z7Bih0f%7+tCU(hSn^3B~Txb6&X=T#x!^n>r0D=>)e6?&9Z!UtkeX2EuluT@ZN-=^H zxHOcQ-5fh_%ii`0OVRWHG4oan#~u|$XAmXc+}wwN*()xxy+l>P9>$tju%KnIYYSa?rY=Uvs%j|@meMK&wORA}WJGRt$5J;_rq#i!zND64cQ6?*_ z$!X=X=n$!mG#wSvz)=lXOTMRI$flKd!`0t$1bcR^!IAY`5s#(VXOk^=kc4Zw zafuAuj(;~4X^VRZZJPxlL$9tp49VQ!L*QE#$V5NDyhpVroZF%Pjd!oy@$SzA(|YIM z9bQ`ZF&}$O-d(M)38l|MJ9;Yssf)>-FU0O;iUR4-gdEdI2If3&DRj-_*8&z-k}*9Z z!};Ami~a8`-Hp!6dL3{G7m#Xn+qkLiM<5a@-3w}fZA48dy08lhrnzUsq%CQX*Yo>#pH|auzw_q+_52zuu76r| zd2Cf>r@>9s0w&Ok+Php%dT#meqV?Q;iWq!Nq&JSEiz%1jKt(XxEgT(qDLA|4Pq?~9 zkktm8RGgL=b>D=ohuup)8AUgT;mr0u9u9ctvR`Yi2MtTvg^5DXtUd*Uq$Bd&{`C6?56Xnw>q4Iw|H;7pR`xK^Lo8Az_-0WT`l%p9T8 z_OQ3=pnOp9>0^3lNe9cI?IO(|Z4?P&@gO-Yf$?BiRnd;ZeskW2EPJK0*5~rn2FDB| zqvpIdZY%tz)4WI&BNd7_=BWbS=2~x0q+rG&quGkycGEa>wG&+F>SzfY?<7c1_apMz z(+pG1p91zgsO;^4zlqt;N?s!&BnGIq&NVVZtw-2S6OnVC7gZcbhGQg85hYZWaC@gSnFLD;@S#cjCi&@Fm(5e$H zqRVUQ2fr}*5>1?!`AqXO6F$;7!)iudDal)N$NS(j2DQ)tUG!C|UNcUaewz~$j1>cn zZCizf^->w7;{uimpo5NV5=RNfj3BKaRq!=hySCvoMG>4`BJOqU;_5nslC<))N;ZzV zt?RckZa-By7f09f8M)eE81hQx1(--UFo70J%*HLZ%!nP2s)bOJ)HQrCI&2RGRd?# z$Yq2zz;{o@)5Ya%<_B2hGzpBTKV_c&fE9^tekW$>)hVYn)Ky2$EAXE^r6oQGvQ2FC z7E!YySu=JqqJha%L3=a<)ZuJfl25Cv z!+979+e7B5RE_rOrP`~oDFFp7MNJZ?W3ZJIO3jwhpI9+2G1XR>CF#$7!)jxF?EY!R z4;S~;hm&L4HKWWUrU`aIZrm8PdRXsOLW2Njr46l8pw~gHrs66ya!4J2P!&}SkZS2ofvghz=Jy4UwzVRiWh4g zwp#z%&%R)n9F&i4{8(nGWca~FTMB~i^0kx_@bN|WR-r^|vjT8*r(AICgj7~s-c*{{ z=1DlV-fKG(?6vv;h9>|*F1#ab^aPx+pz^4X%Ov!Z0jvd|IW>IKW z&Df2TwV7zN%pN~98mBTsD%uvcr$>$6=}k0;A1cP&K+5IpPzvoyPYUXq<)1qf1?5;T zTGg6)+1mgr%KPASNEE znJEI6VYwu47*;5Z4uBakXLOCBa(aJ99>DbnsMNPkzzO@2%=QH~WjECkN~*KJ^ON}U z4rcE{i+r7h+b{HX&<$L_olJ~>U=|%h9zBwIn6gx(8630$GOMuBW2)qp@jJcv%=kVx z9V~bfEX3b*+C8flxoqHvY3Q}U=fe}?8lMsy#h~EE1Sr9=kx~x7%(1CJ=Wl)J+e#hl zGxs1lR~@eGLs(Z{C@73KlOx&Ji9>D%9&SD1d1P;Q;kg*7foliV=5CYs9Ptow7uoYO zxH8_^8>ndj5xmf0Dukb5#C(cw5zV;s=3?$J#k+nD3(jTW(jo@)H3et+8LI7{5h# zcG})?Bfj6XfB(|yfcyPF6RYh18?FW5U}N~dTii)iDcf}hn67KJ6L|F^5=Ho2h~VFr zep~*Bst-G4&MxX9&fE{zF^QzBQw7k$Kw3y5Xp1^$QlrI*arHtrWO zrZRT}-=2@=1ywfUm<7mjDj5RKZ03<;V3#BRCa=D*dfk=EpXG`bMPs&3tX=M0bJt?A!oadpM+Gq7CTo?HC0f`jYTR$V$WdCUN$7|y$7`N`5 zm21d6d`l~Or~^iU+tl#DOxd_omX9DiPjwb_)(qY%ma-6#l~RD(Xq@GOXsBzYf}BJe zp+=}NmRe0sE#<9ZQOYnV5aLEfJw4^WQ6owP;k8)-n~6Uq|L?_rBy7r48WWwoN_cMv zMSE;zCN3hXPwNq@(mtxMTwW}nA?|Fde6N2Je}~uit(tgMU6xsbtjDh0ERzC30vs*` zE+N{8>PZf8%dmaix!y;;>}cIVIR9eZb(eLy*u zK&y!cmNkomEF)E=ph)B!3R|Mc;;@*<{%@(AxpgaR&4Pi;VS|+z@@+UQZa(0cdcsSB zJ31|zI*^grw!5(eMN*lIbszXdE)N|9168RM>rd!N%UwP&TZV5f$5usy5y;L~tI#-bKy&_+28I|MN) zi;*p#Ltp&?&A#_2V(X&PD6w{DOv`eiK)===jfTN|oV&srS{F?ddWS`bm($Lr?2J_x zU+2WOn}TtBynl7+Sni%w$M`q_CDP-Jt=&w-K@+ChacVKUntm8(jF8{aHT6x{qau#m zB`~u;s<(_dQPqiqyw6F=Ml6gHvoFUz!pf(a_Y611TVFq>OBMszR9H5@645F#K=nqs z-<{Ca~vfZfQjk<-g=F3y^Zst zAwV>%>4*=ANS?`HWeQ~0Gut_?Cm(Di_S=ML0*PEC5$c?l$|XE3!3QY+V8T!f1a(U? zc8jiojVxg_CSfg8Qz6Ot)Ha{Hmrz3M{@tx%)tVslb_&Cl8`|;txaFb28Q=Z8zuZFy zY*ui5o9{0{*Z&m_Q0_dKvocTQ@W7mfHwoZ;rbf@?-Sh&MWcL31-@1XBI9UJ7mj^I% zu>U^`m#>8aVuacJ4FBM_Oeb3gi^c{)-3YYVBRJbU*!iYEY6$Rv^A~@An`7x%2B|{$ zWeqBBjJ@ktyS~OCy*iGu%K6bjazf~NMUG>V8k}cWYj)4Pi!?}9f0N0y)^^O zB5CVg9m1Aore05yjz>Fw?%q;2;V8lCNJIN9S814@avTh(AgTL#$D~^n>dzN7&Fien zzTVG3sbjTFw-{hjzQC-h%sGmC%X#~!EVM-64)=U6o*Py1ELElxC_>SQDKBn_qe;J7 z4bh=~j;xC^RZm#>6vZsZJ5@b_GOeZ^T zz|#%fEopFpUEGkZD4u3_g==+9W~+q|hEpr}1`igXf-^1Wp1lu3V(PCM^BOzB_6C*V zZ^BCd?{MtFs=Q3m+;W+HR^bS}vU;MrF=fDTMl)+m^=-u)%;YB7yf74V57|OoUa4r6 zflbBHWly?oI_S4no+?W|=i|M7JyVaW+>tmf{8FTsyJUG0X!|V}ORZ7dWyvyjui|?pu<|=V%MLTLU%UYdkSK z9m_rBa5G7=10A1l?vg(OzbwlZVG%B@6mdu#ytc0-zhB(K=My$B`(^m;6MwNP{X7tH zus`Q`zWE(D_U*WPD8>G(D48+PcT|&Qnmq-OgZ~~UM^eHvJM)A=WW6MyJ-`qz{gr{x z9V!sgm%IPA_$hD$#FOML)5E+0a;x}y6hCRldKU%_jKC<#2VMjhEDq>AQ0Ahsrd*ez zL+%mju<84|(Fg9Eush-OOagBt={y3&8Y7ZUeRbN_DNVv6DR>hl4{C6kVsK>aJHrfU z@2sXL;eIZ#;Je*Db zu|Z#ytZtgPtj1M$_H_7)zM{NVc^GOK)@IKc$FEzF`+Lb>1S5OWU}Kym8I_GTh@OO!mO9fs>(EAkM)XzCC7ssFmKBwZO`sbqN3fg8j^90UwVwOG zUGbY!(r9h2mvncZiaJfBV1AcBQ@!^S>CQJ$7*0QMjdl0E=KV9?H;uhLVQ{rjU*nGS zS>bL!`qeFsJ0~k@?K!mUzNkg5(Svsk_eo6jf#mk=dgXN$abnq3E-UAD$^#RJ2V&Py zX0#*6eW;!mon~=%gpF_hJ-9N@{{8EhX;shv{84fKZ`>(>m6iGbd0?xIM`IHrbR1K^ z_!;;W`z6!B#kr`B(Z<^iYiXZ2a~@k)tPwOyYB+jYhAk{AGSh#;@re z79lVwH*_;KcSK0X1xwH^LK9U&8d-u4>!_~G$Q~B)IOKWnI z`p%R7H`{$tQ+2&@-Z?30Ni^OC7XTmuPCIIO5z6B!lArNxv$+7((lfQ*&!tO?)NwUo zl=wHr3SCzSL8pPrRW`MDom56PwufcI{5>Ffd zey4+HUH}X?=ik}55G6>^Oyj#j`r=TE!f#d%vc@A~797#l6 ze4eXI#oXk}nC>$>IM^WSYxMg-beTCWApF6j%>EwYmYEjep*=0XzsssPo9bv{1uQt; z0;gXnX`~(BWl8C_+3PG7TWY5$?F$+du<(Jggj))_SiOjHn-H@w);P|Rng1nb7(EWHEVCrl>U(7Il$SSAY;1zwoR<6In0=W+=j@5oN|Ml3*4#Dv+{=!gKUMw8vX5r zh$Lbs$P2OEgD*YKE{tXW<2AGzh?sRCCImRJU1Bjtal%Fo=+j!0P;&O*kEU_?Iy5+X z5xYcj)h1gmU;_{>(5Z$6XjFD76tJSguKgt@hj^9qivZ~vE2MXsZDbz%e4HyZ@=XUB z6k$9CQjxgFzL$njOOi4Z#X2zfQiSxamPkpV$+q$AUp<;oAQ9t02pG@4^5K%Qw*Z2o z3Dw^AL9KE2*7_2W^b2VR4Em7h`rj-XAacA5X{;L1wj}ujLSdZmeQ2?&`HjC=1rdGi zV2f*#Z6$L-{gR3y0!5`V@(0bzC?WA@$7DtWTU|kDXfJsgWn;Oq|K0bd%j=pRJ!G$- z?@c0G=oI$xw4UYuViCILztCSh3kASngS8x>6dP2Fvf3&5ZB^t?rTNSJL1{+q7| zgqmKL4#X&Zbu!?0HWJNMlM2X)LO7AQft(UG-_0pD_!!lY>37R>azZ6MAJiwrsSTV; z&z7MQ@%47gJtq1hiiP!@sFA7^BO!RH#S+g$LLDj)r&K-#miEPycGQ;43!(_)=geHz zN-&?po}d(ANt!X_E0@tu{X#Yp0($bM36$}_<>3>`4Xl7k0R#KK3Aw-a@owb&emMHu z&JB2adyUTN>S}vEf5mTZ{$pd)eJ!uy^e6NC{8jBZ$NTyXJ_oSZXnL$?)4iSz_?nH$ z`0D%iO1t}z8pvrRhCEX!|b{3Lk_;^n%?2GcqC8X8JoOurt zr>k*}W}kAQy0;(dFpg~d)1gwoSmXiSgFRH#d zxRd9LHnz2~ZQIGlPByk}>l53yZQI${_QtlIynKJ}pZBV|PTlFb-F2s@2UYiUA9s-v z$^p$?Pk1VRQToK<%e{BJ`(^U4OCWbq3ilo#pZoozkzz=+306iia~nO%G+AO1Wi@^% z!kT2P(b`S(LF`ia&yJSnXaclMF8;fZKOb0C_M<=m1r9Yx^+BS~Rn5{r8@YyWTtp=5 zg#PiX`uH+ri?df3tP;wz_&M;gvx2S7&gLLlqx1@Q0NeABnQ$kb%SM z*xL1NM0^Mt7=MeCUTOb32YGPx>hyWN+k0B^@&{^fZ>DVr3eTZY#Uy202Pc(slTvMx zR@Zd|l#&`Oh5v>cFVgn3cHY}QUwtrzxhYPD+mc>!+)yQJCi*LeKHZ=PpKXnpSDW;E zH=TY1ABazd_#^?J%ci$F>JW*}b#Ev!$^!l^~4gZ)vQo}rb(McPyXnnG;8xIX}NI8wHU+pX&O8{f#$F? zaf_|=yq3_f2qUL{tZS!4>|mTG$ls!KyJ>o5ms%WiDagFaLU%V&NHG)9sITD5tl(Bw ze^Ta$o>G*AG$2j=roS2dZX^=MiuniuZA;kof4Qj$K?+!EIVdq!H=m%eDCu~0!u5%B zB~Y<|QDmSdAa;k+QbvvvK<8KAyN7WLf7UlWl?uHy4#wx$CyKa(i?xmQS8`V$8TOrw zk7dnk*kh!|^`OevYJtJr9m%CM0}qULs^Fz4eMZwP#_~cwE6kRsQG%mz_!(aSVxPkM zAw+B6jPp-zuETp_4eqY&Y8h-f%vv`tZCiw zBpAdSfavDWwLpN@0u^n$@z*&by&_l*NLokgEC`hxWaEKNrYQ)5k=7>>XrY$!6KmJl zZ+~e3N7b)=6s|w+q5oR69=I0-==R>VqZ>n$Mqdb|jaPH$4zHj3^@<`M7$CKFTx8Wm zmYsOW=!`2*W>+?$Y3bhL9v!_}r{a5E6{`LM``2fMiMJdjF}i6kSb$Mw-~56|1~g+V zXS0K>Zm9t&n)B_k;W^DE;ONqpw$Yx_nj&(wUNjWb-w{OS9nXI7@lYxcp#00r93|i4 zzss{2kmEM*|Bah_#rsknxHDwx)xEZ*t5b9FYz485{Hh-~`njC6PRk25t`NiDF3TIY zViE{)jhTq2Tk}Y4aZOfH8dNI+djOTT~y8vVLRE!!CZrKIt@)0P93QiGmpD)XTg= zfw5^q*kw+#w-J+?!1DpS1KmWxmVaJ$ZMVy0EaT}-+h6n0z51I?- zN_TzX^x4mVDUs6R)%52T2M_4pd+hcJI3Uk#H@3=pI~{pL@k2ol@OCvw91RryOd*q= z8D`L8@#0!=ZKN0PZRXwYvY@{6y2Kh9cJf|KxhztzPnUNkXcqQQ4NuE} zihpuy%5rfmmiJu|Ft&T;uO~6p1%t-e>2oS?B2{XRQ{cpL)jvTRVRj+2tBGCBlQII~0nV2gH@Dr;e!8 zAi`WgM5R6F(cNI zo6|AOX8U&m0PuZB|9(GV=-jFV@C)>IZ2`>-*wMGHtZZafv0|n!)f|OVZCrve-fl~g;JARG>r2UeO5!{c8U-)o5l0*tSNdLg;cxED_0&FyQ2nX%U4> z4`=3uh%gQP^P&26BJ}-vJ@XAIv(sH$^S&)$PXYOQElE_X`|)u0H00#mvwF$i%5j`) z=L><>^LZB=itz2|;eUv*p86|#5RA`)&>3{MQJ%-xW|sfGNoaqzy0qZf-_qxEb!Fv$ z0Pr!npmEW|dY9Vbi1tzbA1tjze{^K%aokB;)&|vHPXB!-@M)>t3~GKC&n38;hD=!y z$O1SybZfXee|S<B{bC5xn$G5v)$S@4W7WQVk~Bf`qiDn)R(+ zUiF<-MeeTi9iuoA6R5sq2YQa*_Ue4PKX-qM!T!4d`gAX+u&=b*!BTe@131kA=T*B{z&}+cx(&wJ(`2c(pI9 zIN?oTuSnS?x62W`5PQfK>i~)-%aat29mVfTo!Uu|OTMBN`Rw`JrEUWCf|yxJ5#ZsU zEs6h3|2mDJ$&mOPH65RX+2$NmBr1ENZAHGRVo{Hn?WqSPmaE?QOLeu8KW6(dCwiKz zFjo=&i)pevNG*wLNo*F2Z58TPw zWC*L6InXTwyEmh@Qrpt{@o(x}?*n`!`E{q zCz~0999;=1)P^&=OXDs`{*;9L_!YwkXG&4ksGbdN`7V>S5#LXHDnY#!V+{|q_m>=( z$MmtS^VZx?qj$-6z@QljOYQITU58dPEt;MYGy0?&{HVd_^N4uiJ`6qOQ5$HsU>S^Z zDloyheeI$6%5e4(Gj}&)Vj_X0X3*do9<(M0{LXko0AI{OzF6lJ4qG@$`V+|A zF0I=l-9ITlBJXZf!&<{yakRH7t&1YB5(-pR%J)(wgCS5MZ`0IJV0Tg#t zPx2DfG$6foYA;(*!D3Y?EoY`2l1knY&MuL%Uv^HQ?ho#e5?8KXa$6o{ zF;$!uwL6)}UwupH zKvS_PrV2~R9z+0&gI>+E6tL2%SWJ^L$|eYFxQc56+BTCqp!PZx&#)!R!-(|37OKmm(=a;>q}SW zZ;{-LEN%|GeO}32?Sji4su8C~@4&a9M2QObh|v|5FUL3|R!OWWJQg_*ZHr4Cf|4qt zI=S|1l`b9w=(Wp-k_E)tLx6&yEAu3Y!t^^{X)?=#8X1(s3fM$Z*+m!00`jwlzuYPx z05hqRN1{0Ft^m16l47vW&zckNp}b3CpL z%89aY=2{{cHpLZ&;Eb~KRAJf0N9lZWz!^x10;2d{0*T^r^}r|IQ>PE+JkBZOz{BaF~eB zeY9tiI(&r<_?QJnsYtj=d?0kzv2lqS-dSpt zc;oV^)FIO(*v)l7kWX&*^>t$EvF)OX%J~vnmM=*?6#9jxm#`Fk&GQ(G>!Euk;h`uo zb4=k6OQWw`Xn>_Kg>lG$rEsaeh!0!7@`hxJGfcd*B*mz*w?qVUGBG}KfV-r$tV4Oe z2p@aC@<~2z<}8)7E_GnZw6u-_-~bojHLx8l&}k@NbZ#*^I^T1d_L*92J>2E>PaNA& zm=M{_?J|LvrJQufSZ=DbvY^KNsYkI_m|8Y-X3UM0F?w%SkR`o=5Jm0pA8Bq)XQ39M zlng>{HQ2!p<(k)(!g2C~2_?xs(~Bc@Wv8yycCxL+tJDWUPxblWhxgk8K#O{%KrMHI zi&K5%ge3E+g%F4CeSkG>GB_4QjBPpebh~B{K6ux%t;+BsYl?&e?caiX#4@s_La{U7 zKXl=^;{guTL#F{Uft~FL?@n1K^9gc!~23Y25)F<=Gkmskr)x5hQ zGH||^(9!jppVM#o&M&bmnLO_&Fc_)G|Ur4kji2|ROk3$oc zTeW60?43NWr$20A!{tg5ELW=C6@ z1wS`O%AP{+iZOQ%AcZTP2Zw38C>BF3^sajkq=`)ej!#{RV10@H&m%601YgB9o;l^} zv#8zu2-O@Mo64D2!Rv)WshU%uDn8hC&`N)+vHJbU9K)VE)$k%->el$m?O+pWm6tw} zUL&?O1rGw*XU=H%RGP6^QTu|ZqN>p_ni;DX51yH7dn&sxAk2kJ$<5w@^4~Ka*P22b zf%(JrMTux4>pRul%Zz~(>$>LW!};c+~A{zU&eK^2s1d_e%~2f1hJ2Vqes?1ShR9!c?GBaz0JtsmZIFd4YwkE6=> zx4)nt0FS>#tE>dnzApf90ZLa!90!X|0VuHhO=oUSK@N*u&%yAL$H3N4g0(aDY5sQwOaV1f7W?kL3`BEHf2Ka`eMK60=anfsimr+8#P$CxSf~H7f^xL>3-kA~Yu>ln=~CMV*HiHbr~7DD#CN8^Gsk zTZWy}mm>r4Bla!4GcN&JhS`VUY;-8cN=OZ8JaCTTi+=zL5G;p&j{4am78o8;S~hnx z!leY7e5uN04>Pn9t{fWC=|X5TDD*X~q#ue1-gHMAS+0_j_2`0q&A3qYcXd>87+Eg$!^=j#di9C^8S=AZ5p0W&N^3Q?c6>gHU4nmluu< z5@oW(h6d>jdhS_wlCmnz&W;gf9&O7m3H~LMu_f%Dxawr>EcLdWvmbc~DkL#MvG*5l zHVYaPf(9x*45069TM!uXcH!5Xc$het>4&ds@c~-eT-PpZT912Tyby!@W?(jG8?F1Cyp7>f?gc3`4;GwtN zMYB_sZSSBia?KlJ8*KX+T5P9k{7OLm2O~~A##XARq9!2bCV4WV_VR-4j8;s=g9iY7 z>MIZ%?m*|b7GuP`0SFf`-w*QNFSYN_pO1IfvEMCx1kWR_GusxO4)WvQ?wem-SqQl+ zTSqHTH|-l))0xi;6UV#vcl!cgx8K&=ZryUUMTf?R40Pl```nns`reSJ{!q}0P9W|V zePp3sU5JFQv4F4RZ?d3G{C}?S9k|2?{`fE+S6%IEgBYw7)!k5O)yW$E^nhcQc;9}dc*LI`+Zs{pa^D+9sudtlC#Pw_C;;f4S9dcQwD^~}C~1#^`l z`%DBK{X+;=e2We>XWroaZpD-v4o*ydh}->3BK_p}$=hU*mp}KP07B>aRa+KA-}g2_tr@~L3MjjmI5zi45*rA+9AsIx5C@7t7CpG;5WWlN_Aps*dZ8`=|H2b`dRv=ow_$bXx3A|>&3hFzWu`(E+?g(#r!Q7Y zvuRW8ToNil?mF~f;tB}PZWy_}UAg)g)+J3T9yy*lZwk4$54cBQi_H=-Rbr@p0vds! z?Kp0ZEBDqVb(doAPk{^(@nRDiGTpO)kez?~=Xu+(uXFv;!l%m~dI@MyVd!j%80amb zGeM~?J`xf~kI)4GFE-C!PE4%6EX1l%v7fjuK`NSub4P&dSOZS~s$z!JOroB?AMbX2 zb6(`Ornirze&R4#b}i-Xs0rU4^7Fzs^WwIy%s4e0L2k|0kp<)S8-Lt3OgzE6f*5#Z z23%ifell^)5KgSuaGKS9Yu+@Y9Gi?Kn~bHJP$eakKBN?I4 zJl4~>wMbegjR27;wyQX@u~Fq<6|6Of00~%5O5(GCO})Hl&vC^|y27$n9^rs0xm~$h z$?<}fCitxgMN&_Spvvy;azpS9Ao4MxZncqT+8(EAw9zkoI-Mgkx(*JyoGhe}dxQs3mi zexy|iq%On1qbGT~Y=4x5*=R4nRv>5`)_&uxsGrsbD6#1gQ0PLe4*C~B4+VZ>A?Xly z4Or9XUT5yd?DHgM;y7wcHxNLuQMFH0!i@WnEdM%~qLFgmfAfcNv@XkM_15dn2DZpL zeWv@$$pSo^xV72REV*{x$vFJh=Y)f&0ki+5^aB_fQ47ZjR1X1dd~cG5s@#TV&WQ~w zD#Q%V$IvztN){m0ebUELeu?yOg4TsmcOq%q#GGD#4f}? z&+{EaWc|L9?~-BiPv6^rbUxBH=b>je>Ip=iL?fsjTZ0ep8w>fl0w?+ugoNt2?+GBo<-BZUQ= z3uxNR41&I>6N_^;S)ztst%t>V{Ys0Ka-TWAaONnPAPHe9qj_umL!D%>X3K*%oZa$Ax>a(-b&s=p8SGrt$6r~5e5rq08e}#CM*vUF z^L69`1ahfO(eJaw0_+=uZSU`^BmF1_4LezQ!xcT8r#n`I%?E!L#Vrb7mC61_#e`-V z=KUtu4b%{&aJ?kPriQUaj`rb{!Jh15rlggC0?|EaiyO#I-5N;=<;~7??uj9vlMLom zNhGsJVUqK&XQVbiL73u9=n)6c-U5ton^4VzmevrbysauS00i_-Q><0i)vv}HU%hyV zs5<_PN~_?j+~P0U5sXUiRqN{#sStK)l*J>?%=hB&I$a)sQy<(fGSZP1+eZuz+_~*m zcs}d##6y!&hC0#(l-n?#7w=V{*w%wxpb6jCE8F!($$t(q>w*%b-r^1@(gDz5S3Yph zXC#mT5~DWqZ{`U*9f+}fzyAbFdT&RZV?*ZHHM{g5Vq36sd!MTsyGiD89cm_IIB8F- z|D-D1E#iS31u zLb=43EX7jtXBO^CKHw^R?f{6^;Xv?Uy+ZpuC@VC4wBHL@Expz)BlWXu_``eFZlfBy zi-V%HLH%smcC=8@#KVW=71~5Y33Y#O>-4+2mT`2VM5fwwsoM(n=O(owFr6#n!EsH~ zV2pr6@0xQ5^BwVy>?t)zyp+I*!1<_hbQwmG-Mh+r&~KnPmu?(L{{p^Mu2nHtXVUN? z)|p#E{d=Oc5<^cH6PW}wB`zdX%snO-0Zd3Y9(idUTn-3m%a6AR}L_DD0dvqUpv zSqqfUGv-h0ZQ$#4WC3JS`1VIRQ4%O=2q2b@ErEV1S?7d#q{lo^FR8F@#SYP|wvw3c z#RNyF{wB3Y_VyPR2#|w4g=jbDJlvA^>t2p8QgF{jdjYsmMB8(}Kt@BkaCi63{(TD$tZ}twLK7P_D-uapGqxSa(ToUS6F#?=OazK}1dIJ60g-;0e zYms`f=rl5LL+Ouq=2CHa5AFjoLm4REVFMA#id?W36tOse4g^9(S#q2Png2;qE8o zcb-W|fR=N8+k+Hv;qnXO1rLCmm&ixrB_scgbjWBmEWq#_?@w%{gM5PM7--0}jAY8H zkRT?X(_mBUY~B*CkiE7n9vH6Lxr@boj00#I#b(4gbRyI(h_D$kXF(2^;kqW~oI7!e zL{=~t?-bIpy^OxR2-TmN)O+7GY)oKd1-(Z+cJ}{@Xxi;*K zRn+Y^G$2Vb2F?GpyMXE6u%o?qDJ921N5H%iIdBONEi}0y4_t3+k;g9wwKHx@1&)r z?ldTPcX42(yRMqf`XB7Z`oK~5>;{Ida+%k2wI7w^fdp>l&h78+dZuN$eQ8e`P_3#X z5w^PPQvP%lJC|mZwkFEvCFq?x1qCNgRy=crQ1Q@ovClRzutxgu+I#$o*T6d+$&WVY zCP1;IaG$%4MFLWtu2zQnKlOPOWJ5^c>c8o#dzfeEfBdDzp&qxpA3Tfp=dg=`5s)_` zfb1n!F~Iyp`daYqJt!i45#;xRU8saFb%0)KFvH_iwBSgCK!jb8z`$IPu%WhuFbOAd zcY#~CBa(=v5&9JxX4M;J>-Vtq+&|@VHUMxkWC^mgM0n$UUpY@B&33+UTO2}u7<<}0 zxG86lI^)L!(bkTwQhz{uUkn3&VmMsPfF#@&{o$dZ(&7P7S%RrFi zeBxoeoeX7BHV&>5S-8mH>YxyW^+s9tuZ(`W$oB!9==Pu}_;)L9kr3h0e8rFlRQg0E z#xE4{npmg4NAzFHy*+z|XTPqc$2$9Eq#P%d0&pE(e5Woi=nym^s*VJ1B z^<5nd+1b*^7X{83^RG1wS`vWc&Khf?fNM`j7@+MxsnSj^ONV*%1Xt3>T-V-wb_<7C zn>)kB^AiQm_-}AJKAtyN9sF?D2s(%{aXe}!hdG?zzn)RH9eAEy06p3q_s<7y%FFvv zE@CdNwNHKdT&opk&Ve#UujsD~xNbS~WnWF-}zKHH@!@rBZwk#{IT}v97r{y?zn{xXkDX zEcMfJ{RZ4#w5EdyM5_V&3Tl)+ckjhCN8+RB9jQ^+rJn1Cv?D7$maqS<^#H-?JAL@U zi}#DnHE=;k-1se)-ai1bnL=Ei-o95lTntv%B>mj%ME5z(osmDu^@0fWG1KcWA*M0k zUY;50^!AMrT+A|-n+`AOdeQbgy4EYyQH)tLUyJAC@W|Q;iuZr-$6h&?E;BX?W-ilf zCfW?gISqHW=tuEyBm27#Ex)ecp3B`w6_2~m@1v%IkHWJ5xq|@=qmb!EZ*=K^l7P$f z?ZGiWj!HF1Xg-PYuShn{KrjN1864d?wtH?vt+T2jjL4uZD=;8q^wrQ(*d@ zxu~%4hp@rQhk*XdnXXk*k!W`L#_&djaWeBkaGJ8#8*l4vS592qZ<@%Bs9j$pV`CVg zCNR>l__)O}DJbAQQc=*oUs%|af0e8?3~`^M9a*P+C{qCdtUVw_ls({bQD{Gv22sID zVztDaB#ZQbNinH3*5t@$I7wC^;k;iYWI{yJs!{>UVhv|n2$X4)$mPPwQ?q1G}>bu?5HvCs>H%fa_e}pk)zU`sA&7e zwE7FuimZPxdtQ@n6MM%uSbuz^kQEaXQZ z6S|jHJKYF08ca>@e&<)j?@z6tl(}rv6cNJ4b^};aN{H+;!-JQDLtz%7{768hs8O>} ztxYCb=N%9x2ZH1jG_gb&Ma)l^{Sa|Q3eid^e={jKYU`Fy7GY|n%5z?6jX@2GT9~V> zq7~<(!YZMutb4{4YDkjpI1AF0 zgW*P4GClt6-h7?ia?*VEKgnXrVK4>p*6l9WNcl8z2#*kt_U6SEE z>~+aR@FU6-h_WEhlZ{V~{)AV~i8PPH7EfO{mDZLXiMO1s5d?sv zxag1?1-VcoGX`#0mBLuHBa6=9<(r-#UR0LC%ul6`jF^>9{{8!;c)Y;=t+tYuT6jH~ zl{!Voy+!V~d9hT%&4-|xq)L!#1u3;K%^#HDM1HzNO8f2vVeozh*V~T}=eNG=RZ5Eh z*T`LFvM|=BGcn&XlYhU{b947a%Ar zG!9G`JXD<)k+6OUy4ISafvRLlmq>2BsCgtKQPwPz9w&cJ2?pde_wTV_BM_i;DNW5- z9q}r=`7n19?Ek>3pjAWYv%)+gELUR^6P&a;iUy0-juo^iF*-$fAjWSSGGwEc%59Ru zKw`te+%EiOZEPF-ur|5~v(|_e1Qd?dFW_iah|#)1<&tAEEs+&H85PHYla57X!_Lek zylic(8&tGL`Qv0-h_Mn)1u)4mnUqM2mI;qzz)43Y(qU&N8rWpU6K=4UxQW$Xi)%k; zbM<_t@d@Ph$Q-LRExC@3h1YaGpgPSt+>~gKmdTHEz)2S(+Wk>U74ETVLc%?5nNzYq zkz%+CR;Ff|h>gd`N#`cwVP|%dQik>-=3v*niCtVZ?-yV;YRsyW0fgVuGKgtf8}|fM zt&Tc_OV-D)!8jU{B%&An9hUea%Gc1QED3T?K_tOrXO@>Ffo&wjVrP~VqPI4V2~b&8 z|LMoT=uxNkw)Ju5pf!HJ^umecIBz(k^SuL8vQuGsiW#V#dA@)`eyrVYDtK{oGzcoa zJ^mF5#mT66JWqrI@CV|&ZD?!$*ZHKQmhrXNk+22fE|i2zv`kRkDK-T!R(Op=0N|i~ zn9epyIfG}yG5!EMeTHy^jX7H=!pfLE5N>7E7y`QHRtZSrJe6In$_h^rS)DY6jt|xULn*)?>Uo&j;)4VfzCpjM3mPfE{ckG9&ruv2$Rh$GrN@ zrj9zgMnn85VuCTr0>Qy3xx{OJ{;9Xb^l$Q~R#|dtM6Z$BPk!GlH+OTF&79}E!6rN< zeAW#X$9gtHVU6_BT7r%*Pj+pB-0Fc6 ze`1H%2u0Hlr6u#^$mQ$XgY{O$7`qh+lg>q@*aLNLxGx$%i7(Oa-7BghjmyHRObcl@ zTgMM4sD<_SU)GV_JC0t!<#6oX?rA64R(|4kQ)T&7R0r>A^)j<`i^yu&sEVzS);<6J zFF2Zm3smzvCsV7!xMD^lyVmXxV3{m~yJJMG@=%0^FA3tZ#VE_KX7+}RtHgRynX+s1 z)4Lu%+?&g$Q_acPk+XRrHJWT)-jz*TWmevAK+6z1NcMqct$|rpHv0w z8l*I~e{26xNHM~S&U;eVwDhovMv^B|)aa}|8s}0taH>z~LXWr3ud?h^Z~8Xwx7pj8 zlLT=5>=b3+P>YP6kP|vTdZ%6%7zHuI(|V5JqmnT(xjf{cYd>&1#W)DkjHwyQu~ly; z0E#+T0=M876IWQKRXts71*1pIM_q&BYxj^m0^{f;JL0YUz2DWJ>PLr&wDIkulC2+y zW@T7~;32QLz3n46it+(eA&(7P-sxuq^Tm*_sby6(*gx~A9+ov4Uz3u3MLP$IvSnJk z5ULDRrC9-yvf2rcbmcDH_xIp_n(G4;pv)!@i7b@~1gc(#=1F2BBAP^W!{<~9LS)bp zq4o|Wk*=0z{jQ_naZuA^7H>KTC9@*RunewLwYkEX&2;70&BebXY-vFQz3nq>dCltF zQ*6~|7L&oVtyE@kSreCeoiBZt?KgrdRL$o>tPc3<_uZFtYtI0k*UV2z>#}F z$I?FMB4jzyzU)7Q^Q)e>?*d$es9JFHxQbM=;u3aVbtVQ3OO@Ef{v`Z6^B+mFX#Yc8 z9G;~&|+2IcC-w5s=`0>W}v;tdn*&>6XA?0)DbRs%jnkjt zM_fJmJ{@!&FaM-kVM?{e1hLqcYKad3w=PtZ7yvCqL>JncY1TXZyPWiV+OHg1bNgk6 zo5=Gs)@Fy(O#t5@5i>JQ@qw{MmY+a;T}#k6D4OWP`Oy)umBRUKyg)k{+gR)n@K z+UQ}b*39BL&NJ7VB~6ePsX>btr*jLLDl}w~SPR?$K&J+FbfP_nbfLrBe@$WvvaN=O zZyWD_f(dkWV_wGuUtx7-5yRE#WH0<}d$JzHzEy8;Bb<4q(Z-%H>qeLLOos-1qNb*_ z*@pypOeu1f9BhWR=>Y8h=h^?Cr>#yKVsHP~$DL;&O|5+U-5VeY z_Ue2r3)hj-LCk~{XFTppYh}oD@ccA>MSU680OkQ5(5w&hpJj9nY^y}Tj67NTtSmI3eRt0ig_F_$&dlh zE~6@pzOt9g$yBOZtGKX99TMmPF8wS*3)F8_l~Ehf)WEYx4L(q7X7U)ZTVNNOXM!&~y>1X$8}9kT=u zmMlZZSTQntalvsy*}>8_kSDWFHT0=hWQF40n$O5ImUQ!rnJFA;}& zzH$udk95K%eR_DODoGibPo^>|wb1s_VvtnbM^}@daA`?0c5)ua5ssXVon$`4uQZ?b zzKaPhsee_Fxz*@%&G=`EfNj%*ptJc_EUx?x+Fo_Kyt>3}3wYOt^K<*=ymsBO_~k}+ zB8sHK9@$aop=>);M_~sw-y}^zA{VbWIE=FI{kZ@!Rb1;V`h{7EOeNHD&h3&#PLF#V zFA>Ca@}z^uyRt!$MGQj+xNp;%iJhpp3gJ>Mq}r9isHAd~9FL*+!=B?f|2L zax$|0U&aqJ*AL?d7r?>!{}FzYwRLK7xEy_EYEMQSfGje$Y4z(FJY?zwkEqi7^@+AO zo+xLNadpOWrfTK0En70GY#-MVjTT5d)m_fc6)dBty071+O^rG(Zr!e`M*2dg?*Z&Q z8$)1updz@t}yY%cKp)#OCGc6D7aXA?6pO%R1L~oj9j0 z-c!19340CNPWFvsS@D1f^E%=I>zHW+w&O!pL)eNX(u_h;!jt+OX0=)-cDaI}T_HvW zS4B95OJcbUFx}Hu!F(%@4NU25ps+;x;Eml!V|Fy)!pT;V>VMU+QH{m*b0B!ZYxm*6 zh0q(BGyQGp8^yxE4>Ce^50ik2B1Qxzk=K{F!?YSE-)D-~NAC0wzK^@X96`GVw0dhI zE=9vKHijY~+-~5U>|n74&h8t;b#o4w9sC~X_XlPVlfZ{C4vE)r#i9vcARg(;_ahu0GQatoBqAqeR=t~&_9yeDK$$Z#@>^ycw0 z0HVU5#t2r{1v(fMb?nEIQh!7Q2*pEOyB|h~w{1smB&h4IftEkHHS5_!FVl-Q?FxWl19VSs1={=xeGFh zKIiWqZJBh-G2tVexN%+%G!EDzVVZ-+h;A7@073#v zX&j0l;Y30^+ZdxBC98%Nyj zZyV4E72NY)ynhh^Fp2x%9MzU~zj@dDeq*p=UON*r)lUcTbisQfP9TpxRt;ItHzG7@ z%y>>FX4(M7KW=C$S2zE>%{4(OE18gsT}ah2&3|C6 za;k-K)}oOP&iM#(Pb~@G2}H$v5-4$^FNE3NRk;MdS*A7Q=My3q8vj4|P1pf$3MJYK z1pmSfpOGh$$=zAP-nPW+3Z+v!C^4{k&WMuhi6>SNzGBMrGG^6?M~Hns=Tx0}@l?5X z2~+{l69iG{jv;|m2>c(k;7CE*v_Og)bQ-^rAADH4dii0qlH%t<;6eWnbRQN>f2x|+ z@R5eTAOkdia(R322^c-j$eRcwLYs2@xt8huRm8yJzwspSVu5#zP=y?m-Qy_6NJaGVUj1+ea2yU`7A-H*V)7sDB`UOy!(&{qzil%sH1)HEO ztPGIlygzBg31QFM(WcP$kju;p@`s9%N)>3={ex|-0uhMad4 zyyi!_fGFB*uER{GG#061j=}GX1=*DCQ-4}*(OfFZ8R1OW4>u2RNZO&C&m-fEU^R!1 zA%@okxoDC#O0Y{RVJk+({mmVR!V}?%CqZSX3aKQOrjwS<)LECw*ePq2Av#t`D`spZ z>KLnmC$^@q8micmwxnt{oD|iP@h9&5ykuI|K^L4GbRIl=%FkKIjD=8Vb`7ramp418 zQsGp}*as+)tkVzAbXV&IQy({K)BEG^?faNE*}SX;#$}RS@K*em9IvH2a&-u3|2-_R z?9E4j1S+o`+YZ=_7CdMFy=x}0;^nK$<<1LuEIFrde<5^?-i>*{e)cp^Kx}pcHg>1% z+rE|Hr{)A?DDhN)4@0Bk42bbm03UsPkw)G1Z!Qz&FpO8g6y^=v7@XB4=0`XyID`Yy zlwZG=1gbu##DX3p)ZO?dAx(QwjTWI?aVV388ZFO_j9g|kGe)?u#FB83{Axx}^<%~Z>TblRS=Ej6+9 zpz2v{+B#3o)}Abvo>V_isr+%3hi)T{9VFaMnUW(|o(qwgo_sz!ZpEj{-Aq0-@5V-v z(o#uP@4QtN4^pB*0xok;9$lV!Zn=VjOs!iKZ$S>A^^rj}urSg{r`Cx|Dxd#rp4g+p zXKnXfnL8(my1=UHnPyr)KfoHEjIiveo)t7!MBxu?gC=^x)I2Z&`_VS^NEdjh5h+??Qi^>4=zC3Pn>^Pr-INYI2{`BoF!fgl)1|!3=Z}m>40Ctmh^FSHS zs3JG8eh043x_YAL=H&A4Af?DWi4kXP18}l+h_H?{dtWTqRQb+xd(O-0=hoQ4N1t*NG`AM*REpi{l#4sk%{4%RPEHVy zk5XdY$F0E?>L2$J?nJET-s_m-t&QEMk&##i#uIW71Wx^}oa7PhZ~d0YB^uRIzixa; z%7?sGj(^XN9liGko%`=sb?=UC|6;ta4&S&(6Tj*cm$-B629M`TMoRn7-^QgOt;Dwf zt&P5qRBSi>J|v&PkYFgS9k~Y_Z>3J05*$z9JQ%(oP_F$cIG?x)AdC0(3gvD*MCCA5 z5BbJ%Z50TaaB&|L2EK4@gSQ(@&*ky%+O+G$5=vpwLWK>`bkcSBX7x%rO5r8AHrmJG zHDM$((XPh*KYX22bX@_st@n<#W7}+XEG@70py-U!f6s=9hNhs63;}EKQd_G) zhFyi8756QY=KB|o);VwLJ^h-4zwF&jS96H<#HFfGo>{%mF!M$rp@p2 zRc2x#c02?3F1+K5Hh16JeE9vr`~`4E!JvV}k#lvUZ6zVB#IEA z6LAfNtwn8)a$8;ld+4%tW?gq~KVkuWl=h@^2RS{TsSM|n^d<1>=5&gEv7TV@p@B!3 zU|d?WN2O;YE1t~@c3c1OZbSQ)pdW8eoR;0JD#ESz8uP28-}C+xX9sfFt?liZqrc=E zLv)qLcvQe-?=3l<6G1iD!rsZi$fY$*j=-ShY7_aWRoW1|rxh z!K`GdB@26H6h{A=;NdsSa7`En@{1eHP6wOpepVHI(+|Iv+|aYjk>RbeI=gfKHX`QL z(2Jwp8_tdD;WU^??4|wZdjXB~+v}J#J49-=L+M+SXI^~nCEz?5$KC#=uWZuOiohVo zFLu+*v%AiO__Ir&8{-_kr9Q5x5zU{6ZQPWr5C)eZr_!(2IEn+KtUtwX+H7w`7>3c( z7O|PRm57P#uU(Y)Y|@ccKkpx%urp@+R6S!+re@d@J+0P_t7x0Twizz^hWrUKM{ckH z=-igMe;!x3I_CJF8yk*`x3z8Y49WwOeDJZ(5sHJuu(g=-G`w#Q@C(1s@06U1)sE~= zO~$sKSs7=}^{hx=iGIgjwxeOxV&udDs8;KAT-_e>Q4N=jr|ABo;bL4WZ_vGdvN`b} zIjCBy*SF#qR_~H}LQ8teZ{+m+y!o-OGM0GG1dT9|Rj~hwyQyi2OpkMQ49AWBAm;kk`21!f%%8KOA{m%w)V8pToq$Gq=)wiX%6z`E`7~XOE zr#j*xXYF;134z0B-|hmiKR|0Mt0E^(%;yi#j6e2gw@!2Zc9>T-yZ_Sc*3{APvzKhN z@3FBtP}R@)*gMalF2{%;W+vsJBVR;7O;?cwhHIV6|n zFOf5h7p0bb@)PY?BOq=Y{+CX`tP!>d1iEU@k6Jjk_UVTc;M2SMKcpcZ;PLP3R22}D zuaeiHu1qK8bT#MlJkrlylQw;I2FXgtt!oL!IpglJCEPg`)2)8BY*iC9;2OPp4GS8V zIl~y9fz0cZpndnPM$C?AL-iC*2}?`KteNu3%@uT53EUC{Z=s(F9`%fT%M=;8u@d!n zIHlCZ6fsA7#kGKaP$$~CbG$a}esqBwY*gV+8&jf!pZmvF(Ut?X2mO`57-d*3$j`S)Jf?%NQXSX14H2i+k~mIf=dm4 zWn5)sPatG!2jw?d{6TH~+P(_HtPn%-d9$45hSRYMA4KfEuwryuVsf2Ovv771SsO`bq0bys0&^M=MM|}Cehl8~omS9VJRf0}#wi6+bRl_^x9?})q!RW>)m+h^f@tH=6nVvLP<5FL_B z`!Od`oGMU_7>@)$VMijIinH)rJ+C8m!x3H6t>cE)#LvH8JzEP#c!a~@SKhsc-qew` z^_Zq;Op?`7?oH5rzS_%TtU4xm$KQDK6qp)C>VH3akvGgXl09n#kx;yT|8Ba@dBMQ3R`9pY$P z*Nq4ZTuB*Z+U4w-YxX07|%($^j-obO!Qxzbu2J z*kRr80EKiGPJwbNlb-^hX#(vO3~~qUt@J7v!65&Jkw4aG32}m?(ZOXW`ePHw#UiXI zTDlbLCI<33N$7POs?ljpD{PI4RqZKTP?OL8c5MU}URD8#A{i37w@kSa%F6}j^0I*X zM&qood-7-JD-~en(nAsqtWrH7boC`Q`nHarh74_|S^@3wH|!~O0gNE3sgZ{CE8-3 z-?;J%v|@P5{SMq|)zFDbr4i29yj;28NQ)ZF_}yK_3N#MFCeJIG7riO6dL%g!ZsBOG zf)iF8f5oglXW8jf^Y2PAv03Kjrj5M?&~<>7I0A9>P@B>RdCQO}cfuBok)40BWd`KZ zIh6%dNMIP7xj3gYXa1xtzAM+Y_yd&o$T;hRGj+Q#+9+Dm9qbv8Ue5+Ob5^)#CE z!dgQd==^}<<*wy?f#cb)lKWm;xXK6F#32y^6uUYo4z$3GbN5q_0XD0c6=OlgWvD3y5GU02ygAA zzG2^NMq-2YZ%ZrplMPKQCfwm7MMa1_;2SRulb1Un7hin~)5E-$iQqhAhy=Xpwhzsx99)?ako&#v-YFHwF? zTs*P5i|y6iD$Oe#ajdT9xNd{x=OgDo5xQA62vB*a06yEBY}dKDyemYzd6 zHuUt+cdY>GD{8>zD5FIwWRoc1uNj$i-PU+wM6m_6SM=)x0BQO~n5C&lL$$KmX;~5T z)(Ks`pe+qpb>VEuyvO;yAAM2})AENh1P98kR(tFPt7@GLf{BCnr@$d%&@*=q|J@g$ z{OPdQLrXJX$mb#4Y%%yn+dmULs3;0G&hz>FCX0PP1Q^;hOv3;hpc4W0_BtVs^KUy+ zrV*kmh4N2+$N%J^#@ov!JWd_4UlfYB`~vZ?I#_i|6++-sB1JY5H4_sad3ng)?cF}` zWE(1rFnb=nt-@0eq=D_W3g2>*EIEMDB$8&&WV%Oc!Ad^93QY!uT@-?)GAc zX`>$w2GigzzrElUN5FPx1gwKNgueXT^L1@Ksw1CPh_{g@Ma0AITwo+&M=JL5ncJZo z>6cP&;XH5boCnzbZk9sS06B6Q**tv9EyeYaoPtv1eue3D$qyX2%*VKuie8fOrmL0 zyr2tmG#a;WD7tk~#I1gfF#UP+szsW(@fiL3kaXtAmix5zIC&R3&>$!Xxc!<}-=Le915D`2cKa zO?n2b=7Jy2@Ox94NdAxj^^bz3H@2pe%v4k-EGBj1dw>_VHm{oi5ck)=2Yxy0_a_jK zeMgCbttbAw{o{)m(}F3q%HNp`ax7O4FAZ!scDL8kiaD}AnRBnE5rQmYy-&Fq<=>Ou zOu?trbN;VL0a`u)W-L|#kt$@lM(?+v)Lj8#)y&;vHK zn092=3=ECD+&fV}1O!Bm5f%TU$q5P`-Ad+VFGYd3|~hcCTMwC&Q}lf%|4yY z5y+gj;}8`z5ylk6ITV*5kL#i$5PjPb?YY6mFvg?S-t!x}RpxBi9*1EX{c>`xnDoe{ z-P%Ei^LqSMmfBKWv9J3(B?j?FxsYJvq8JB=|&$!E7Ad|8M_5ineYleHrNOk=7X+Hy_rR;G>@3!kyXTqXR5C<3?BZi}&n7 zk%$+VFZq?y@?vL>-;42WV->cN8@p_uAa`yS=9frSpmhf*MG)}GZ1QOC0YcLQp)o?5ps9wt-i^lAQ zuXTnARaHI*89IrjQj6qYsuks?B@`ksH;IM+=wPB3z0*!7CEd8Ldi$1nM`R5iq2H zfV&X2fI32!a~<3>_2os8sg{Mao6j$E{hoVSQkY#R%!J?%qdZ%-7+{cj-N4d<{HIx_ z+ci*@_C1IJ7Y#pOPp8zHJ z!g8^j-eM#?9KoZ>)`bXpI{k)}$|{-ydhJOD_Z(NC1sMWHB+vmkqtqAz#@9K)`SE}u z)s2~Z#%;VssZ@|S?;D*5yARYdj?@TwMU1lxp)txlywywOlEH z-rdYQEA%aCc4$_eQDS*;iwBh73?W5dNf1Kip5pn=NCX*VomyWODhC;Eyg6>GOPEP= zwxtZ~>;m3)rXpxW0p8VpU^$rwuDlnHr&KkP6_$uPeRKk4a0Iub*CBg0=*u{Y#ZjRt^ z^Cw_?S^2iMfk+pYRAbZ-Ly02nRKuz$8%?brAFQ7=0nL&3wh^dZ*V->V=>ls`@H@H# zxnkt~-}x%_Ul64`v7ua|NrIp0EmeHy^~|m$7%}C_PIL+t_b=k+6KMie|5S^-+vl2N zE{H};Y7uopArArvicsRBT!!~n7Gd&A9&25Rh4ij&ounc2`EW`ABle}c0UWsU-GB&z zJXB|RpW$B{W6FtPTHdtpbHNl8cJ&C00@KH(O22696~pDtcev&tqu`t))+Zq(TkI6vRJyFXrTNx*RV zFKqx+nw5L405R~?{s9DQP$%?`4?Xj*YjHp-S#q2g#M5$zE?K@VQ}~TZ&cah0Nm1!a zc4(rCwSNVfax&HaLY@J8xH4kEwSthAFlQMy_xrk6PrXpZFrRKf)W7l0nO7S@CGcep z^a%-ZkpLLW@W>SnRr^#`=-?huqw{uRyfkwJ)J6p0IL^+CqG{qlHi_r3C}@j(brCRi zGGv6|o5Epuc8yo#zEv|!&Y-XeSo7kO5iX~#186juDK&u)jv!}230*{psg zAboRH0B+yqj2r*p#R%Is(wY)1KCWB-2iq?gD#bzdhzP>gL`ogXw<3?f%=Se z!c2FTSP{TgIxNqXWV)aUkaHiMrT;QM5{gFtW}1Ng zh`N0z`nx_}%KJUfVBNWa9KgjMYW_QY^Q)5C?rIw0D?hZ*?IAp=_+b0bIKTj#w66>4 zsWUhsiNYPfnFId!DMwFr)Z3j8U_a4O9`I}BgoHphpgl#PYZ(P6UHp?nc!o8J-)WzQ z`U*8D_E+urDPqJQh#n@$tmn-9Sple#GYx5{9%-OmGij6{Lr;f83M#6Pj3oi6aPW;f zq?^``zA@+hsS%lcKoPE~B@~c7yGK^DtPk$1>u%1vO@LV3F6uGqUZNW4U_Ym!-k0dQ zV}o3xbx-xuEngVwJw8pl^?2oQ{Aj0rkJ=m3Hr*zSBVRp;?rxlXYm758@hhsO$LBhN z4BMvJ_io# z)b06ri_C4}EzJR1P9WVG9pijY!*~lu(2eZkHL@_$1Idm(R()kmkSzp)ZZv|w1MI<6 zxypacE`mf3(ivbqySbEWzAh9O9krXEp8={YL+^c{9ToMeA?Nmn1%~YG^Ao;9vY1T2 z783|~31L$X`<2~HLPa?>RkZt7wSuW%bl_G%{W;fq^zlpUC>%=Pt@$&lo(+vZ0fmIk zngt_^P)5Hud(8VC)Rg|tOXndz=fhNc%xRCkOxo9{Fcyt8$_nsw=c3I8Df3Xnl)D4)>qxYRfO;hN)kC{4qe8fjMjbO@XN&)NEZm!Od z=4pb==mj>I9s{d~(=X>kb^{V{5yhb~7XZ5zIZXn@1XijXk zQ?1#XLgfk;ew!)0Ug+HPaD!1B#^Si-m`Z?N4m}?&i*599#OwXS1pCEA$z6N7pE)g- zOd9qtM8kL55sgE#SVFhw^%`THMh7t$=S#!5QPOQt*o^G=UBg(N%Tj z7xCPxi5J?t>Tu-e>tfQbMY#J$lF1lSI{btdt1^@Op6Wb{?@ulxesr8ok|dl9Sk5 z#)-W4Grlz^!>*E(TB<`WOCoL(GrY`2T_RkcsI5K1(B?u-y+$&84~O0MrP9}zx3y`S zEzO?vw0GD)zDj!yzx3erJf5g~|6Y^7YVfBSo#{ByxT7jCjtlYIw%iAbs<1Qre+Mn@ z{|Z_&B>w(${i33sgdP5A3R-FzBGfMF$@C6JT@sBL9qHat;CG_@77$QTWal!eMhw&M4+b ziq7KytS|gCM#Dq9Fo+{)t?oZts4Q!RtHu9ow@1TJp*Qcy$(wL<$XMt6O(ky2i#KLm z<~xWSZ>a+AXQI`|b##x9aj&xB>(&nGiKt>_aMY7LGeY4bcL9dX;1sneL{qxQl=DC? z)tV-t!LSb8A}T_F?Ng-}Rz==FHTK^3sS#XaJ=O8^JMOFpVShz&*17*yDEepHTGFf?k4vX zw_?fQW=mZJ(x&7+WN+gyf`}O*t<(rvLW>71a|vEz2qXbB=M2+htA%WkG3y+LZ(gg1B*faEz>PyeA`En%7?1xE@<^teKJt_S zR7Nb=OrcmaPyRYKqErAy5lp3lPXXyurLq}KsvDEfFKGzNu``|i5+AS^)4BslYaDWf z+**=m#{2kvIRWUIkSJ#v=Nn&%qwoZ!B1(VWHa9+?e#RJ1tE* zVd*a*W2h=Pe<{PJJ0PW{`YyF2RF^usEfCAoZoq)TD$xMp=RQLy)Ps#30IL2y$^gu~ zo?Qud^h8=1^cExMZzbeoY8&bH##y>F+9x7F4Vt%+afH5!#EW#e%S;Ri*6-&X4!2Tw zRGP7Q!o~&FDEFOeg?$fQ&WztV;izXV?P8t2fJ==?C(>3ct=n zOHlY_R4`MI;c)E|48}9gSesh*7lV~gRDog8R^LaBW+i6#Y)uxe`KnN?0~6uU{AA!^ zgz)zeVMx$JXLoFEQ3z)>dm#qj#4nB6%W;hLO_^~v)RF~?Tq4mUV626&TajfWK@zZi z2xM_?@r}Go!hL^l<6=#xhp#@LuRcFelBso=ILOSwpSQ~f;E#u}Ahzk-ui!86ZQXxb zkG#6>asXG$zWo~8x4ZDjzxB~?UOAXZTgN|U(LMiikc|8o|5!qI{M!k>9sd|PfO_is zqYa$C$*ce6@Y;4NPK>O3E@}6jka8mrTl%6Z&lc8I(Qz%gChn$^&BBWYE?^Sm&1WxE z&!^i1+Cm0AG0sb^P)2-z~TUB%EKGdE9}wrke)?R z(ibYRSKu)^cK8-yz*x3(d;bVmsOw(WFViSEfWraS&23{Kgq+2Kh{6!*>WnUAghs2 zIabku3!zbvva<8N{DN!C_Zj4#(5>-?3}pjE@Y`40{wv*fPmhaTcHjmCn(n`|Rc}3Y zvMIuUEl%?tOX`J`z|~}?2xk_cbmJt^4g+B640Ca)y`UxTGmHqz(V3XX6B5cLazy7h zbfqmo9CYrnooa3O=;-#7wZ9p6#m+S}_@>f-`(Rh!MiIeM+Dk<%1GY2{knbXmf>4m9 zJ@!Nc>F`cRFbJb!sjXBUBNmsj+oEQ`#%%o^dB#_srO1~Lj2k}XMAkbW6nQSZJwfRy z*($zuO3F*rdS=?iUg&LYem`9P5Y=JRzg#$Oq^2bQ`*Ju?KXa`B!8I;5;~H|1KVR#)LPw2wueG(H@g*U=L=)}nek$`S5?h9H5Fk}R{#X_aa1IiIZpO?)`|7cb$>ag|*%dZa z2E2YJw~&R`^(p;^p@5&N90J+J_~9CKa9_TX+po8;ClY;SeZ45>wAqI_X71cH>h8=| zUm&EOZ5L`Uro>*8owL-bu3L>@LwaRvsasNFFzl;As-(EbIj>KEX>j=pXwqZof$0?d z#mWx;`NMoUUNd5qR{Bztk!v}fz%o?Bh3t~ulcM`jJUdGhG6{lxAxXkw5@G(=S_#h^x57sueh|Z z=0*vy%}s^pR^y$28wdIaDm?pZtKT2=_7bfY$SHLYJX! zyW?#ahXK99W2>gHCCzwnkbReHg$1+(RT4)26+ZV|=Rz0;?x}Q1SN=u?BTM+Cc(F}) z3!S0Vd>8Eu35nSgZ0mSOE<#^dU@&93?-nWjH16gI0Uz^x0C+XiYHp;juSC&jMOX`r zdDdSvP|sjD|8n;rpK9i%SE-9S;8bLpd*+|Vq0d3T-uQIp{;sc7gMtwY?L{N~ZVjQw zVna@nS(0?x!fAGQaS^Lv04tQR+Ir#F&65A;%y`SErfCCldFvD!qs39f?c?uWE7$9; z)vpwTK-9Cx(i5L68<}3@%+Ci ziRbxYg z#pz(EF~3Syh$;wr6FZ;IGPr044~mj}qqNw!9+VoUl^S)U@6Qks73ZF-L;jQ+$X~4! zcS9I18n^MypE{3zbxL@B~erC(a z&|xDqd6Z%vRhZlMTzu|8;fEm@ZANapUj{34JAe+WFZzhKG9QCQH{Fp_CBC-Ey1d^x zNI1g<=BbqPNdKo1oF&=E0w0*BY$^SD#K}wqv(R6mgIRayMS)U8pZPKR-*^vVPbgZp zT|kFMCh0=!oZEjuDkL^isFy)nz+C)tIw)~KE6griNOMO`T16$nYz-W2FBwgLR99^h z!b}drq{xGR!HVXk2+x%`70T;nVf_iBl79i9XM|gx_TbOinKDShFAT8NY9h`fY&9~W z2QNpf1-Nm07*;{lnTLGE$>Iow1#ns*i^xVF&m+`ka+x!ruft^Ey;%fLh8!VR;;D?l zTkregKi%s&nThY>#(9@N|`pmp9EO++{tAKjUKP2DQaC`KL~ zaZXQP`Xxcy6l9NJq+|9IO{4=V2!b~BAhboCtW;a8Al|RkGg*QTEdaL+xHLR6#5-IX zCmD*8Gm@C)9CGuKXYnLnwf$r0LELnx)*(TQvf@1pHBN zsELN?N*?@F1f$_f4*9@Lr)?SOUkKo)Zyb$~$A;foHFXx(6r4vrJjWXAN)#4mZLTnV zT?HC*EV{b{h%2hHf*tE}V1iCC*63ZyXmV{!9>01?7dfEb!9#uRYkoChMP)GG%Pv=h z-cMoZ5(!Z|nGP4UWX$%AIFjG><8O3r{eC4lpXvNiblci*JcdWECqs)DpK!tzLv-;Q&9LwMp3TC*Xi!LhM*HgyQO8=hy|_=+ zu9%PpsBBr4R*acg82^&*f<>o)TU%Pb9L$Ng&{KA~t-{yFgvfe2`&^ME_%IMl6@1#K(}= z%lipEk`QQh@hbDSyu^gkyEGcqA1}hsX(C=zrTB{{E`NVVVBX3a1N-)@sqS}WmFp*L zOd~5bM7?a(=!y~y9J7V_*y1j7S_n1W>|?fNHk)U`DoYfL9OgQ+*L;P~wc*G7m|5`o ztR)pNo!hd9SGl(mz0jTB{$pQ#Uq$Ag?SSP{_KJBpJXkLOe!RgbAd^3pVQpqo&`Jcc zxM2|e0GSS}N;^Gx4OR)L0%hrDq<1{=N4ME7uFar!MeJ%KQEus9RI|UK27ibAl9eV~ z-zt`1e^}peqOWfKZ#yS4wLvjsL0}+nGbv?>L7juTeh<9+rXVaVdgmJd2Ze0Qz)@dE z|6S;Z%lPCsP;Rcp=cU?+kDZrBRvSwSgt7eA*%4=&>U&QJK3J7)mR5QNIQx~0zjIRW z-I?a?ba;hH0GLNDr~$yC6qpWNrG_dSu7M(b7h*_?l3#Yln=Gc^{6>8Thk@3mr#sAt zj~(~8w|V1QHg;w|&2nGit81Vj+3nJ`JGjJvt2Jj&9Hu2(B75R)!CC9rolpb4Wt9g1 z=J{F&AK1nJ4({PUs*pHG;p&*ZCwM-+sm}K2BTp?OOKRGLE0>EaZHJ+Mcs~uiLi3mQ z?%KA~l+n+0YrA`B>Beg25Tyk$T7hD<&T>`X{qqKi&HK3(ULs(d#z|19IV@f^zHppb#ilG&~-Ff$m=hhg6sK z2~MnKP`B2l-I>|EhB1a+mR6&Dq*A@ZTz0|JOppPk13nfjUhonPVOE*pOs$8K)~h*) zAaiNb%vOsNjI!GB4F<#uEf|J`hvYl5z<~ciGowDhG85n@oY9rC#*L+mg-c!A-R3mY ztV3hsWz(u6zL{wOr@OARC~s3&byR1x+NNAaqp(3nh&tf~Crr8?A5^Rtit9MyH`2>o zM+O^j2xmb?4?w012)=MQ-K`Bh?I3W%4AT}|Z(o^8Qy*CNr_>&J?umB0I{7udK( ztJ#wpKZT`)IWPm=Hya9_;!nF!Ay(p&DoGlPl_y)|h(}R^Tu$hDh@1dSN3^vP&=C5y z3+a9G#7Foe8`e@m9I{bo_w{EO!wM;i9&ML-5L~X~Yh6JSh`WYPLuzyb1!FD+sZS~e zE>NHx%*SJuzlMKU+cyLwq{49Qb}d~6Y91bUwAmnTKqr9-q$XuO2&$bo2mK`M=0N9y zFc8LIc#9v}mP#G^J&T1fXCfB9sbAeg@A|KtCB^_xBG?3pp=We;3QM6rO9|Hf z~Y}Y(Y>+XhXv&xCoPs1lsD6;i7TC-s?#w?>-4AQ5Xs+sivPn za#&y!h?S2xDlCwOX%A~oa29i_5KDP88_doVr{woyQL!-^wP0{qp}H5q_~hB;VH+l) zEYKcbAPH6u($hevI~ABWK(F=@xTxZS!DoC_(RcPp(x(?c>Y!cx96?8Gm-r!7YLvwiP`K$83vAMPOkhY;?-TOpjoqe{wg($7DOG;n zPlG>?x&aJsFcz|g&)c7`XEk8K&%dzsp8{8zaLyNH9VK{OMcO8ddDI|JS;$j4;mg1 zx;kD}E)DZmAb}z-k^R8;RpAPV0lOO$FR;EqO1npNs@j|5cBbVkX5sPA+}+XX>$-?e zwIKR3;zj2&%oYZ@&48nie}_X9F3Nyx60@?07N(M>lG3L1uvZuB3*@deuToc7J~u0D zh%KID&0CJofMD?OiIZs86lAuq0hInF23drleSpTNShrcQVf$_EKe6_OfgcR8x@WWucN!*kQS)Ih+mDJ zGr|3R$pc=@t67fERfH^-<=gs$fXR(zQk&_x=5JSpKrlq~fy7WZ>2nHn#V*}2@Y0hb)z`&$jn8y@BC@!If31N%Sv8R%}+sq12I z8Sh@Qief!N(>cSBG(wo7mbq=_i;UC_xleo_ zV~*_Y%umK6T3$4sD*@jW1OkFSvJe(r5ljUt`KoHh8>8Osd8*axLU=6szO}wp2Wqiy zo;@+Yo$pgcLob()Lf?<47@u$zj4mLz{b7Q+V*=kF%XW_+^_M(zx^+aVAPH&B?f(Yu znq6v9zw0^V3CZI(XB;$G0G{hfQQjX34tSSm`;`^hvfwxn=mTl%3zdJZfU&(Ov?CbV7z%-k2(S{8}fG6EyXPHhugZ8jZZ|2`eMB5rRA}`b(e13T3 z|3>j>Yd5#;WWy7=^Gwn*;Pxux1T*)<2ZQN}kxDtyem&nD8?kV`dwGeP4eL^)C}OIM zk$j>m@gIJPXFoXjQ4tdxJHOtEa7{6^?Wu@jsd434{Wy4hA77!$h&ky}e@1`bXXr09 z*Cu~>D&|I9oBDTwx7)Q^BeIx}zfr;A>l~e`ys*423g-?C$NitTq|3nM+d2a$*faX( z>E5xb4A$}U=|w5YD|hBU57?ng=3{Nn_svmX1n10?v!YJF{rN=MZ*!~rpXBscT$JiR zB=>(Z6&Kt8B2Ze=|70q(|Gf5vC?YM-$fyWz=H#jzkm=tf(5EtYAp0 z2lgb!;SUvgFJSA@N@AP_<^0K(y|9#TRf|LZ(%AQJ?NRpqxX}e3*<88W&6npVCw`{Q zF0Fr3w4dKPlC*%ILfTtCRT;D(q-s~)#OIlHa*=VUjOL^I1B^Eh8|JV=LlYF z2Xnhln=s2M)gU^LWg!q1KPEZAiW^u_5a$=K$KHa%L(f8a%Y|EZIgv*Dd7#OyD5MXK z{42(FB%ZKlUOtmpDnNHHy* z)w3;}L|k^Yq0X_u9ASu&h9)W8<4DMp%muTZ9fSi{ayDPMPr5MNL>~PH25BOZ@$b>U zJK|ULwvehm87C6tD+Q24A*sk9v5Tq+>(SpUedglyq|%6G=$NCIYH=xNpP3q$7ulF>MfCqoevjG{cog2@rZU9)bZ0!O4MB7cZO z9dg!6bO>F~j7P$@)FRLfWTF!c)%M$KDM_yO3ERjK|8|IBse(&FvzZ%(Efn|$oXe2d z>j~$meA(3oAM1jA(d6+){}p^{4LVR*Bh|542dE9<*f7&QhnX#+`7CRK+d)xe7^?PUy8NMQYrrp+gH<({+RZT2x;k-YzRyfhC?_*&wU`8m0tt{av)gB81|G zm*b8hoJYxbKKz6OeWkV9uZz1Q9uDek=ztcs+;ZzgZ`Ei6u*@xi!airtv zu_XL=1&wNciq1k6(Ch3}2kC`(FdbMrOJb+SZ4F_K#Ts5plTP6^af%D(2R#9mTH z^Pjy1#~w=%xrH!`Q%$lAD36X20iz_uNTr|1wRuA%O!VM>lO{Vsbi1W;BXYtleycaQ z=|NP|`}c_Kj4pLcRx-LB5a5Zdt#fNpT8XY*`ztO|94tO6K#7+;u@a^+R7yrP)4O9x zGF9JbM53@#ih1fr_zFpsvH3#sA3^FvJ`pU#;w#Vm(Ea&(JN@}~f#OP?_03v(j4=bl z_WfMw+shhSPCRqe&%NKsnIDzy#XD`k9{!Om{ptP?8bPKr(m$r>mn$9)#t#cxzd7!| zV2Jz7wF;yC{2jBKs&uivZmH$)D6y0Ya6r{Aj{;TWpcUDOoOE$9tKwjctvqxBuI<3q zxgg3|*`EYW&&zH1Uc^W#@!q_vcbxG|@HwxE@CsVFZoA$LBL`n({?xaor+v+4h#!!d zWO#<9qyP0AcziU9!|v|YL^?JIk(PLh8GnIKX>R0%mV8&5HvqFFrFa7(j$}f3VZti) zzM1CzvU27vZAPxVOu0oH zZDWiXu=bQwzIyH);tjO}mw3m`@UPe50s>X;v|%;VVUd2K8IF4;8khvh>5`4_Xw-SO z_~e0j8hpCiXLs5X5*pOrQY$Y-wBAGEO|1~t{F(FgGXTs6A`7ScURz(Mj#$7wR4G@W zfsT$leq92J-wuRsDmEyt7sospru?6*A}x%R7tJsMbhCFXqeXfpK}T>QdKAZoZC?I% zI9IHq>oLxXluRftl=HfXvp3wKbrlM2+xUqTAxRf#GZrZ4_{I~xQE!`&(YaQ{pMh{* z)191IQqL4QT;WmATPllqJ0#$V8iEjD?UGB@E=V7Y*TDV=l|omgELQchjt7;y!R0GFQjh)SJ!AG(NQ%g(=rJ?{(qz{f=2 zj1}W7*7|`ajXQLB=_O9;`lCAw)myd&Wqe=b zGnd^xGQIHS)iy*q>`y+#mqVSqqk6xM(>Ky|84SWUP4@cXFyWTHB-ePs_q2R>a%B43 z38Y`-b!wZ~wC;t|(H^M5aU0=B2stMAYfr1ye5rEPzk9}vXukt*F3Kn19&D)F{!{Yv&jV;_e7; zcsAisvVGU}VIVuTOoKLy=_T7y=Ug5{?%-f$w0mas_{B^$qpAhjLWK9c~`$_=IWK*Zq*z6 zQh${T1@Xp5a6V}U+@yGWI6Sk-#A+(L!qOvl_OVSOw1-5&en*zh4?My!KL<2Uvdb{MsYM359 znwpc^Qcp}{;On=>6sfPp3jpD50&|!66Q_0rL?%HlBTxG6cNkJjC5=3PQr0;qVNfOy zo~2#5@VSdt-wAGBH9GXx9O&b;Je_#9*HPEwLBrjK>m5qix<|HHIXNOhreJgqdoKL>mUrz?lQ1wUBbw z`w}@M+)?&!dA>Moj#XOt7|u^sj}1p)d?D7h`zs*lk5KlDW=J}ynC66%P}DB)KuTKLz=T%b$6^n6h8tuCG2pupj5Kq{@xP7aHiF`BJL zH)wZig~R|zXA&JWpZYe{hMJXE=r>N#rakEzT#cLXvRm3fcv-v9{vO?3eGdIj!GNSHO0w3s}&KO$>D63Cz!hc`)ZyNpR{8ExyRKu#eE+{}#z zdjp6?eLxM|3`^`P<(}q*9nls>JMkQ~9ZbvydXtge;~S|~Ho3oA?G%J8b>GZiVhR*F zwcf)BDf&&s1rfhcZO`48!E#73`pwGmAhMfzci?9L4FV-)ET@t>$8sfyh#gTt_;0Ug z(D`+!3^Eqt`y26gzr84$Kzb1JB#9ap7S%`r)#h<&0Vygy`KJ_fXcQcYSj^QweeJU? z#**z~UTBe;vy-e3~RM{PkNlL9E47XmtH5FsKRDU~H*1U2SsGrhz&1cW9K zl)KfXx;!OPyeVe_XK*NRTdi(#!h<A%6spE$j7~y@hasR=;_5>USGGVzXw5FNfdkLt zjk^K_6$A%toiq~OQXC>G!DLB z6eV*mnPlZ^B^PKo%?5iKtRdB0zFvDi1@QW+r^Mv~D~Z2VD`f zC4h`6Hx`F%Sha@T!P6dOucoxwBL!&5Z9JhEmZP9zxEiTM;#5fSXTvDZ7K6Xb&(h}Y z+7&6rp0F2h2qd)L>_er&-&2&cTO$SzCbpss_*1r^9yKuiF#UcPBP9np977J_6y(VZ zS1y3TDZxS6CA>h(O8g_FMZpS(a*;eE6qPPH<*_>TCsz_}c8iK+Dq9|Ws2M<|9s>ra zAr48Iro6$P!Z4ZF8~t1Ly{zol+k?Z8MZF2$;oWXx;NQ*e^{;270RyUX9u)Or@QW9> z#(J+dw>`CtQuj^IcUB8 zOn8jGJ_uEP>lb8Se~CRztSW(NjW+=2ekbI>1B9X-qchnZqeuzIm4!@%(Usw236mF^ z1QhEa6!ceWp`_D1?&^3-#i3Js>8|57j?EfBqcmCm6teQmz8m7k)OVnUiD7xA-xI?| z`d!qp(4h{RRk``sjPSi6Z8K3ZtL@6@jwxxn{$`Lc3ZU4ZdZmAPJr~ff(RznsRGoo; zO%@PD05#hW+DMLao80Ll->H{pcYu8w+T(-^W6bw!{RgIS`1Qo$tEyWt@q2Sq-eHja zzBsCItJWA=_ZA7lwI*=u22y~;>zD@oR+KXYzKML(1vich4g!BoWgTx_ZbgC-ebxY< z+e;`;U<0Ti%weX&QGJ_`zT`8J8y@N1xxBravkui!|NB#?uG<*fcd`5KW#sDPZ!O#%EpJpBoWVjVoB1qy#z zEW($SXs-NA-FuH^e{G2{#5!@9I>|;7M0=$}L70uQvYAQ$$d%C3C-~>GnVf3?B0@M% ziDGv^gLxG*?XNrz8e}=pYLQu>n>(zwmPQ~Zfi-CxrjK}xGq;O`qJiTCmeeLzG4E5U z<*_7yBnLL+xCVTWMOmA=^$9R5!{&f$rgTSWpy5wlomlJL7;_vLYq%nd>?nbEl7TEi z>2q{)H7dvM(h?VZ?9s)U-x7y9!Q%7X8qkcW@W8i9pKvU5dKduNjMB#=v&x^T>hQHB z73_o0%Sa}w)Ws(6QN1i9v`LyAacBMEh%(Q@YzL~NCjjJ7UgEWKxP}CJEYKrfqV6=F zQxGj3ghQsv`IJmF(r2oKClUItk_{ocq#}F36iau?A1lUaht=|5qewXNV3lln8w5a6 zmvw>%3@jq!bdt3$pww97-djb|6Yjx9C8c#H`>sK%IyF2A%4)pe9Mf9MUB61DQksa9 zf#@J{!vNJ9m*fMp+-gn5)2-C}hHVC7x%g4@ctIZBWlap}&b46w9FJqvLAxx)dj ztJ(7Y(ifq+6(F12&=ob*%_Z^pSF?Y@{cKRAg=6D#Sn<}2>2jfdbsdp8Jfw7=)gK>` z#Jy+gdF)85%CX(#6#3smIsX!Xi0nQU5MXSjn*z!;hr{@XYQ+tY|EhoEJDUz`l(YWf zuty6X>g*R_z>ZdGIGqhyWW!S4=3|j`J_GYhm&m z8wu%*H*7-}bC7at_oc5jxWm@Nm<+#oczYM6wAO5H^RJ(_IVtn$h7?YspgAzqZc(be zX->eJ{{7PI_5+o`<(0M&vYShF^yusLJT5*tzjI=Vd*iK7I>Eo2UeL3%uQOl2zp>fE z17bxdr;Qi(>lcX7n4??iM0&=PVbPmNBzxVO!{nI7mZhFjfj8`T&zwdMVEibjhVri1 z-O?Bj3W;GyvD>#7 zL}i-iUda3muR-VW$N9Wdn6LBkMqZAE2Yq_>ki3AAr)DgK`Y-hE&&^a%(pu>$^19y* zepfg!>vg00RX(1d29euLy&nA^pxakI8Zm6uhLi(RAfGteuh?tc4tc%3e*P~AquT&} zPMgEa#l{mevAsi{!_3T|D)0EXl``K??t72Lm%r0Kx1PY@vzNd9Gk34wKg7r9`-N*^ z|JU2ob3^~$9v`pI+tE6`x226XrETBO)5raZcOT)z_uI$(^w(`rBqi>S>vct6l8&vp zoct1LYQOu_$LrT^qBy1B_p)lb z-p|b`uYZ@L`2jmCY(M5wmkvYj*W{eD%ti(pwi*th(S7~-M~(-wAoLUKsea`tqgkY% z@vbShLN7U;6DTtHau?^Tr%tz}7hhWNAB8fEZZ`-KcNb9cQM z5}P9#l)m39eV%0Oho$g0LY5hH^^9L{ZEan?tvI?EWE`@FACarM^o-C-^AKN*U|Rb? zy5S8pxno7L5PJrsy?+|;s2;5kc$)3f5!}mK&yo_F3g6qr|Gg3Mi506;t}bHDFBKD} zUf=Yx+GJAkj_s>ODZvbKj@tnk2*+dM=(LKxx5Q83)?o4f3A`Gc2hpw5oAkN8qUjMX zW^5euWVpO;dQNu;=KlOyU-Xw^_zb5LA&VoV9`SSsRfbKi;zmbKXL7EJp!4^)r`qQb zhs@}k^4?Fx1bt8)^#nA7xWx6Qi2fx9BkbG1xM}C)r}|oVi%vO+c7aF$)c+A1jhnHz@HWm>T`Uwt4F>&QD_t) z!A;_l`S7dM8n#agzc|IE1!Z6^V;-)%NUT&nd`ZYlJD3(KY-)L7BXl}X@dcl} z;BEEoWWd?QMc(q-Aew{8(mQmMw9I)Xa3|dw{DBz>SNk(IQYMj+yP>d3atHj*>I*7P zWe0^5gr*9q(Gy1}OY=C5O~DmxKxrFF(Wmetmk%x>YAB$Vlpu~|gf5AV@I|bS?3g8Q zoj>w26iL=gr0`7cOIK$Z?`i}~4pRQvWwpNrWB%o1C&(~uq-`SQ)lNxNirZU!fxWTsc)5KE~)fv&9dGSd7O!h_!)6V2?}gPqbam6 z=1cyHF)e(oyjAV-$xPPVno&4&4UE9tpfQlgcu5B~%Z4pZ)Lc}pNoqNf$6m&c6! z@u~V=M$8~9rIhreF3qhvh0(@cC(Bg4uAxFUH(C{J_jd}qnd5ySwB2d#6k*krV)n3QUoa`oP5E7rWh73Lq zp&u)AF6l262*dsuG6~Q#;r^{^PXJ;f2_Mqk#{gAaGFW*pCi=~r#5^jD1g&-eg2H>V zK}cj$kc{~>ZT}{8&xwJW0-U{8f{ay21By+z{?_hK5YwIf9$uomG(&I0ZInr>Ng~<~ znYaNaKjlm_&a==Rov~MvhupzRUql1MC>TZ)vnq+4KRDHlj3AI15vZ)8kn(b)_*n8J zcw-lKQAk5|>(_iJq)SeZj}w7y_C16O{qP(7Lm%jDL(OyFlQxnNn@c9K!Xej2x>7TH zqeG%-lhb{&5xL#&2vjexfmz(%@FVTj0$XDo&mU+FJRSe=hv1NPC>q-cU>4HU3kt2> z=rm~xgK5<}I39q6W)5anoJ6j_o(1owR;m&6aOUp9% z8|%;7C&LEJ8WXcDXwIbVL4gwX+IL)vMtd ziD6gH`Kf!E(GZE~sKT;8<>-6QC%7=wt;R)TwF@U@UOm%%;d=EXkZ34KkUpCS?$B*#1OduNi&2||C5$EP221m-)69sySlqb z-i%ft{{;Zgf^#2j;lRJQ`{QuokN1_0g*HQB!29^mA>jG>u{%TDyD8+CEN8+Fcs<{z zZvaj@;dd*){(QV{-r&Qm^+&UC_E6%vK4s2;?$Uxvvk`eUWzAgiriVZS{XvVx$ zE480h0m@THZYY}wVoUN@AZw5$C^ivr1uduTgd|G2uz&htQ4)udh8QP@C&Dg&N|Is5 z2u}hlg5y0}{cS%VRr23G1={#^`6iX~aB=@#)!Vddk-7qNmovqqi>9l^2G~DovbR=Ht=7^MV z8xV}_t7v**$G^5CX9#G{jAB=_WYd5I`xXW)l&B_+Rb^zHpFs2a@SulWLp1!BtYO#q zxszvQ7^@VjmeEcahNB1WUDM$S#p4>FS+VP0a;~-S4o;^Bwd8GqN3M`9-u|6Wsk);f zV^epSX6)wdV0+({Jx4vLL)>m=B7VzY-;K84+aqQc8C@SH4i8QaUi5eBq z5Uf3`8&+l4b!@E76LL!``7-fRBoRta0~ zmTpo;E)K{~?A5g?@xaO|w#+TUw(xD>cKAtO5XiwnHi_R;_m_paU%-#d)xd?!PQ1k` zZy{K>*jxmJyMRaNpiA)ZH3^bQLaqUe1ji4FPkAyqw2G&Vd@M+T7b?*GVAGf{u zZ%iJ;LhCUKVR7TGs-Y#~M9xM6wgzdPjg(h+XX~TybsoUU+q>*6 z@8vZg_w3;w0W7=oXkLz$`XP6BiP?ucX+Tb8U%O1&hiM~@cE*9fp%RXrPn|{`?8Zc= z9%M&;fvIlYeWBZzchrllZ(4023XKY?UN3BPg=39Cvvh8P)2JGZhVq9vg>^=j$D7+O zZ-S7QMQpJHpTl2BVuV&H5rNlWaHIZzn;b++Sx37B#o0#HNwL^950Hn~E0vS)s&lj2 zmKO{hQ_`5lysnTDQ#P#FV@lGU=UQHQWqt6iQ5LQ1YXKY6@Zqbg2L_D0e(2weBq6&W z{Q;=zs;yjoWc!T{9nf1RkQJ<}(B z?&8HJ)`I*Yuj`5qrW-tH8rq>zW7XL@Vfo8!acZ^;jXd+ec^|?ce>=x!+eQNWo_Ah+|@{ zMl$-f(G^U+Bpca$-vP#VV`5T+FtGU14*(o(TEsmzW8(apqbo@o zgqrf=8J1-ajUq4bf)8KIta5xb&E5Kr5bdwUPNyxTyP#E;MGCztKP0wdpJ=*QUv9}f z-)7i-pw*NZt3k#a7K@PbqE5qhEK-o>_Yn&P8^In5e4X3e> zHRvB}Ye6pVL5;^zCQvH%)uaXxO&o5l5El zCb)AoMqx{5O>}2V?Kxj%?Lc~$i^BcT=g-mA=ADX|2jUg)F~6X&zhDRSWuo)r?z3hr zW6TPrehjj<;_HRHGL?ZP zw9wLVizm@(eKe^rrkZ?~n2qTo!{CK{tIj#QcODGiQMuR4-#T7@ncM2}f!90NSL=}A z{Lfa04^BL=|}9}3aL(h@}9)RxFMM- zhms4fJv1q@fW)i`8FiBqf0m?**aHc2)Jd5H7Bq<1Aw6=@*@!KCm1xv8oVjY$R6Nvh z(ZVm7Q)pDZt@5Ay!yZF#Cod0mgWij$iNR}OzkhF+RRn`r>Vn>DOB1yQ?hip*@b1hw zK|hd#06~~XlGS097|RWaLbQ;moO`yr;h8aQR`gIg3_6u^i9)ph&p@M-EvG0XgNBIB z>1KC^nEtZE=VK;!VtpGqoMC>C1!9tqNSs4SkHORL^q5Cv??UhiEi5gO8{vw(hlCKx1DiQd?8Gcp~ zwN^yiotfO-2G1F-o%XgFNq zBzGSbdmEEwHwBs9UbPGO#^ZJwT}1#L`>c%j4vygQN##TT=GCBS^{Cy;z%$NB4$mo+ z+-70E=}EX1Xlp4Q;S0X_F_(8^VIYY#>L=W+$nKDy3%E7r)S=_&GCbS#m!qd(;d$pR zpS+BKsVEiW3a*&B4%z&T=?Ce_qskN|K0_7MUl5CDXRjE=W=aGUzF#iR3~I_~y+X+^ zfQL%Wl;YTRQHv~_CrOdClO)zAXKeVqBe;ZyY#_;JEW=IfTb$Nvz`P7;Ig#4fRs4M| zc4~=DN;-N-ROb&p)9X^XAfS1wTwiy$+AbxZSD~wKZnuQ4=v#do(zzG37Ux47b~ancXFMo9{R-*t{FRa25=bywOdo( zhjMtRRXW5u(<#!Vemcf}OUX)w2)<)F=A%1>prc!istGX2@VB4u?=b1#e*KeZA65iB zZ4q+##mH%n#sH-4T3b3s)h4U;SBu#-q#uN+6^+fYK{^gaLE?~_6H0bvee{IFsR_TB zNQLESF5fvV$szb|Ky#l1xTFf$iD8-?VL_RLVN4v-H(Lcek>bMS+zxT%F(kd#v!{6Md=E)FA~JNFGCjT^ZAFN zuCGG2{z|lyJ^K3Ej0k(I^VxngWBV94FTC?veT%gh?hIyYx6prxu$AgoC^CX(ep9PTQXQM(PBdje%;<-pgb%vLVk?(3k{*=V4VJZaw z_+R>%h-*e2`N~HQ3;y{hJ1N(^huiLz4ebMNdqxyj+XWDe0V*~s2%}oaEqh{|z#;VCw;?6JG79)G zEd!(fU1Bcynubk?vfFw=uw4(bhEGs58YZ;IkgunQ;ROI6?CtyG=G?MiWZR@HOA1oqBT9EU`EOllP@V~ha z_OCPd|Di_(W8+On&A}l6SXlon^^vPPUc1$fy7i=af;?HM1wLy@GRBr&keE9cO~M*v zdr@#{aB%GsMJM~Dk}`Nah57Av$mts z-kgT+J$|DKtyW5R;x3Xq{s#fR*?vmfh?fZ%V=M3t?lrbE(g@s@!(v+|8;`f4In&j+ z`|uz|qW*`4TK(@5-GvxPajfA&v7@K;G@D1pK{0;x>M`{Ih0GzPC5TcSvMign`~Ijd zBFs?;SDu%mhkLgPxmrj|T7IFpa8cap-W`8B2TD$A4KMn&mM|g69AEiX)k>oY>^&L2 zAWVQ8w^*0!~-)s!|C!Tw%=SPI$N90qp~IkZX?)q1-q+@*VfSrjD= zSYY&$Kb$ZvKXpbu)v(v2Uyh%EP*dPwzgFZvJ3gNPTUbMF3b z=K-%l+N&sj5->N4-2hkeejIhsraoo$E_>j^WJ!AfDy2`a0K9aw4TpaJiUWfBhLJ}% zEEe)-NfJT%Pc7~B99(txSUfw4S`A798y325P>xlz3P%v*iEI(;q>Is=-4a-ioL={1 zNK!V>x@V_0p4Od-3jTV2!*m5S-=4?&#ul*Th(2+7i)pQn8Q2^9mSQkz`-5_kA6meQ ziWAy5&v+OQE7pX)E1hR6usY|pEGomDgn`&M;;AuK3=d_ILXy#nVA}fc)44_imD$=^ z{G@SaPf{-6QT(I_>g_msGc#Spp7k^*j`Hs*KIytW#`z6H-wZ_rA7mT}b{BsfjL~*% zxYmJ~?QA-TNr1^RsBchiKV!Tq7ag$*xE*S8I9c77?w zek7FJU)frh=7VKI$Y*~#ok2;SHHNUTLm(VD%1&t>fr+ux$3c+6lmv!|V!Hr+SgxcY zVf`(!0?Gu+HcTAKEk|pxtY7iF4lTxk$U80p)}!({ePh$k>US>P$NCS*d(#}Wj2}vV zu*sP(=8Cy2FKAd|c%np7B%FY7s$XQWV8>3$bI$?LnhZ*!rBn990DT92tx!a){C(yv z;9~Jz#6$Y-Z%*?+);fF{uMgeaQ1x_FsHt4R8+OCT#ueYw7D(v69!>1}r>0W!9fn2= zA(^CZB3?+-B7-dNsXK5}{cp@#-*R=G;0!GE&J22TByUS6qV2?RqO5N%fWmh;N$MH zD&MmAc7j{VtARiyAAA zz$4qsyF{Rc5MfcwPyzJKrMLwy2KGZui_Ma1h<nJRxUM$0mdt5V2Z<6|exoO_MkRjT6e!!p)i3Vqs)w-=sHVNuMa zRA!2YZAK~_GgBydP$2E*&lNVlSiu{q_`WZ|&BOh(4XW(-cypN3+2T}XEqh1D+FH@g zpRAZ6D?+Z$esdeQl6%(ob@p`j<(zVNX--i`xj06X zqzE=%AV|HiSd%u`ZUv+i=&^4Fktk+53241CWpTT5GyoEYC-bTqW{-wvHmS@#`zlr`Ht^tj2>VPKg|6D@WT+nKF zK^IiXXG)K#Hft6+`~WSv=5MNE-6y68pBOscbj_|Q>U?xpweuDI=;M#7T_#|S$qeoS zq({N32=++o?m+Av9V5c5CESe(^`Q7+GM77>@32#JfYk!eQTJrXD9=$-n*1aS#n;{! zjU6FUjc#Fp*7kgIlw@yseY%bbgHzwQmt2pjSY|VsMKOk(qB3BNBYDDv>bQ_6GA1*p zPJkqFt7tJ|y3=K@b5dbcD!9(Kz=!~G|74NJ`m5(h=7?G1Laxw|syGM{$No?%KsJfi z_cW|t+ANT;8&GpWWtOZVNKP)xp6vk$hlt8^T(SuKL#A*kKcx#yVVJ+Y1WM>qiy~9F z<_=YiNyj2ovW6`PoFj79q0g9vrZj4V7&NS$ymI^#*xG3NXmq%=svBAOjzKCEg+eSz zbCebi#gBKJP+^va-7Ihfi7VHT#>zalc4{f$Wu3`Mt~0@woWa=5!pojJvfltm9T&Sz zE39O0UC`N#OB=|wUFq8c51rBK%r|AhP^A_EVZ8bCi1DXg$fd1{Nd^bW6~3*Cwv*dg z{vcoftV-rI==2FYrFNH2d|mmpW*^Ic#m#Mw#Oaq^b2XpxjfZpm+a%kP(Q68N0>QQ` z8`+??a|gwaO_ee!6*w15A?^YaEO8Aa2)a;8*}2FcEY*x-(`1S%=Pe^SbjWgBCFsrv zHg(8)8daJl@E8*nb;c850e(t@y5#^;ZtKu9UT_m>dL1rHneCl-|Eb>3jTZ zI3pWf2q$Qg5Il=r?r7WCH_2TuZxT!>pP;y~?sL1YdxMXTWW4Ce#Ek@W@D^$qe>Qo( zwrq%jzv3uXOugdE$9pZ`(X4WcG@jVluCHkQG%I3-@Sbzeg1z)Ib|Kf+SXib1fyJ08 zd2HS>1xi2DxulZtPeg24R!@Cwk1%5RpwGD8-p8g%J6D~u$}UrzuqtWpRdB|5)@UwX zdyW@whA;wA$x=#_*@^@3L1{d8n$BJ2nQmZD)XDC=zn3QD-n%@Sc1As>b<(F6dW>r2 ziSRbb?=ib14tucS;9g#jH?tDt^XE@;5m+O{yKvvX(aFOU+b=8mV(=QnLk>-t=T&XB z0*vC{heLSchbANi_L%>{Cs$B4)<$k}XcI7QM1xj`YR#G8{we`ZJ!wsDRY&$-A+!A- zjpFnDl#5hc@g;?IiKElmxZW=YiG*L<*>Qzm3tS~D!>Ck_8MDcYW*>lh%!=sLNA2(JrcUMo&*~?W@te7tKA2GMoc65iJ zCKim|P61_AVVHA1^`|ED5jnn zsiuENuNkKW4fj_QgvBtk)fdoK$8Vb|c*YT%Dc7b;PHfKDctgL>&9P5SNqObc__f^^ zQ#Tzh=!6@l4Vu{)`10Sk(n!?`lfSt(e!uYel^ZGg=Vj8~E$!iZt|LlT`2D^}=m_(7 zCk^TS6SFt>XMO&+T0;LeZn@XbmPkmYP^(U+$<>G1ms3XjJApt)?XnpYFj|`#-ISN5 z$PVYB42#imBI(2`nQQ^gC3V>z5nbIH^v^ivB1iy9*-2kqCqrJ>2c zH@R1Bb+2auJju)J|fpe(Cp*$v3?B zE(3!#TYU~{ZBdCo_ z_5_8ZMV>lO4d-e{!kKDwzU)%EX-!C&YkCU8~p&^ReluIQ-vkcc_$KY8FL$_z$E>g-}~Po$Hre4PJ3c2H(J{j z(VxdIy{yHYh<~F+Jt>pXEFkI>oM==QfyBij24x4^f?h31nsyK3HC|B7>|7(>9pfVy z6Jiaq7GZxXRtfc5Z~AN>1*e$6pI$9bRs1VQMsxiHUH_@x_4f@Dp?sa}e;fqH&6%!( z4Mqk0mu9QJ>PA#B3yR+p{oSe=t#z}3NQgBpjE{+3;p>Un1(Y>{3h}?ED)!bcUC}|_ zJa(6)m`w97g{Z(x;?62(94&Iwn!;--eNg&ch7uzejc98v6#uGL<*>|Ntg{-+z|69l zg-3cXe^km7(XoaZ__ey^D?qg_KD_6$0S|AUxE2n_(6M!*?j6LADmzXxu|MO5H}x9Y z&#cOBEA@uM<+>A!@gTD%&MHnph|Vn#>!6Q;Jgy<<8)#K+m;ol{iCA8LMD=N;c5{B- zDu}l5+wlQi_F30#Qa8rZ&(LNl|Ko zE-N=mI$vx~Ae(++9~3R^o_>)Xs*tXQF$Ap2Cp@dIM4>{qEwjtf1`fiiG|`TQ3|N6j z+#rZqRG^XE(N-P53!=W>N{FqyjnS6xf57t@4ho1qfmTY@luZn=4zgxCsL8Y|6`d_! z3_L*_h7Tmcnc17Vq+@xCBd0fLgHoj*IE$kK`q5P^C}G#{m>rvgMsq{)HOe7e8Yqv^ zZa!Bvae{$%DdpJjPuY{J?rnh-0?C=&$)x)eY|JfL8K3t5eg;Ll$+ba^_;VrFgA=4a zw*RQH{u%0Mr}(h*a#u=ZaE{Jmc=h-S9Bx~CmD+7uQ8 z88i1F3JiKjOI|rUYG<_;=Pjcd4ugw4ne0BR&F`QeJR8|oH6=og;XT!}s#AkEkkqs2 z@ZAjJyo$11e(?Ls+&`@SARGu+6TfCn>7zjV>*?=Ne6CZU>jiD~f7}moRmCvSOC{)w z5LKdv+GKX2XiJ(hrp08NDc4aCWmH4}i8V$qiS%mw__4Xz2EoZ<|_r9866p}!(gsq%;?X#(wPLn^n;Lmv!0znDEchZj|;WkcbM z4KZCl$6ESZ;Ir0nUhx|=Z}PjCD>(EvtWKb@L+|keo6ZFO-y~OPjZX>iu>Kc4lUdq^ z_5OdHc#qM0(U@}bLzgWjz*bgywY5u7Km9MzBX8g{>XSFxPrLitsA73$Cz6)`js(WQBDB4uhVFrBe^K#{1yOsv>`TqVtdWwm* zQDLP=;N`f^8-3knOHUE`{C@P(#q*bM?Z!r%=FGh*_9KkfyHJ<}g0F*NuhQ|2+x7+W z_|_JgY?{87A79({c*RHgKkF`f(P4?5lQH?k0#KfWJ8-igWFSTuhjtXBKQCqk^ z58=wjY;E>aeY?q)Me63uRg+GLxku?escq9XlYh0YGj^`eQ+{29Y61i%2_jnom|CD* z0;IYGnhw-Az68qOg}9z{ifTpPg%Q>1pKju0pq%Ms?&7R~Itln4Nmk+SM9C5oPq{N4 zTvJ-*x)Aen?5X=a2one;fpHYuy47a~_Evn(U&Ce&E470>gG>3ra`Hnf%8|bd4Latn1KkR= z((*b3Y%i|Cd2Y3Jx~w^hF}q-#mO^1amr{+tS6~dgz?h>Egpdw=3q@5S3v%BhAt@?B zx1nQ&!^P4nMTwHFN0Ed19_#;olA5|sO0&`VFDC~ckR4aUZ`iM@hy@>=%RrRY@N@LG z0XLrkEzP*GK*O90e#x002YC2|LpxFqJ8CMbI_es)mr&i6nS{24_j0C% zZL9l?h^K@%7wpWD%dNGih#HA7^%OZ8>UhL_;!p4u;ow*9h+9ZwAFGWkS;acszj3p| z)8|w%4rHT)4e>?4eksx*>HoiRpn@z)39xgq{r@0Q{iH4HU=ftiYrm)-1=@ZfIRK_Y zN@k;^lnQxg#u9t4w%R+ft?sIU*3~G~VJnl@!hP~Ng8-5^p7&{#_Smb+|HaRE3(E`DWVWY0sfyo>)?5oW74wt8xUT<@_Uo9b;d>#Q~xlp z2qJd1IJs}}71ZD2$KQ(dW=(MT*QQjwKS3lny8{0wlDMX0dx|4{ExbfCM5q9+|BmZP z{}b24zFeW_t{pY+JVN2c%eYfFqC z+pZ))!#Gu!@WSjD!L%T;D;TaCb>Ny%{3UfC({lY%-YwR^nxb6+zAM9RGstxrP9#Xn zwQ85|fI+ENz7jOimw2rl@0RzEtAUr=c0{OkJx;=ClW5jg9(A0U-Uf9Y56te#24;Pw zsIvi$iD86qZ4`1PBrX$V+$SFXygSs2IYqZ;7VC%DI#BW z|Mt>#(`l1NR4%er<_&RNK2Z;Q{8&OLQ5pjcfRw;5N{Ha_oBzwBx`QGqfzQ#^es@ju z>Ak+odMt9qHeXsGFPa~eC!IE~v|~I=eGJ-yepiY!9TKY@=fzC{n=?t0T5?^*bwuC@iO{VxB&ezRX7@yPnEuiA(0Nsn=Z2Y)wm2( zq6IWv-?D;p$sN^+jl-q9FaC7=On$Uz{m<1odc5b zQ6pH^IFbasyRFpFeVXSY`j<1Ptao-+DP~wTvTZ|y{gPewaN?M%dh59hR$Pvf-K_1q{HItknHry-gohFvCN@V~U(qu;>uEy9tpd7-d z<^i=vucRRLd&fDRg=HgSjm%&WG~h0#3$7BgC~3Q&<7g1!@#hxSh(3kdF?~mrO-D80 zxG8C(eY0Irxcr>&9i%Nf5vLEF3HCBT`-?(dh=&oJo|vVMTNDOIR|K(U(Gz~r5nG%f zwt-_QbRJshc@MkLIxNkC&Ym`tDxwgZ4Fe6{EAA>$FHcgwC1y}K@rxvk2&ni%ISS1Q zB3<3e(x#Z3?ef(39m~)!ab#d=@I5nT=()~8!8sz~fU71opW)XB;Uz>0r3)#ug20@! zpw{maWWcz%AnnB9Rz!<6&R50V8PnX4P*Eg>iG-;6!e)>_^t#r|DD0xtV}sKcEa|gkZ92R?K?z4YT-Slysy0 zII@9w$_ChM?WDZuPI`2~81{c-b!41k`8**CYaqBOTqUF&WY#6brJ)0`dZ@{iNk#^w z+SyXma75vmqyz9qMHBJ~5z?r_i@ql>DI;;rB;ph=;NUSL?8;1`0sGr7Jm10Hj8-$X zXmT^{*n+4N!dgRwPa%(PnbxS|s?7+by{m_8kE(B=VMj{(%DU?5ri+-JHn53}Q1%DS z(6gzPu|M%6(%27YeV+Fy0WjPcKKb3dK5+c1`i&fJ|Y zds!eERO6rr7#~sym&DH zRG$&T2IUC6beIg8R8=MD5b@)9NR&k^$G?fq&SfJm z#bn-0bn{Je7a^wZV1!dr&dL_9R!mm=va@xtg?#m-vG750S+Ag( zQ?O#;0HkQ1yB*T##DvL8)GJ=WcQf5eULj-?N~I>Dna1836>-VY>hzmF(Up}*@)!GF z&#mO^e|v5uhEzR=F*zh01lsf$MVU6OV}f?Mx4Im;kqgVy%b!I)QL*R1+7XI{j|Jbk zwTZLzel>w`G2yi(1)_P3Tag-mGG$P9-N&N^uvztCsvFI-BHis$$Ytt1;yDnrAED{8 zS=74kZ_ym|!@Bs9=gBQvC*6pctq)wAc=Dt|eS$>uT=IX*aoPBe#dyKKUBtZ!Tlse9 zh$h?fxZ4n<%Yekbn*_8rdArriuIGzUj*xnsd_Et8NlsPs)6$%gx$xlt1F>5?5N~v{ zuB=bL)Y78ntg27XNoU&l$E|2oiD}*DcbJu-f9@(VoLb3KZ_4Z$7B zWL8|^v+sq;LCK2O6ZDv?Zpj0pQP66Q}Sz<<(SlC%i#IA z4QDTB>NRJFPwfgOZXpW253+mol@=>!mm1egf1fizV>hz2C0K3cTItUj>(3$m@=j+o z{8#<{#f2ny_h4pJ&Mz$ZEQS7{!dz^~PSOduo%-dkR(?zjKUGyd3^xH&4vY`#DH^O@ z26y)xOT+I+kK?aPuTLW(@+OOT*@+=f{nPc<-4E!g zY;ZOdmr7-0tCdIuFLO)iG;6i zbRFys^fv2=dY;Mcy?QMMiLiD1*iAn0KZUOfK5iGzj^2`jH{u}bmY*i}mae%qtA@L} zmg4iT>sGiO?~t*HQE7U&r--jQL!~s~x?M`Qrw5+?8v-x2x zo0IuhF7js+7Wq0mi5_efR9ZMs*hYlbZvs+F?FjR5^Ns^T0mmhY(1%y>*n6}Iq zHXeWNY1ei3=T%j!m>AS`iOk^RC+jWYBM8uxRO|-#B_zErRph;Al~p!V(CrU4;V$$ZN$&L6KqN@QaqGW-XV8Xhb#BD{{RE-% z#@46(MQL**>ND_DfCiE#s>Z0fBbf0y2ph1IX1bpF7HGf6>(-#|RRUiv zfDqa603u{2$0`stY!W2xd4K>8!?;LGrff|)0dAmIjDZMy6r4>+BeV}T%@p1Z0VSol zA84w2(|5A@j|O6-MN2qsy)u4claB}b7v-+AK=vr*C!ZnDabS+kixj=+H%5ygSpPj( z=B0y7u7AKS`EWZ&0wD^bplWhKXHt;B0%97E+!+xnf;t!ko_Rw_zKAeq4fM>C8z6?C zgl1yTE`H@H>3_GB+SZ35QSh6kogf(8df6+{FrrVFqEm~gJh<}BII!&56`RdH0E$(a zVMOO2$rq{`A(Q|ws~`w6L|L{zBwCeXbB~SRWCDQi3x(%t&3T442q;cUjYSyY70HLx z_|dzEngb~-auK#GJj<{-P1QJT6}wr3`I*5=wFpbt2j z2l5Vqv45Dp1q$>Q^lg`N-bhZ%!z=E9D!{g(+U&POFrs^wlSrX0+!f?8GZ#= zc(j5tnOF1d#$n(>^u+e&#vTH=QQCgvl$KIv33`#}E5^!rQcB;8Lz^Qt zncKI%q$;g3TNsc3nPe8MV<%5%EB^V~2G-&Po{0FA`G7^><^#&-7 zk!#r}1_tVg^boTxG$bzHR}rBgVNWXhkKb!LL*1U$_kp71uga(`yZ;XT(1e|?8%!YV z8Q9&_U={=c=SQ&&!*=9qqVt!}XR-47BFA%#T*F{1AjG0Bp*{Esp=6{QQjN+*mQ0L~ z%L?0rzF^dWsZdsF<{+~X9pgK!Q0Ta^e~|H9{gYe%QN&mOagA9 z>C=rRN4@LJDw!6s{kb@4ON10*eO;DxV>S)mWGpiSY z$gJ&+^O**f(8S}U@jICJ_xxSb|_x@2DcGDoIUevGrjSo3%mOWvB}fjsqO5l z_x)wc(C}@y?%YtL?dd#w#=}9Q?fl7NhHFLBcW)}a>vd`L+WwEj@8!e6e^(!m6UFyc zQ_NMP(ZmjQEYC-S#n-jUi*>;DFM$!$d?Echp~ewzrF<+%gX$}$|5Mm^1~s*X?b0LN zN-s)P2}No`1O%ibpwgrWNC$x^V34*21dbxbpg<&aky!2=3G3-xIKZ#-@Y}?IN;P0w4LJT$C#BT z;SVRV3Lz~o5jCAFSJdFdl$$>p{+eP;els2BJ0+cEOE3^67=7vj0A!{yQv^<20vbkr5#|CiQd ze|OQ7KZx(UFw6G~F@IS(&X(!+{;}EGq8Tl(_3bF9p^~a7@n_j%hch)PBc8!7hB9TE z`s?WzRv3!q1hP1%d~^O)51`m9r0?H;;a1DiS3U%T0hd{zqJh*;Q+190Z%}};zt`J( zrB?SKbEq?U(tt@c$&FRM3c^E7MtpTjpZo=e4hkNk~Xs zlemktp!*Z49zQbl9OpN3_x9 zROStOzHgz9{iM3dnegJ6!795C8u_H@SUS|JpIXc@+aDKsaObB~)fHOD)ow+A2?MF8$aQpbOJ6{7wf3IRn>zJ$J z*pG_nAFoQDK8RdzA#8Ai+N0np6ua=}-8cyo%za;YTzejzPl(H){W%0FUMbKx5`GQ) zyf86e*>Bnl(iuM7KQmGd-bfGub>Uf;O+?6wm%4Y=0H+s)fj9focRHL(Bbvgpl)A$| z`l7R+wxNJES;uWyvQ67_>gAqcs#)yMz60lMd-d6H?)jILhRiG_M(eKzRu%@XQfOvR zJk(=Dy`^sXuZ;SWo!p8pPPlMVMN6y)O549&udL9u)ECa`;A3qO_BieR@GU1UoA!_J zkB_iYfLzljx2DMqFH#wf-_IIFLf1iDhpjvkM$lL;06p1kNh<3?IoG>p2C6QYD#IQO zLIs~m<*A_@XUQl1hw4-I3)YRC)|ndJLERe?MW~3ePACliCG!-|jjp*=G_sx}gRWus z{4$9>i3xnM*r#~Bc89c%L&ePb(kHS&06?^D;Co~UoyhBW@YVHL6A`JV9}E{kP|`ol z5{}#BX|K%g-QF~VQ}44+)N}-L(K?`A;DrV!Si}rN+nYaW)YYb(DE{~?Ao?$_z4QJ2 zKr=h%KgRMux5h;fgnH*9L%F*4MacoEUzBvxOH=@`>WQDz$O1YA(l++c>{@$DK;v@J zfR+hsFZl4qMia~vhtNM(>KAytuk`x|Es*+>9jf|opiktwrwr}87>z*^++eNbGx%4} z*NSpUzGe&!GU)_T>iPPIVxA9v15jV2x0|!wukX%dd6<><{k+!0+kdsPchU2X2b;6@TTq&;WPm<4W{U_qybu|kLrka3xd&{gryMO5+C)1E za=eP-d09V13BLYPruqLGo7;P}NHW2v&ki=EUB&v8EyhJ@Vn!^d7VcZ;T%N^4Y3hN> zK6_E13;qkblr_%=h^mi@0g(iX%OPlpsKB7#aXsM#FPHxG-rw`;0`*b16bNFpPrs0U zMk4i?SBL@N4Ib)q{~icta2mh3@`C4z#t4P=P#S!*xD)yYQZ#H-)vD)i8f=pKD6}*G z?M3uYdXkX(_x!jB(uw8C4v$JxYoPis2koLqqh++U6SKo{u#fx3KB68oc8yvi8tjD$ zY_<&=k1|6@0{DFPBv?_V9&hC0paC~!3c5;=3IfnS`3X|%^?-NgXYR<(-P!e%%@2X> zS*$hAs(n!!U=K@^^erPQS2J&4T}F>-gK~1=!4QR~=4t5;`?hF4yUPV|oMhGI{Wy1? znu<*O2JSUY{e#$3XCPrxWKEIr$L;Ejm<_bjc@pZo!(n0|3-NYCMweQa(!`VOaFTH1 z+4aZA{Kr-qJMk&uF4X`q4Ap)1*lt}O0rBJ;5KK6A-FPqLUk&`Vo2n1S?j5FEkdm)b z2*1dq1oHEQ(qnU~sl)FpT8jv|7gR&!7MN<=95{M>^pA+&9~&&`QoVFwLgDGG7(aAU#Kv3Pn>qH(dSVH=L0oEIeKf6b34z+^d0~`so z^g3#*mrd8a{-X}URKb03*6D8r@8MIxLBqc<>w-h1Br&p|{)3*hMl#mHLk`us@)EA; zK*!smm)1zJk;7($r$}z1meG=2;7&pN<=x@fEDn?iLSYYU-`xQjs8fV(R4jZVPVf3cTgfKuC3gRI2{ zMb*~NDA;#!;RUkVt8NY^d*gS`%!ng6QMdHo9OHrAgC{oWlLk`st)e9=n&-G5J<#{- z*D`(Jw{RikvPevqY;j|sBw(Ims-N?^2wZ#;Wgq&f@WzT#nsRadJxyPu)KjdxQQ*zn zRP`|m=?6k5r{S}f#xpAOiQG!UHnQ&EG~PaRatgG2kp8o6>4jEm!)P$|3V|Hg##V`2 zOZ$ecXKvH}0&DI>ns2?J-ZRnM39PKOp&ohPXrnEk*#920n~U?g0&LkC4~aS~i}2Uw z9}pQaY1p*3tWUmx$^M`Xe*&4^gNrI~0km`rt%sv0oGSy<*$bkes#C{eaq^`O>i5X*v$5AC=ibQ+4L%<3J%c2zY$B8MOEK$*=~<^e^T6u6hf$kPyc62CPAU#l!R0<51DlDa)wRN>=+q>ou@N)n zXJ#w|$|fy##|g8~JaUy>c>3yV><@03Pzy<(Kr@U80Q5UUv(>GgnlDh%8-5xu|0fqRr7 z!e+%7Z+|ojPv_V65N;MqdR^jJkmoaC3qS@&cynH?C3((ruCT(z%Bpq~f#)bAH`P38 z`=d4{k~wbPXO$GWjxL5wgHN@2Nv8P8q-_7y08I!GSBTv?cn>~ZLk$$yzI#NQ_TIbn z!mblJrKH%am=@}(w3uR}+br6$crq!0C?K^r5l$_|8-hek4r~uT84RETW&;3~ZR5ji z;I1pmiB_}2n=<2x0*(zx;D09rP+Fo(XgvsMIDvQ(Q-kG@Yv|J=)CbG_5UmH#UnG^) zf{%aEX3H|VBRwh|f1g-MB4Wkq+xq-QS&Ip{*Qcq1J0*$_PN=(NUE?~MJ}Sl z(ZbU$d1qW~{FY)rQnN;ul;(n8=4hXZB1wt~=n`)9}x)+bRN+ zJnL*wMHh}b1>QwEye z?(mgsv~txssce7Q^UB%yOV+!sH(xI@tD6OYXsEsGRBqBtok$^d$6ceRHPUbpSEoYC z-V^$j=oC7zKi?vY7;-1g7rh=|0j0rqF*~Amn+lb3O9MM(V9uOJopyoJ;N?fVgz*bw z$-(oc9V9@227(D8G&$1!B`|k(XUk#EPyiVFcq3w8mdd*e>*W?CpB(g69vxpa!Uhe1 z&~&}#EhKa@Bq}Xub{LuiC+BO~M{cnU(4yyGLE$-9s2XifnM;Fnq#!z!{>mL&5TWj5 z%--RP2Iuu?Juq#;g{1ticak+K5s;;kpEoG~Qz#3j5&cNYI96@7x|2bz zXORk#m?ePbOH#(O8mKj#|v+EZ9Vt*ptVp=Z`ZP1v2qKbOjL$2~~3c<*HE zGi9{e-B$Zg|BhJJDt1>fnnu}8UHI|{x6SN7YgU#Sx5?4cUSX|J*yG;(et0A(gTBQc z*YQ{`)#!_$I=cs6XadhxV%_X!j$E~_3Tq7vB?cLg>~NEe17|IbP>MDDxcH2x!*bcn z7u?f!61KzaaHQga8=c*{>9)9JE+`hbjHR0uOv7nfZzo8kubO;0H_N>r&setL1gt1B zcCS!|uR{2^s&(e+()o?QaEJaM2Y-YulR)UZ|9dZ?fXFBFPA<@->uV5QDEf-jN%~IL zBKOx0xxxX|D zo8%*!j(4|i9L}_on{lxBw6-N4h`?Hr;jve!+Zlo1M7|pad|oY5E7IukEf6@J%x!g7h~EdNbR6~Rh73}0vP5@V;@e#hFq*3pIrDlyxhEzr%-s1D9IJa~ zmeIdGcKIV4WY_6_I&)*zyx3>n268-pJ-#57WCc^49-4Itumu>k+U3`WEsqP2Gn@jL`Q!jc=1IujFlE~lNet#U$#O_^ao0}P>@JGR`axxcl&9Nj@fmliHV zF3G*>T`)$1fMF}R_>8HyE~H-8`Es}JitPkfef*8zy~OLt_&lFuTgU~o=!ekyhr?=y zB6{<$5etlmm)oMZ3`KN-750C5?2Z#r;3b;@K`f38#~s>mCLz#RTuv{XS?;(RCmQZ$R{p%>?r?y6apOgCsn z$d+xaJ|Gsh;Eya}O@@!k3CA`kZFYdRfg47S_qK?h^-b5ni>9&dUP$vHKNm66rNfyg z$4buEx{FpWVq`@PG}#yYe?;aTJ0W#LFk!07ae z)QtYJCe<6cHQam=zo66jdgBpZvt*u1Kg%r=)%B?1(t4--V`<8T$b6x(TQPeR14$no z(l3tEEMZ!g))zud1K5&tH8 z5I}ONC-T_OWqrfZ)xVTRjemFn2vtZmarsN|8+z*!`3O_&-0kAqm%G(h0=F+(W?Jid z7u?9>?QVvUZA=#t@n4-{h8iYIY$VojM^*Gsf7q22p5BnobSmbqOFJ_0xdwV@7eJVL zs|8w4d1}hq<9TQA@#E^vbM+*S?yG4@T`#*w#vp<}*0LLsZkI4~pL_~7fsS+|GMm*F zg1_6j{u<9_yaDl%F&|$3g~TKWR?aJXeH1eTuh*Fkz*;d8#DM z=+_xR_%jZ8^=?z3W_$dr~bqXASQ*-a*hb-JJ>`-o0ym~r7MGVkf23sQV&=Q@oU z1)uon#`oc8RzZVkxwSg*HaNz`1bN{D^i^TP#DFQJB3ekTX+Be|5-2?@JdfYfcQ*SHAz?lWbXB=s$znI>#eJh+RLc*0YJ1G>E zxh-r`XE3ag=4KznU>bMhq{pE#MZ>D~ZOoq!^(-Zk6|YK(>WwJC4MvzXLOrt>xP%Er zWVChNS8)p&D)MV^kd2{i z=D5IZhHkEPSLm6Q;aIB}%℞jChBzWXF<-dXc_7-Ify<0Pz`y(mcC`S-5<+@-98* z!jZ-yoo3vi(b*9eY?SDNw2vi&X|%B63w_aO>0JFb={)^;8^ae-&A*zTsoLnwijL#% zS;+dSAIYBlczoLHs3>du@r!ZQgz)-sJ|XP~HV1}~xOZgo#m2KeReY2y)4=Bc z+TK|O`{103kw?KX4p)Va0J?6iGP4_%h)(eO)WY5h0MnOvI_4z8a*y8+M}*7HoNL&Y z88<9xwQ_8w59ol6w#%ImI3Ve6a-p{z=z|dimBQ+g+sKzIdhlBg3};AWVPHD`&oc0$ zX2~a&)J}P7lM{u@Sg31P^N*)rmJ))!$Bk*)s$%4K#HrT3NZl+P!QtYV4n z&D}f(B+I5bRO6d#?zR)k_K=?kDhK{K8Vevw?;{{#)t_7;@$aVML(q`g&b?MB!yia< z>b|>U;=2lDQx{Lk)-6#QOLrvLDr}6eTyyTS&tKCMPKjgPezX_iI=iMAG}-U0DacRg zp9*ttd&(@`#AUOXGt2`OqMFaNoSxN13FiTukP=$a!b@Yq9;Sr|-Zv@#bsln=q&Rxc zvg@}<*n4&>&$ztfI~$9Jha7G0=5TgX|u$mW3q)~C2gQ|cO^i$n_3RX`)Fq>pFr(4P_2;kF7 zD@5YeAC@%SlHg7eV(-HJfioB-zEOWaYS@(FWOIu8(T0gvO;Lp1N#ucbm`TVCIXbgg z20(dv@R}0AJaLPbI8M0uX!xo%GL?84Eo>qCCTZhZ$h(nR#KXz-Wd$Mq4lfMV6o&jc z)LkXM&N3!olZ!|}C(WHf4c-E9&0*iZY2^6*BSghQi6i+&;7wEU0)D+Zyg;c3{NMqF_@|#ICv5?XJ zQPV{KM((rgq7AL{lG}mQZSZaGqQIxAMkTGrF^m}}P!sxPJ!uk@h%DaO&o7Og}5D;yb&VcL7j#(7h6dj~8QQ@3|D z|I2BrTl?VZaXu#n+kB%Z`;RbxdSC2H8e0zvJMPvPz&VZe})g=?y121`pv5E6Fd zUh7vYIOiyz=cUo=G27>ANj>wR|9;bss-A>O>5B_KmU2Zh&CC>giLvxd^F&Uu0_huS z!_Cp7VjGK_1)AFuX)Nvf3Vc3K+eAw|I;+x_Q-b9;-xNH4-RTax5eT)E*BPweuaf*U zd{e48>}_^WB2cKT;rXuXK4813xMvo8@U+J+RR2XvomoLV@-{;dr^^T7?|pP@bG!HtLPwrXGc+>E#rWoC zKU0$|e!pdfcE(I9^}mVjfMY0V-xaPFs6DkGNWhd096wNge?KgmCRvz(xg z56WOx0m49zOufzkW^VDi@lfB0V+i+LJok^MQPX*3l4eNCJD-0l`hQx~S?>L2TS7=t z{y9yIQfJ?Axw+0(W2C81((PwCC=l9HFxLjgrll>+ZT;I}7FbCdbGYtsUvI zT$8_W9ijD!!L$7lTx2xWUE}l-+gN;Abmk2w@gxrk#vxhfa~v_`9p6q!+UM+kNu7R? zHBl}Bm#nzZ(8nOc_xtvrW%M>a+5s7`ZD@DsdKgz6OwbuT8ykYKR(2G0axE}0`! zhGmhQLkObAf8Mh(8I_g&s+9N7d!1U^4U<}AxnuI^PT<%WvR)_WJ+}C;in=2Ruv@$5i<#3lB4`(T(Jdh z#li_e?_m1CRYPO3g*8C8Us2=rpke(T?CXGBkG{5{`E#Fz{5(zg81~HbvMqLA>s6^) z&g%}|jqA7%7elkj+<+##@r82jYLDfgpAhiTxA7ZRZ@l0iC-Bfq{}$4XX%w5Stag!m zF91Dv7U_s|U*COznVS^=FvE$Fg<9PNAyHv94ez(F{<=B~b$bPgt<$MAJ1~!T>`6@D zDKEXyquR*085c&3L>>XdUP*2dd`x>_d8WA3(H(yc*AZ-ee%{p1@yxNn`%xv{z3H4g zr!D3i`(YSb@CwQdmh?_rBhxyYDT@ajlV(CpvoC-mtCv$j26wy9$zuKCyhScK7X5jP^Uk=Lacc1LuV*wE_G={ zh&-Qs#QTsJ69I&G^7wrILOJQT7)(~K7zHRn`j!XLhqALOySE)__Cq_L&i_3^BzD3= zjZ3GVUnI{j&?3`-+J?Dpf9GSRtm@UKCcOqb7m&sulh*cWz z;@&H;kxef6<+d?jV06uEW6s;ss*O2Xj%nLTVfvZZwvoF9{d^|^uRZT)7;|K;t2V*^ zBI-y=mt_=j<*SQSUo`Z@JnW|3yv;C-dZeQxj{z#Lf57S3a+u_`x#m`it(00E9YwW? z|r7Wz~dW;FetpJc?bmugv@$wGMJ`HELo@GGMYZ|b!pA`ItwroS7GPrf`lE$Y>IB2y{t_4hBKM!kG6Xy!mvWWn zwGnde(WaMN^r!4x|(c->*4t_I2Lo~#ztU|T3vWE7+^ZB!G(w~%^e&V zwY;ync3Q2)pXK?N@j4i_Oex*gSWA{Y!UMpT3v@PC79tCawR$SEnpNe?&Iu;z*#m3U zN3~tTEw?vWcN-7#V91>^F90a~sZ_SIKbZB{OAm3R?&z)O)E^Z3#)+2oQ>lFAK*dbH zAz$k*M5FgD%o5hx^Y)=JI@|BNa0{%JP}#a=c{x3N5V}_0sEk{MTHjvHYX~ADH0Noc vGKEOb|K0rZ+}*|RztMjO9s+}0o(F|IclTgZR)(mkD&1mZk(AUk*Jt}*k*^SG delta 104766 zcmZ6yWk6NW_dV>T;nLk8-O?=xh=g=^cPN4)C6@;2K6FTlGzf1VlQdrNjRP z{QMrj&x?6+4tw^@?7jBf!&)=z1@QR&$oAfA8wt;<-(r)xfZ=TvOeFi%?L8X z#w!F)HjtuO#bEyC_(#88FTM#4{>*e6&nOW(k6TN~`$l*b9q&uHcIhqwarM$>`vV;I z47&w+B>u_eVDKIgr@igA1T zpX1SqtE`ht9-fublP>xzH|{gK(W>6%^o;qK{iU2G+@-4P%-xM>=Z_<3 zo6W@(3Rq&<>)rd25r2kKDFVJ_M^vXN*iv|)A>j0X$s_Re!~EDFH{X%4cBvLBua@(q z2oDJPgZ+>amXiFgW!P+WdS+IZUOya#MRjS*TQX{thklugeB<%syvcd&-szohf*j`o zzrwVZs*(OoqL)b*_Po{ECL5N31k6~-#L4YpoFGXFN6ZdOFe{5giBu7ikz(Se5wn$F zRTc4@0RQuG{O~E}7o8;oM&rIrlZt z5LRCrL5pzD9y5b%OS<^Y{-6~!`t{>GhoJP2gr{hVTqX5gLKqLkWYowzYd_2gJ?&s6+oP}jvvM9Jf8iWRlJLQ21S7yi?a)ySVH_7usLw>W(XrroYW3;TBsq~F0SM(1{$Ayh*{#zMr<>?oBD@C^J!GWPc|s*4Q9kk9sO%i+2w6A?ai<@4bZltn79Z884IkgsWHge zNrz>ta~e8@Ce$!Axao!#`zfDiD&OOqeb$|aH5?3UbscMR3Drh3%jVxZC;x1VdJ(`n zSN+r}K4(3BPj3%MR$!#KtS~vi$P>Sw|JB$bPhWQkPrZ~o_ zVRK?%_}4ycYGw^j%D@jYe7eSzb=Pml(H^c!v(iZM|Yt+t8L$$m9%UilvYFED+txnq+D);?Q;GNO<3V|_YLLGtqh^s|rhwh4 zKw><^xqgi$XL%`dpFO{WU?+0Cn#wZYw;@gu1J-L6VM$udwJ?<}wwU|^%ANzQ6lf$= zGZK_GH5nwG$3bKfCV4vfn&g0TS0{=hQPR2@s`SoYd7AOM`H9j5c`bp|ZC-v`rk0y0PkLlvelDd<|Wn_s-ZCi?mYV`#>JGoZ6WZYBiqFE!AaGY-nb~ z+$0(u2D;^7bT}1}_U3)fz4XliR%uz|%^^Yj@+J)Vp9=VYgy+bUbT|XrM>PtV-rmy? zhv`VjCNo=x%V=$4v04hOvR7HLZ+)0}JXWJ_K}ukRsH@-!q#HyTZ(Oeqt2D@?7=0~L z_~BAAAL*4*@H?wzN_SyUFfsVs9H|=Y&xX6(5t$YFbGdh~-#$_`ApLAOAd>!p_(3+l zYD1^%WMaX?quoXhw`0inT4iTI;905E#%Q+nQt0L7y#r14-(%7%Rm}&135ptyt4`@F zt-%Mppyos^*_xH*jCz<%d+LSa>IX>RdsUN{mKlzzPp7DB3R~JV>ZHcBQGS%uz%0Ba zUq2V-o1|n@E1uykT_WL7<58@YNBPi^%;RgMSXghaQbZH?m(W?1*$%1DoWwNj# zwt_e>B6uROtE7YQ9%4eCw0c>;TNkKbZ)zk1QW)t*y>aEy{@z)6`HL&0gt&{J6i1tZ zz4$Hv1U^-DJ4Rn=rS1q5s{j4U8kjXVO1?PzR&~#gH)9lK`Mkw zDa3=G$fm|$PHp{Cd7Z3FPyp35voTH+h?;QyGX;AqgY}SMkup5um)*R2PPt9GKa-X} zm+5_@2^ffu5B?wc%hXGLq=v>o&}mT;t21QRRDSFfuq$^&uIPOVXT_F$KXXPSa;TdtL1X zr|Z)Py~zgIr?}=8v{pYCQS`T>u4fWEoI+ zzz(C*YI{1*xcBPaUJj;xi{HCCuwz~WAJX{4e94K~<69zRkx*1-EqQ+7mC86rmZ3jI z7XIv2_$hGW4@dVXq0mg-n=k9Wl`{r`!*q$X&D45w5e9tp0}s)@xPNwo**MoqZPm%_ zssSsEp^cXuo1?;=J=B7a&tA>>7Nze_KS0W~k}k}*(nV+Tv_*8R8wTO^FX6+i5mkEBinyR8C8I{|80uP2?)O4ImnhLtPx_B8 zhI~)t!pwuA@G){Sph?^xJ zrARPvbcPC763=XV*zD#>%Sn11LfTJ%zAI!k@hu z&r>OpWqnZiX-8F^WAn_GMqVt`oOpd`PFxyYATMklZJx2nC%@0~LbX9AT^qzC~iI|x$^77;QUL=fO{g)r6#Q&D09KM9$c zYP?wYaDe-MBJ99kD?e*Oi^!h@2N5XHw@z|DVO|1S^IJ3n5rJ127|CQL!sX!=q~)g7 zc%Z3l?&e6#!wZc3B4e(Zm&jp-a3{Q|(NCDNJ4^7jg93(6#OP|S?e|b1e78OEc=&k! z?a9ZRTuR8CaBYuK^W;U408ouB%~Z2j2*X6+6RCMoqX9{9skxg(&F)743Jhm5665jk zbN}mup9k)PDPi{`v}V3d%kpNCjG!(91jL7M-+b9KfdWF1cntWGZ$9(EZ7B#HI*_|S z4uAg?vWX3UuYL(PdSU=M#{$d-$(aBwd1+kG-44?D*G|V3GKKkHe=Qh<9|{CSNil)t z;SdApZTLX0WQYMC@NR<%{Lz!a$J2g7Dt;TO>hvjt$|3$JYQT zWkNVj7_sL7hnW#1Q6U0%Y2oGL`zJ8Ge88U)LS_JN0tFr>BY1)f4-n*xA%Zs<0{o*8 zP7(NofzRtC9DvFe0u-EOM&Lt*i2UbD=zm?s_4D7k0^zRWGyx5BW*vZG6X6ON+<^Pf zkVn6NGZH4KzlC6l0$4aP6XWsn^Zx6EpYJA7xAOrB4-f)n;Pd7YdBg;^2q4;HA@B>| zPAotM@eCfSn|XonA0s|Oh49=#hnHXEUvC23H{L)2CB!sI!22;G6u{J?pa72|5H+y= z56J95W-8(pMCisHJNQW+oyGt`;4g@I1^xvwFFb~D5Cd=g2{ht-&2ec?JK)D6ilxM*neMo`)V< zo`(T%PREk-G|^Y$U}5K_QZl6>!TN6lwyW*GT>V&TAx45T4mLnE!`Ck$*AB$9;=I;HEzS z@9zPU9g`Rq0&VLgf6&wnLY4)jP6dhYBu_t%Q3DEeuUfy6|!IqBf&Dsq4pOZeLg0Xi4;EiXLCr z#{Kuz@8>P=v!G-mP$S!Eh+}+al(4u@KD){CE>f-y3G?BZo^`skJJt0U%hRu_=)CKi0c9J)d8fKoN{&;df9wIrh6X(P9E{m>iFnh z1_8-I*?TP-jreU3Z1xhO-3nvJ1<8zcN|I2llfcqm8q&KBcTU znAU(XMwhkPjDFEaw|1LPIFR>3_<=DU(Ai#0Ay4m#&mOgmGT!Ien-y7Hg~+cNN^ zUtTWPk&a3YB@*LDaI^os<){oZ51Rp+9hzRuNd)8EM0o7Xdwzsy)yI+YlxMLRSaQp! zdl71@J?&Fy)_`9m`_TTrMDfznn?#X*v`8oxOe;JNmN)nGYgyiduZ(lk_`v8;@-8%q z{;jTbw4O;Ey-$f+i-;NKJ0C%`iqn$#)m~*r6l(;56`~&*dl~t?1KsQ^+N(qjCi1MF z*-$JV=BGa+W0jtXMw1YX5Vc5kUo1kg=*v7^n%^lAYGHVqwh8K)&67YYPFqSp_BL0v z!B~cmr9_i;`A3GujL-`Z-~5ioKRlA?Rp9*dgamKvO`_9>6ZI_Q*WS4=IbM#+@Gid3 z8@GCqKP$t_{U^Frqf?O&tLIVm+g1x7T(nOzNjzDHFL9%ZyT*vjX!(C9zC-MKxLOi6 zoQ>2w$9%2$4S_zY|S{ic_DD0)(1stgW(c{uM-Tx?(mJ-m1YmNoGtGEYU&u;nobxy>+8t7UOK#9>cPRG zxkev)bJCaI@vEk$X2Q$e!}H@R*vd6zG9+P|DQTJ^S?f`BWqu4yCrsxRmH#;)qZZ46 zy{SEaCUCKsx1@V0wAFEjNDo8#4Mr>-jnSecBN6nevB_eF22NWm#y)vZ(xzWNNKM)* z8#Rg4UTEf8YBM;TYd47E-Xidf^yh)*ho{_lON>-H#)e!J;E)v#VHzoG$TI^OUUiDV zXa+|J-Al+5o(8Q9{|5U$bNaxlXL^+3FrkSD_e>vdgrPjC5~+;z(-eGbGc8rOAV|lF z2+UD>w?@Cm9QAW7Acwpxzw(tr?(JaG2$tHHICbuAnT`)J*W;?eJZLVa$ zvJ2s8u)L_Vmw&+*iHkV<41 z9{!yX>pJHBOcp+rxiViYk1nTKK2npL;nE9b+t7cH`ubJafFC!WOex<^=^h(?6aRoT^XHM8u>+h(ptm7{3svC(_P4$B4U* zBM8(9Xltj$8L;y32t+GhnrPA8+tO4eAk{;C^0-WUCMFO6@i_|my&AVKk=5rM`vd-R z>ge&52`OIe?X*mCE=1h9H?Q7Wo__hIM_V+s(Ne*-P7ReZ@oby_-The%kL=jXp;GItfOo7 za06g)-(0;?nfk8}xYG3!qO1x;es#-;gorDhIrDI|3kze6Oi_9)=h99YO!l^TJz0&L zR?ao{ES-sbt!GrN#;ZptjL`~5=ME&Yo8LuQwZlh+n5GNTu%B-3pi;gG%TREW!#<|x`BR6ST z&!ztHJcLDaS@~y3n(p+n^4nmta!Tbmq2Mab(eX89i!$>!x_yM6nxtZkQE%o6#Us3p zL>*IvjFlOwh|c`lk1$Ss$_ZE&%he1VKSmeDV_4vE8Jc0+GORLu-9%csXBLwgKT7dp zAN82co9iuIT>_#}Im|p}A+skq*>3APW3;d&ZTrjZ zy^@IS=>e-N%ctDI;&e(3L|rb=u0oOV*g2sI(JQ97fNr-%1n;rOo1*7>Bl$yxNO;er z?sd=DUN|XsO^QuPq<@%9=Ok`-ViQEA*8QZIEsr- z6eqKRrCl+#rbhT;eZwwWdIL-L!L}w#GD!nwzo_j6gJPHLgWU^;UQgGIqmE>S@uciX zZ{JaR>yoW??sN@Zk6`P7&M#3yiGF6n8s$-lPv}Xi@j{wb>z6Qa`wMKxP}zMNxEccI zaz!d>NKSK{J!|CSq?uh{gqyB#L=NDGNI1RdvA}3*eH5lVO6g%$gR6?jJ@H$dC$)V% z93Ng~FFfP)Dcrg&@V~P?>PE^?S=ywFOf1`G4Z)J(aAW%6%e(U8)ku1G0FHKvpbKeF z!6&|GAtGr?dg{7(T3wa82d`Eailk^r&K8(8tj5&L^ZT%6m!771?`H*EYMQQCx)Q(9-S9OYBM78$pB*ZIBsdtI!H= zou7dg#}urdwI;0%ryhc0S=m?ot=wXwHeDrshY=ke9843L1|xDFf@p3$EMRN&-kEU*_E=YL&gmgB zwXbE!i$(8gqncJsn$1NEqVjdSD?RS2y{fdboW@Lxjfbgyj{O)_*z5X<`*2=Q`C#%mntIZVmV-l)xAey&Df15R$~8H;k|Qr6RrA*Y4-9{q1)>v3Wt&QvW<4~_ zDjU)rdQc)Y8~+)mH*o?r{CJKW4f1}yUpMwNotFmmPC!fM=s1M%z1k6Y6%yZWS|0M^kU#UM6&FiYI)_t~Yz ze#Qmf=_wAU-k!zT!GVu?G+vP!S`!Doa2UNC3Fc~Uh3tc!JvEFRoc0hx&!&R)Ko7Su z!qc@M(Y{EGu=@QTR?uYGt1ChCNz1j#yM~GB7*yuInvQGytWchAC$@4?a{aINI>9Eb z2Bm`}MW|~f6J9w*VI5_3S@A8OzqAuEYqaSUa>uLK7e270=0>LvI6;HHTl0kmK~toD zd9m_xQe*^*dOedn{A3!7MyIFu6pQMM07Y#{Ev=ah3T*zu;>Rx0hd#Vt7@XvV$hKoe zoX?=tr9!=&Dz72s)8knBYG6N=Bk^FYH*C-T@Z)glR*;dXXkPb~*mNwkQm1O&x&IJL z9oKPJ>N&UE>>I|Do#N0mJxsdaXhj|F(kpBgTNVS^eT2ha&iJ&3{@LAV@)hS-_5N<*?(fSKKoXKc6;ehFQNK-(3k%J|GCJIm;TOac>Q9Q&q@}^Sn3Dq}7HDFfU?x zdBV;CRD1GBoRjzWsdbYJ^-k($u`<3Bng0l;G7s*#{))WbXgqB-Brw{q^#Wth7*B7( zBd?RQzKzCy7PU3hrRpfQ&+i8*FURv`gH9X$kCm{fP-QMp3xGoJ(8^mu5MmEGX(H4U z9dP=UB|5n$-_U@&EqF-TJ1CpEu;FhA*b&>VZXX;S3@o0xKGRuyV0-xlS?`laov(nY z|7SMQk>VcX7h+!fgci$3isj1Hz1j^dp!r#SiZ4jl`kB$!4!K#|!=v@|b(!lu z@0v!vNv|G2tu(6n^SdlRQcRxk$ z@f>lGK~sD?Iy=d zHo0WALKF~9!NU)VpV;q)7XMS^es6o^1wBRfABxtd!xOAemz?UaxlXd)MgD1D29%9W z@F?VTa?Lg^f6!7Wp2~!S2v@RxlGnA^Oh+sn+}|6G;l04+C4 zf$b#(;FLtWaBX0ukFJ^T{>FZqYe(#cwt?bIB(@FaG9J3T-3I9*vOu)MUeE> z_!_j-i#N3xQD*2ISMqm$S(svSo~}jenQm#dlGk(38XLsP8AXP9BL9X)Cv7zTjZv zok)94`O>2ri$;8T=Uaa{VzTBGH*wUfvfhZbq6(ZNb)9vGaEvcDjMxSEfUYLu?UNOv%RszE%dC_L|6`ZP*y&8sfrw?2}wY2%72 z#|4`rRx~Y&Uj)i)8hbyxYt%cJqfvdwlYOiS zitN5@`|naV=*c*`An)Y5yz^cF`S897biYo8QY-53G;npP^!PuV7&yKj&35`afSB^u zsKViO^+?kQfmjyLZYEyVJ@N)l?yO)(dAKE5LHa#mg>E5<`lOW;TM zqD+*YK-vP=O%OoFIU>nJH3h$` z$V>`WkbqV&YFQSVJGj(MyqH{TKeQ4n-z-REJ@$XBBtPH3tRz4G9V3xO0`Q5s;K|XWxyHE*jhP({3-;e*Re+hKG#=RMPUDXD z_YG(Wqv=A2=kzw@@^5M8(SfCM875FEfhOx_9=AEg&7;XAKoGtmIrRZFkmd|1ucNu+ z*#T}2c1%#Do+gIyj_u?Z`IqhF7rA3Q;Z{(Pc7W#W{0=e_-L$sQ8;OPyfa@}N;P)}w z3S9V{)aON+z^Y~13Fs|(tOxwqqdmVNkMG98JD^>;K_;9FCC1_Ymp&HYzN3$C2U0<~ z-@6A)@6$p7??MhrQ1axy3KpE;h0k9PSVN*a2cnVa{(tk2B1912xmf}UF3-O!5a9X$ zRuDo#S4Tnr%H?JaOkjEhefo_ObtB$^Mk(|!aNu!-KQMv6i|D&B|BLX?kM#OC5r*qd zOrUuSeKhusvc?D!4$!;f-SuDuE9dEbaDXZ{c3mKFhyD`a*rESR|Ca316A;}2f*AXM z@E~x52bNGMG6M)jX7u(4V7v6tTPb8Agz*%C|4s||8@MpWR-#)$K!E>WK|p~2RuH%` zf`Tkrj2y$jbSUFrMZohJQxGP+ly0#>@6GfT{lD783TA?@N${?KBcqvqVBCcyE|tj^ z`@fxl`aKgW9zge&h7nY3VDi9)cfJ+(HhP%wvH#l^?oToKFnMDk2>jg` z98Z{ruU;za?CJtQQ z)dkSl*)IV|J&iCZ&cWVzQY<>>oqBjzY!BHj(jfw1)fBtJ%|>&RN#MPu z6b{I}#vX=sD^KYFI7jRkHxkQj*x~)Kz{khzkMV9HDa8FRB!#&Df#d=zM{L%e{+e9K z;fMtj;1>K>$yhNqd~Vo<=et`W{K#|$mGiZY?Q>Z?+81e)k46gJF$e_^0+VAb1@VhD zw79O0u38uwsYevU_1037F=Q4Fs%_nE*Cc9|%xVvf!$#kdo5&Q!?OKvxm}-)|X?NVw zP-{-+D)Rd_lcdoY>%(lq&0`N^wg~Y5sZeZzD~3+gs$87#-b1f9lcA3^QN?w&bVlJQ zC8vYUOr+_cSb1qRV`J3uNCd&-s!9az8Fzp53_P~B z$1&DgE3W%8TwIo2x#Y}dI?9=zF|TXgnaKB5#56BE_ljSnqP*1meF6v8WzvTc4* z@rkmNnL_AC4l|dz6!%ESxjqnyD>ce1kq%Q~L4`ONnLfK!?xgrzLr;|<4x9@@1un6T z%ZPwl6VmJ}n{cU>HWz-6=ARp^3*M#WPj&XKG8`1!nq@DADJ0R2*;2F3bUIqF>Id65 z#0{`KXa@xk#W@uKEK&hjhKEYK)Gt>iG$&e+XpzN@Q%^j)I;;z2|M$CD6)qkAtUZclgKkB7~sn5Q#r`IRyfL+(=0j1x~D_qh)mY*60kYx%naR()Xv zkqdl}$PD$WvoJ&gpRgjcmaxUI^n)r4_rCEURU>`F=hls115?<^knj-K@Pm0=o*@g# z(vx7=cXrFtddH*5wY~m&-$F}x5k%RHK1EDL(8gP1NqgA35-Cki_u8RDe3&F<1hFSB zl04DzbFm`YlrqB*3QXfELq)*!8JP~UR~L&LmkK`pVA)&xe(oWGCGoF>N_hJ(tB%Fh zN=fa5*a_5#<@`|M_wt=0F^*|Irz1#r7;zUZHqlzB~Q)+XDyokt8!gw}oN9)}^sqNl40%%iwd z$o)#>2(5dD;uT0cf&5yfu0geg<-9)?G-l3eq4{QEcx!c67BCGdF;X(QPCQ>-B93@@ znIt+E*=sIxIX{>>K{i6_y#vHfd^;NYm9T(@#m5AbWhQ?5Id6H%n-p>=kF0u-4Ah?I zq#-qbSW_rq>Z4HMg8}#H(B$5He#^8M7;xlwUoBNIGp_A$fvQa@abLP2>ybzf!cNAb zN!VK?a*dvxU9D3>2U>Z)b@Z4TWsjm1%=#SmiDPkj4DE2(A0&>S^uwkf#yR3hD>CBh zS9{5jNqe*S*xVDPbcIR!`=%Z;kh^5~Gh%5Ol94|`v}XxSBRt^Mh<3H2+<#4$(%t?; zyC4zS=rCvP#~bO*LuGz2iWpMY~#mc6Ied1k> zm$dIHB+r(0^S*F-Pnq1KSY}>idHI5)Trig?Gw5UBbtsJ>%%>&wxfh0+_|^2Uo=vA( zUtb={Z81k0pDKfAdwmbu+?sG`Q|l1l2R2`XjoyEOd1?wP*DV^l7>Jk#vSBw=%PoW7RxG|Xa3<+S7% zf0juX^Wv|JezZNFII<#tNH%N6i{;S(p%HJBVl@eb;j~FR)SaV3a0ou$zakg+Vb$HJ zRz~-2`;GjLxIQH3Aq{cKVV~*ld?`sfxOQdp;@s8u z>|ns+4Xi=LzRl#>{Bg-q4B|BpDRTpqkov7ZvixATJX*e7(nZdmfs$|YDil+o#-9Q4 z1#0JuX3Y>&x^D8-TD9u4n9wX{nR}NOYd?bvlv)apgQVn4^VyW%3yWMwG-6ibDN?8f z>UMEUcgARB`s|8`J-HWk9^~sAOde=T%sSSrgayl*i9b##_{Bzb)xE;-#DAe7NZo$7 z{x|Wf=XH;M51%QaWOlm52JC)}%Lc`O`XnbDe5gM z$;m{^U3^p6@H1XGOcUgYQopLP45o}BI`JTZO+zA)w>}0U$MI#7tUq8<$&no>iZTEG zz(zG&{LIOBx-~>)4LkeI6-4~=(8aeaFk)p3DAG;$&n2KD(D{J-yLY*^?Z7VAtA0yV z(EfUaEgL@kp!=G2hs$6Q) zU?X2wID>d%KE0V4bF(SmuIE~GR$_J5?mYI(AH^5LeWrx|C7Qp6)o*wE2siKhYEs*8 zj_2}`g64Rg>$Vxh^<+k74#QL~OBQWU2@t+PX7;nhwAJ1_lYwL|-0Kcm?n?-kadKQP zN`{5hg-U&`UwD$VsOzo-XRANeSVydmgRqy?C6nP2M(E~V#L!7(n+in-%1(rLIVd%Y zc%3=*7xg3^Q;cqCtmfZx*~yepM2B7`#q1uSsPB``>_K-ZCi_A zk}p1-m-lvT81avd9XzyVIT8I$`l~A0k@PUi7&@ACSjZ>ds7Y6GZe}Wbl8Z- zwkSAt^zgT#)*&|Y>xl5qwtY~rSqg@|vT>1bzj6x2p|r{P$|(^r!vE4*@l!VYVXKd1 z7+Ij|wb?uWlgI61(}O1uQ`TQC2Kpne?KXTZwh!&-J^w?xMczG%_OJ>l;C?%y_Z>YU zs@y>_&P*%|1WIrg46l(3-h`$6Um2!zXz0 zq1P|rS<*DM3GLGo@yy4L)?_?usQSxpB;;I^B@q)V?+Ts~_X#lrx+LB;55+7id&G2n zzm@Hmk1Vjw(Bt`h({k~8g^DF_@v8!MkQ};16pwGPNlp3FfvV5itLAjoVXkTHOm+#m zN~-Lh-H_g>@kG+phb^iK|Fh-N<>CdLaO8TJ&hkAoE59IY?e3zhwo^`kvk{l@6L!*{Wg)q1M2-vWa;@_d3%d>5kk1*01cJOaD)hD4BIFONXF z2b`SFi{h8OHWCZCg8uOusia;(bZfQM^7zqI5pOVdW!RwE)N#~Zh1M<$4YK^60<<5S z@PzG5N-Te?Iyc>kCQfeX|pNWj3*z0dTxjL(4_c4=Min) zhY16#xY30CE{hUjyiA-t8Zr+SnD_dyaSNq1OfvOhrB3I;BN`{-HCrsy8b6tJy+Tuu zeLpiqmc>Q@&_cT#;BUbv$Hdg0E*M#iV78>h~0C;x25AdFJ<~u4kQ{h-Ai!8QaP5! zW?fqv42FhOl6BWA&W~11Mx`sD5A45)aWy{xda& zUN|7$&-j=N@i)-vW?eGOgzUwaGJ@V$g?M4PgQ*!fA-$# zEo4s8ze@L>vs$cOdF`WV2#%U}e|`+crOG1C%f%@oroBleM}@I?r_zI(47n#)rYb5! zI(w_Aaj7$Oe37bP-%f$BPNl;BaPWbAfaYt9`2~rpiO#w-iMLNnzYoLA1+J{@Y^~~Y zAC7{9WelacR9)&%b_85F1po9X%d~thdn%N!5*&rH*uC(_6HS8jX#?MPuG$6VHr@dJ zCRxqH{8g&0OlY4bDgS;MPLd@Jk@Yx3cV6r!Zdt_cs_m7l+riK$M4a8vn(5ZeWuk2L zlM3k4<)>A_-w&*CdGS18JS~;?zX{sBorznuu|TSIhM=_Iil&XjfwhwxVrQ+V^3aM%h>2s(_gfyD7GIN$f7!u3MK#TdXPy z&l{l;4pCf5?wX;HUkg2ZM>3UZ(%~UYntI2*Nm_a%z1VJQtmpTWVYqq)U&9S;#PsQj z+LO0axBFwHi?1HXk43&VOT8C1Nb$WV*x9VhVsp6ME6EGnwgY#J%KP@1^7 z5Vgz-+s)BB_IqG{h11+m&*IMpR5p0W>dOToF0s>!KR+p&9_J=JWSh?&{6eX-8NZ=k zL%M3^f&+PiQ;O?+W*E!hO%HJYcujV;=lXo@ZWcgRGZW7kHmJrY-x#qNU?J zaXLZW#aZ`-szxyqwjJoXTrjt9cKE&fvDCoWXlmzr`#s?jA-7_B#Mb@1^S%LY6#@-* zTq`&J=@1K6Dy8q7LH6c>E|lMMcyYQ`E8E9uzRT2Lwb_|}-b%(XTyQ$8q$IW9To9To zrLDB$N(v+r|D`tK^XA4vM_1zO&tSZ44LBcOD$F|_vM)Cz zhgvXi5_(M7;`a!$L<+h`V|=R=P-s#SW?Pq;Gdv-dV<@6%3jM;2R`$Hk(mefua5Q(b zj5k@qD-{2F!{U)(Llu4B>Q7GbaE7rdyQH5=dqsTH_$A$h=wC{pdjk_^JsaQ8ynGus zzD4|*eWv|oLC_HPt$JI($%w`{*by*j?cqljMFDxrh-g=%sTLe8U_PYJsAtlW2J?7! zAIP9NMrt~~j;c*8L!TpmCFjx-*-&_80soWjefC%9Fg`E^UB5*tM5ghNHdV>o()i}>F-2yLoD^^O)wdx39nfY zyOu=gBDM`QEW{@hUHZe*&SG;>fnXF}tZz2&1pkH9idy5T+{5f-T1v)Pdy@9t@_Xe9 z3}OLfkOBVi`;fp3QZXiQq=Um9?e6Tp^B{*R{FMG3kGeF^0b<@AuGI$iw>YkV^ev9R z=exFasYN_zQzC zf$ZjT349b1?0-+?3*TKW0S6fPJSP6T2;q3ncLG0Ud=nHV@GXR29s@3{++M9Xf$~4Q zyUzkfkn;EapP1mo!as>~muwGV{v(_l#exxxm*=0s{4WRb+WcX+RN@V@{>X|So)EY+ zaHBePy76<~5Wz1BIha85Kz=N&8v>INREp(~!UfuUm>9w99DaeD+a|ZPynYS8)9s;l z9e|>Z{|XMQ+sg-!Kl3x+WZ@=~I3oX^W*3H&&o`&p>-+iHvH<&jek{OvUX&a}cNBm# z-ZvLMw1N7U0#~=1#6qF~6#Vr{posb=0ymd&ME*yV5V;d2Lg9AcLZaXZ;vKLVz{wOr zLBupu z`A%fiEK-vdg8-M0#h@VkwpAYPUy+f3hx>n2M)>3HT`N#USB&`#PZ?$M0Q#_uge`w>}xIifI6b`#z?uY)`bVdgA1ptcTCp4_VLqWwy2{^4(m|p{(Ww z+ud6SCo8$}lpmgls6YNOwccqpY#EIBBd&+Zl06`N7q5`E6ocMenQqlx;%PmFO3;8U z!K91OzQ7aGgWUsXcLL*!sFz>7UzXvcbfC5nyWel_1L0P49YNps6p0mKP^feh^(LyV z*!Q#wN9vazx*Bea*NyqPNu9(8CDEUyNxq!HSgky{vZ;H8nvCo{p9(zusO~knqW`qv z^5f+tbUw@MlHTM2MN<6O`*98i9>>^XXe`IOZ?75yuyk-%RPjzTHwEc5+DZ{MOknSJ z=+A!Wvm?r0+C@FV{S`H>gUlv6v+8ocIjnPx`(_+M>=Y*-hQ7%nAXfZpn9N=KBmt?0ZJ7+BYNKZo@mDW7fxk| z1E1*g{spVAYzbQS!6ifA@Jh!UNebsv_7K^M3op?Q9lpj~l4m=r>%p!p^|KtmyMm<@ zRm2@lO!oEny_)G5^eF6v|3cw6TDl!3?&_ zlhSHdthArK7q5_rm<b!p7g#P$M4J<)vLACc!jUIg+^8?ro}<p zy2HZ4YAf2Ak1o!?Rq#HaDmQ5{vYf#d*E}4{uB5dp9my8nwH5zYgjq${2|+i@NP4M| z)O&-2J;M@b+HUy`Sd=5}TE_ZE#rsj1Hj8M=4(y`EWwh~e;0QJ~`6mUJ5EXQt5`Uwt zg0PXQ#q*zKmff9FqWNF+55p{Es7o=c^7_A@t=}`xTzZp_XHY!2uJ{V204Q!*LmNA8+uINdb3@!q`Rm|hpgpo%4UM%U8PPEb-qGsxNPhfV8qIv8iWI-9Y1r$bF zAqlHNMr6~k9{t)peX~XSGB#R*(td~K&%wJ-I8@e?ig92mSxH{b6T1SDJobSC7S$XT z9QaTQFGI>R+BTcPlCj^0UEFN+lof~LVFB^j;V$o z?&I(e$mR(b55k6%JUrA zdbT^%l03_N3{g>>GYO;ZW6yM#)9a%j{~?NWE&6yn=A%2IQ$F-Vpi&B@{eZ!Jr44vQ z2G$jyv4%g4Q2wbQuH~CI9~l|2wYV+gZQ+}A#hrmv4D+swpK|FWv$mLD`<0K;_trJ)k~;bGobT^*70_nA#PXGe;t>Iy1vGR?GA)8tdsOWLs}K=2wnseJr$ z)f<}cEIWmM@qUP!BYF+u@CF0WvkxlaU`Ei`a>f3CT%ALBW=jKZJGO1xww-irc5JKT zFCE*qZQHhO+g9J4^Pj=Jcd$qG6m|_Zs@A*8xdcMO4M1BgzI!t;ti}8?{OI0a`n-PO z^aar5-zZzUt`R_U1!B5Ozvy1fycnHiA*utK_u>SQvugIK>#R!gWw9UC_jx&w25Sv1 zu}s~L`)H*JA6r1?Iu?vbr1W!L`fwM2jKE> z&(6u>tK8%a6U0U#x^YkLeYydsNY?=Vxea*TEzQEa8o8IsKQ?{JeVbo5i^9R5kV5c( zj?PfEypzma9yo+A2W@2T82t1-o~wUSxi~a$&R_208OPV5mSJZeSevxm^ACI zo;5}wODo`BFz0^KwNd1zNqMi4BD{#I(HupNnEFh7Bb+8QaN!_wAxgaBy{cn=m;~%E z%sNS2$+UV~7-2K~IylGo2Ik7DSbC-fU(avH!~oq_``ea+U_DCYw{U5Tth3O~t9{TG zE%N!m$qpV)zh5=Q5WgwzBh@*|VZNZ-J+^nz@PxmB#CR-jcs;OTh6Q zw%tnDfe})31fE%uKhZ9jb{EX3af;6rFgl)kd2bRj&s7obX0o_R+Ki_EqyW&fLsWM?x^gr{v=+>9K>&5#V%|q?PASy%wyxHJp`bi9nr@5qpbKRw(If9)$Kw<( zj#j`k%poIY>WyX#YUjj!Yb#?nY#JzZW3@3or@tKiO^ zY(%3ST4LJRpej0-vukbn9}h@tjYkIbo3^<7Oepg%HutQ0-1t=x!vLpKMTlOC!ecxz zB?-4~V zYn%yRyzQ+kExvqJ;?Mn-!?@eT>dTiJ!M$2B4s3_(HV;g^#g=s|BH^WrgLZ6xs;0o- z#hJGt7jv;yn&91-HIT%+oIf}AJB|z(r+OYlv39{?K|GE*d)YB_Z)>q&~ z1?KqvG5^Lp09^lHoOCn}rxmI5o#qTe!+#(OGO$m^joi={`kb99SdHOM=<;R-;&0b4 zLx{2!%O=UtGz%$I&1f*fU%-;I)jfyJf#`p_8#qG&hOOQMi}G&X8(q~w0=s{s$A4`z z2z;2M=doduBtIjJ3k9jZi?yj@wF5f3-wz`Z?}Q+Y0%xAxN}Gd!{M=uo>}WvTySfy@ z22!#3I=bxLt&inG>yGhX;!33dZI#;1Wb~F$-&Okj_wDOg%(I^RT962;#v=71#1HtpvyJZzS?rnO{eq}_+aF!U5S5^*xWAe{#XIq}W`QkTG2+Q( z{=LA59eii!OV6%?+)daq6))9fQQwXR7{0o{9;$b25?%f?$)n0zfxM4<8`5o{@dG)B&b+Tn z1;1bI$bV;MJYpA^O|1ow$8Ono(_^?DW6W8inN>fZ1@6Rh<&`Z%1MHUEE0h1`gb;jv z-tJB}bAST8KJ4zo`*fG2MOWRVz@H%w5l!wJMLi;8!_;UZ`rCJRNE0fga2(rd#miLP zcX=LA@=aBftg|;H+rbYi+l4)7aggt6&8hB`5zxoAh^*b&0vKYXq{fmZ^^k8(NY`|e zwPVk+$L|zy$5olz0W}+8zsbN5)H1cr7YR*TTfp=7LJM?e5F;GQoI-RPNgG{?)x|FyNG-}CtSbGPr_ z4o>XW#8$~+5158|J3h98@U;??cyD9Uz8HLX{k9;L&0$9WiDT$a)A!SfX!166iSGQl3yW{NxMg63r^&9MEo+!W*#l7MOttr-u%lhQLc z;DnN+=t7D+;a!@pYy(Lxv|m$;fymHD<1#&0?B-*R0nnWYHu>^GG50!yshop%L2(Zy z7e!@M4?>fq*uUPaFy8dAZlA&(2JQ9X{DE>1TeUq`X#Tl|jRJ0Nm^l;b0$e+zIyX`k zVre+sCP-07KgE5}=537_7VlTE8DmRHZ#`4i&M~#DA7VVG5q7*P9z;F|l_^Pq=%CuJ^p^&nbfDfN zp0oW!bpP)tv#+T^;YIW<6 zXf}*$W(3}Anz8s0Z5uz&(JCo}#3Js4qombZ-ow+br1NL#cu3Jam&YR9Jy(trNlg&x zPjzE~RlG^_VcuZH3=W`lcb+25iRThcM}cvr+MD(dpKUCor~YZRArH-QvO)g3Y4bK+ zqkRq6`s8(?bydyawZ?LE*5gwE`h+Sic-sjgaTgMeT^irCvVDfss zBH^A__ABjuQ8)H@UK*~NT(8SzebqS^?wqAw&XQ_KQ|~}8>M8YbuAYbJtgz1@(0uwT z(224L(!jW3L6w;-ywTS}24|pj(Sp7EOdkykbv`UA%p#Cyv_4^0WH9Plo$1@T6;}(_ zKXM3psM6c;mJeA}&ruK1=Wb_#De~v3-_e9Qt+k%GR$$<>B9Qg7_(3D~?s57o@WbR* z;l}oZz#O!V^71~s=p(=%&ZoRlr6IHk>=IR}A_}U02VWQ=xr;Z{p)ilC(l~K7rb<8l zC(Fu%Vzhe&bdv~qpL$73*y6oNR65*g5c*()ekSjkI(kV-F!>N*xhN%XMn7_M#>Ra9 zC(N2uflnj%DFPZcCR0{xuFN2K#hfWK zQ)@us;|mhTgR2J2^t^o+;cMx};EbVFgqZ?)x-8%j;Ft-Kx2YESXVH;4$(5hdQq~4-;Nf_O{mPR~LXn3iO4$Lo*ru$H8` z@aofy9xLg*A;=2UQIWtsn+1obaNvQ2Lmr}W!xy_>c=WVhvttx=Q4$PPyd{}ko6knn zUg^^Q<0Qb|QI;bcvmFEFs6P=W)VX`HaF{^)oTnBWHA#tgwS#>ZW>VM`3}*jl2V5`V zzzJiSf!_?Q6ux4mOxtxA`#+ZP4z{jo>^HGN6W5j6fHxJmS!u1oI z_7vCvTBoRL4tgsnzbKfkV7VWg`@{gw)=!P5U^tA-pD<~$;&@CYRjUy-6`ZE=nvI%% zQc{YV(0pdopur0!)K&h@o?BsiYdalj!$@Gl)k5jJ z2dLvbw{BZLQy)6B3ANlwwR}uQXhj*1pIv_C%4uC$bH>+kF0IKq`TOSx&9CArfWFc9 zeP}ZGq}vzo!(pj=Gvmg6d>Q{>c(*XOWnwc_RkQJYS@adTmS;$YF5uO|LhRDUEb8CH1 zY)22toL2U-zh{*U$!!7+YwB;w8ELpQ=$sr{`6rUQ4MuD)CE$q9ep3kOj@1xhl^!mTsd!F0_nGJkKEe*1)r_5GYuuiw#zM`m&cHmr6KgERFQFz^L?N~p=(LR{U}~Q{rOty+rTLE zeAIB;zCI~z^I_qDq4REX3$oOGd(3xk7p`vn=5pJ)%?KcWx|073QPvT3@xOmN&j0oY znIr^%eh0V&M96^InE$m0u`&I>GG<*HJDlNv>_HAE#ZUf8JUsQ^%zchS`jX(EA_r*D z8h_u|DQ28d6)I{Mg@^8E_oM{3hD`R*Yf%|EKVKQkYg5-PGgsHlLg%h=A?{nW>@~3Q zmx#=wkm(K0MEdgUxI5)`)K?4Lsg&Z3DL!v12Ax^_=Hoij2C zdAe&H^k3sl)alXM__1g0Gr#DMLT4dPiZ}WadqP3D8%J2(5Gs9rUCF@iol;^qrwQGX zq0vU=Y$gh+;$A02ZdF1J#-BjTC*Lf`VzQk;sA%=UxBBaeeLOB1Go=?9 zz)8h!d?O1<1ujoG6`P;NScWq9IGW59+5rfiQ!Kp)a+Ns-*>0(!F03d%LnJxw0sH}w z;o@&5AjhiQ@K#h<##TRx)+2iNnHJwVshW+w-q;^G1xCPgn5cJ>j3v6n!_YHenZV$= zGHBHd0mp$L9lFHFG4J{=M3^AmFvdWn0D4SJDG&`(SsA`L+ zfpc%_s!S2Tk*P-CGo6B$CdL}g4n(#ZbuY>ftD*#tFLC$C0oV%k>=#-}`YdNkK&u5v zDU5A+h~0}Js;??gtysfdwOh96O>&Kx(q2c=k3^V$?E++ZMqNLOJPimnh$f635=3iS z2+?Hy40SFBN4>)i60FoZCQettpzJQq?*FQJ=9ED0aptXLtz_-KiJqoq3 z5hZ^x!J>ZjV|$jIFWCo4N?CLIry-k+t4ECFLl-7V;wx4ZP>Du*5tH!)=@2jG?qwp= z3^d2hkKzOZpGy+*i)%kkm~}G zE|A3CU?T7tePxkXXnM#1PPA?;uQ19$6(id}D@y{Wm4XOU8XQyQcj(9v={adqf;jw% zl_FM@;R)AMB)EL_4e<|i6k=%}#G!4J3Pn}0$t1tmesmZEyHXX#7zgv`R178iu?@aG zRljF)WPgY!vi}h2s;CXc1wf^UO(M1c$ukYcplkAN|1gBG%bl#8lyky-(Xd6yY3@}n zWeSLWik!ix#>tUe;KPg|Y=BphgiWmK5lQjW&_-MeHrVwf(n%R@blVRQ#kzGPl(eM@ za>xna@r!UuKXH45+3AOR!2EMCgm?lvm#!6^JNQJy2;&SSoQ)#91(*Ue{liS8vic*q zZ@6YDr%Mwp1|>~<4V1Tt+6x2{V`0s&<|3z-j?&52vIxxH&(tyc1gw&X%^#%sDBXnG zxvRH1cXm~X+UI?Jl|aw#>&2R7`=Nj*>3mdk!j2OQVS1OAR)+`@(CW!n*3^c^J07dtgc!rFJF8# ztkor2o?iY7Bz5|2e$ok(0i)N2<}3}MtAIhIqgH=kdd2uEH6E1C zclGuT*qCT_Gn30a@%dg%_@MDaauBXYt`Ap`Qgs>}r?d)Mn%l*z06al`E=3m&+^^14 z$n$6YdNzxIetAhIQ6A1%!E>SY*HFQmtm@$p%!Ap2M>el8yH{+fws)eGh4|9rzhl zRrgQ0ubCezq2x3?xK-TXHCQcb1$wz$O-y5JIe84AA>l>~1tgics*nXe2ab-}KIq4^ zA*k5hfR{vvFPs0Co=(7YpnxmBL9`TT+Z_+E#a1M2(=RGpFQk{7gCE3P(YyQ%OkG zA}3sB%kQBEBP~|JonAG|XsDvcpR3=N!_Q^Ac`v)Qs@2l@ zkZr-J8{ype+2JTN>t2x0v!jNnpU6pd(>o?*tHz$u*ai+vQ`7=RR5Kml z0}rzD&E7Ax_KegN>_)gV&gG?v$G+@CH^Xb-;#z4?^;dw8U^&7h@gqCp5V#{Cr0=#BIlkEcKmacLnq7Tr!J`vwQl5RQZLjP=(-A=`6JSv!`gSvW*$EBFdY+6Vg zik<|hbOo?NJ@C$4T_B%xY3i<%`9E3%*2P11*oK0q4;*u*CdQHd;!%l)|A5o>#}FCP zAL2i9F;N)Ucoa`l^^a(#xP3OidBJ49Wn9Rf7>QX3u*u;=e8tw)U57{ebEwAzLYQkm z(n9qV6I(-r5tq6yNZ&d@ez7bdNELVoXI!ck{C!$g{`y<4o<6zwXlGjQbNbZ^crkTY z%%(fCZRF3sUB4LhYSpa#)$x+|x8v{L$6kB6`sTN0mS| z6C2alUXMI{DL5)A+3&vv@1?Be5(7ozc;M<M@U5Ry z<61rBgb`^3MN#5f88$2VVTN>-(hzlJS9xWJnGZ)Mk*N9qZNnHBl0|og4HXTbu6Y)V zZ4%R93&3Y~eR{)MxWmK5G#JGL4~25Z!wMuYBFj@LG3}~H-oQr5#vhjRcD_OI*8!ob zJZfU9w$>$@l{sBN^c%_s#B^?hKg6q=4VTRjRP)2irc`%xxwmTlnqrWnx1(ndFApEI zFq+@>Ce7O?0-+g!YG~lI1R^8m zAr)V*s6Jg-`WeW%!X~nbse#DVHU~>EPQ+|9k^e-LiSkpVyrBLw zBrWrn0)SE?43vyae)!~UC%5+9jiP-K!>I0R>~xS}SMeqV*boYc`eEI@TmGgaf_?3b z+(f<;z$IwMhYJ{=Azm`svGv7p?A}`-5DQm9Q4pL6##E>m?nR4Lw`IzC-etNF@P)km z)5+w2dl$j{`wh!rp`y+P2cP4}VX0#p_L}8xUF1_Bl6Sjelnm>E&$9++i*??t7nsz6 z_j=Ihq0R;rK#(+87P*A=7hUOHm}tS;lf8ud5Q-RKqXptwHbcuN+X!?q z*upZTc7JLom{7v5_M)oUez?v7Z&dr{xf6-2btQ@kG?_(nnYa!yo~3%Yd<||;$Qs*0 z(#?h66w4+@`dNF=c+SAt z5$?IIfU$VQnZ*y&n|>DJ{Foz8ktkry(-f)R#WTY$elFeJ+Ck*PwJY5CMwFwDmBo8!`SMqcZ3-z_8hEg)IYD{10&HTWi>(?qI<30P{xl>#!Pn-X!5kI*7OQa3AkF&hzB- z-9J=U&tUi$$t^aQYObGJG?4Fz`0ZzxQQ?DqXY|$A_JM_Jl7eH8KAbuBC>?#nhOQmD zA|#a4jMU$$$_B}!$Bgz|iuA`luSOl+C(Mkdyj8-o)gil$T8u5?o;x0ni(K+j-V@|O z0AW-=0HoQ!qfQ3ZWy?8k*T3o0d!Om=J0VT~a)_X=PS~2Ow)>|7a+7qhl$KIc`|js? z`C=R~XE&zGth0K#I^k#*-FhKuha7_}{NHtpl|x#I?&b&$7B ztE74CEnvBQO%^TwcmeH~B>g@Zon&UDT5DAPQd>cO@{DO_qE7HAz(+t;D$47-fZbj` z@dVhami~MLWVvOcVok^6S1bJZiH_UAMOy(*ve%tX&gdn4YkI789-7ffIq#o>`q{jr zl_(-+=XOwyx=ad|Hns~^mV5XjJ}XgH$BoyntO(ay`mXrvSv(*Ve}wDn=twRoc{>WdC1RbS|oP_!)rPZ{@q}BRmd1+y zAA;+;P1CC;=xgP~(}^U>0$5NyAafC%QxmaP(%m+Vxd>9ikYw-ihGYgc7%A;tu7rwm zwX{w)sm2bh(=VDLgbCqLf#19%-Xzf685pAhE1 zBq~|+nYd6W+;^M*g1u=fLdWp`_LWRDAs~eBR{jOd_o{@{;l5oV-%~)|tluF7@t^cNa!3gJAD;bRX-U_jkoA8@ z1Ssqa`62v!udjFi)MRZ`6#fnw{Cm8>3cRore6k@BD|xd6o^T{&@*E5+Su+W_F!?_L zgMY**07kC=TWxWvGajYginMu5bA=Gn|2wv)X9Q&QM?K5lrat4piOVm63ND@wHkxNvzz>Omhmse>~k*+&F>UmZ$Q=2!|J;)cwasnUmv#b zS9Z3_(xS%?Pgf2+CzRGJtWf(OfTye7;_JeNXeDlj!cX61cc+jZT7Dk??XG{PuYESG8HH&O(CQS#6QPA|nN<;O z5@vbt*wEh2+v_Lnr}(lt42%@k874)wIL(@iC&jV(0c&4foqW1Rt>pdb09j3g3IaHQ zf)Z$DU7TV+IPw{$^s;^RHma`12e`qbaTm_sM`=O!_j`)UWS};7PQ!Qz+d` zxbL$ptIAG1amlRGmndrn9R5lItZW_#1Cy6aa(Y|5oaiplB{1<}U({XwQbN+9wlS z#Uh;#)Nh#(hu6BzUL46N6a@4+P=Ycv#j9q7;57fm$8-Lef1n{iv4kHr&Lg*6x^G0d7r>IAuNx zdOQMqwBwsIQOi{6U^<)@Qaekxv=Gu^Yi>Lc#yFS(MyCY87AjD`w!y`Y?UP`3h$$j2 zsSMFYQc+bcS5WN&sCBGaGu=1i<CMjw$Jd0<<(PZ`Tniub8tAzsG(mqn6bi=N z5m97C2q8^qyKpMCquNjmDd@PwgsCJ7HtZh+I&PUsAn| zNJF3%669*0!qQ8dA=XZrS0sAE$o2`HLhF_|H!kJ^9TkNc=@&FuYb<7 zN#<%AOu)y@z@?#0?c~{m=Sq(ZmBFc;l6#{#=4vm`+LstTmm19ogID-Qqh3*h_D%Q+ zOK4gavi7m7xH9vY`I{!Pw3O&v9jv5+i`nE#ah_)6!WgN;xd&tCW^)IPwbm!YvgIO< zf)>gGB-~%X@LaGbhs4Xp%~jg`;^!{qDr_7N%IR34C<BZ2|a5+`@^Y+9Aw5|8N%|4?t0*oupLpBG$; zjqCd)k}(d$Td6u(hq{<%D56JD79U2`J@8|`upro@{KO<|3L;r{o<31e;o@;+_RG5e!*-CUnWH~xr!X#-Zr7Ew(^0`8OwaUdqZgk;adGO(B~F^;A)yjr zxP=typ1yJqUwVLd#G%qudl}3DVYC0t?BzDHUO}*R4;iP_DZgGkj_!VAAJT=;*^D&a z$XAc#`R$4goEI2Rw_5b@pUSJL3W;Tyo6Bm?;N9Q^rTk;XwdqE=c_3{zuK@}&<47&K z#!~1zVFr`(Nb=zFan)&uMp)nhE0qBFt-x6+uDd$l-M;L3c{3Cvl*gE5$@1HCN?E0Acl6GhHK1D4^UK{_Jbl(YM!ZEBn-g5&*hKNjo0Cn`x+k!-n0;Lu{ zxwC2H&Kg6{z`gV{Lzim(aXe@+L6T(c={@Fw2(eZw!S9l{d!K|haSQwq>!B6U2O`d4 zgiB0W^OlR|t`qza)!)m*20DZ`U!f80@-lIevDY_NlOQW$Y^_!N!Uoz<%7dX?ZGP=K zR(L7mL*!8iE%FG-uU`&Cx9O}t1#~?Wrf5KoK90fOd^m*3jZl6v!*C+#-(X^iu%&pK zs(-C`*Pm5v0Lin=S2^CWPihZ97~jtfVC(W66|#Cb(2W^M_w4K43K)b9(xMgGV=~_E zBStLW=sDjS&tzevA+sv7+6HWa8f<*j_4WzVT-gMtmhO>tJt4_3%;$PFq-+=`Eo)9# ztd8?~hINg#?BZQFG)k~7sF1j6#3TCsjLdQ5Ahnmz(*zap7ZMyE29k~VI955B zI8jrgOtduyE}<_|U_GD8v%&L^#IurmR2g&d2w54w-b}N-A+4g`T&vM2#^cpKOXqoP zlF0d{=$d9RAYZ4)1ri_=x(p%4z1l!1{=G;f)aw^~kdg60#iVHd|ny z?Ny>-uV^Mj+Iytr;yIT%{u*(78P87i^lQ~eZA+(jQPNS^Ske=BsdfDZOn7|_p595B zxu|5)%hHR)xThLRi$8}ddz*Ma)}Wztqkl|HRD_*>m<|&}h`cxh_)edqHelF0j7mIc zQUovoQ=BXv!t-==5S2hGLT!#;2Fs z6{-g)TdI}<=fEpFefSEif10;9L8VL=@nvi4b?%pAjhvbnmm@e&!8bp5uvB>!)>%X+ zm`J8I{jHEPWE)%ObV+X`AxW*wM@g;h&x~5a!K$Sm6*Z#)=rlM)8N37*plL@NpTQO+$GQJT3jt?m|^o;iP1E%yN#23*o~pG_~6T7YUr_vfRvJ zv5t7a0ffHd>r;wu$wmQUEA_^#aHr*p;QrpF4%sFo9riY6BTeRpw0D6G2+n1hA4q8U zj@{A_Qd&c&tRV(VJ?S;j1b4J~zAl@yp@YGzj+-EuRzsJNDTZ<)s}}$F3pCPWaVB&W ztwFlt4>+ClHhw#dhdBxr?&-$tP^aaI=;0lJpM?Xb;lwNcfqsvwT=P4+;Oe0+W=5Y3 zyB0lD@F;uN9-|XFKUn4@!P8xyN0L6yDF#wQ>81Ta?`Kl0z%|#HAGxjC8#)0tn1Gcl zw!Tc^*6C~zBJRh^r)@Gd8^EroBtnrDA66j2jyjQ>$g#T!skc;m+XwZ~TzrhC!Ltm| zQ8x}s#z5_k+dZt55@@~@0Cy$FYr7jV<Yb}@teC>zLp)2e!#;r@fB7Q zDuf2Fdu`V*Yh5$COpISUBs0x{aVP_Dq+4-`_!plPZziVTSNKOBWIQT4kiJ;jNVa@P zrg;?zMf4OTP-65{MYynP+(NnHuci3 zufC2Aus8&to!;c@SgN(2QFml`y#tB$xynjy+pZlo+G(7_mkD>$_ai(lLYy8D8G0N! zr2Q;`?{4u!7{m#;k=RYog$F5758p2~Yhaf;a&=Uhq6S=sP{2MJLkqZ*pKjMUW19%$ zs+BiZLBry9wF~CS)ZPD9<)pzZD$(h4fzb&4$$riVdBhfaI+2|HpdcAr4?TyCwwh3| zMWbq*6M{e0F(jjy5}2vcF^vVliTqsZ@G4@q*vrd9TTiL%#>E*Sy)Jh$eYEyUMhzH+ zi3sWN8RjIrkE?kAiwYIzNrIZ2Vxpi6bZnsIapaEkq!riKIF<@X9vJWZ68}lv{TE(> zw}+LQ0)K~_7>$+)11< zE=AZ6^+5;kzhXbOv#;n(=6^p+oS(f)X`+@2P@eCE0?M%8^XstdcxkP!V|C07?f%~U zl4WD;jTfXsO=kK|n*+WNhWmd`Se(>aw5K!DA?FFQl8Yi~W;&AZhH zBk7x-XPD2_Df=#{i63f%`~1SXJdz_%-h z#wDqy5m+=s)ofmpgID+K3z@@yrSzsSk1cEkjWM|L@lRXJRsLm=7my`4&-L#`zsqZ& zMhT#egH1w{O;G%G<0I|=_2DcDC-LT$9uO)d``3n=*q}1COOE_)@EPzEkct1>>;gj7 z6p)HH6wBgexLvfs;1ZyM=O4&vI|Wc0x$E@upzWS;pSw#k_24DHJCfx3Wc~b37EWP) zCkykvW9Cy9eqxIs6jmiAbIcyEW$V|J4c}E;-~4sn78iwH;ec9s3%+i*-P8^XQ{(3yT8%~b*lk57RI1l>u>s~^F6MzvqY7iSwMv-?vbisBH$@*cFMz6|R?Li{~ zgOia@UF_4DmcaYrTJ26~MRN38KqsR#D%OE%qy}`}s%HS6X!8efM5WtkiyL(eX(gE8 zAg~hFv#+E1&lR&z|6e^8;`LWVTq(D{kcE}XYN&{JJq5EF* zeCO-!ltm3P6?y%U_z@$NH43G>F#vtQA#6{?g?VMRpy=0p`m(Ep#0}@2F)RJcQU+*i z4MDh?bEV(AzrLackF3GIh=to-Wq*JZkj8?gq>zNKFez{DLZeCKD>EQLYlSVkmtqH_ z%+D^Bm_%+EL+X2hEc><0CEPv!#G0ElF`FK)1bn~F9+1p>Bdbo3ul(2v&H=2}WLkBV zqvIp&rg7+~#CS9Y-h-N{raEa*7;3R4k#wX5*t4x)>VBC9~tHu==tnvq&Ux{#L$-P z;qPW4GX$5?Be_O55WJBI5YlJh{mfNHaL2IBEDx(1dJe|dpxKss?)1m{zfp}#WV2PV z_m`B!VZv{U@$o(O{LJg1)QgTND#OQb3x;o-Aq-YvoY2s?x@HNXaRBb5(Eec5^{M2; zyB%}*o}0%}zu0tTcAMwn+25zss+{TuRH$*49Ad|BG-9X@OG29so6A;y-sIv>uGsEU zzlE%V=Z@;U1~C=Ah!=3QiQkF$%z1Xqb`G&ECEB~v=|E&5`ug&^QfZs4ZtAJmtx^!r zSaV%a&P13ENHi~Qp96rktBS#$oKM;{UvG?2Pr}ieUY_Y(ux=1(ncE39f}AqUto+~$ zuVp=nqKC!%nHwMk)7vaLbRxkNh(x6U>UJ6o=!H19c=fQAvuuo$J-e$ne60OJ&`RzL zXp*YP=NtkzA7Ee=6Lw!jD#6`4NKbMB!${N0d)TOnJG2jcU4Y81>y6=v`4872DO?Fu zZDPq3=!wNqK{2JrBEJ2DTA+axe@l)c@BISfjH}5Zcb+7U>|@@tx*7*sv$>zH0!hOr zw8^U?yTEHpJq5CG*mT8sLU{cZ*Qx8R{ajrMi>?Wm`kin$+-EMn(^X1NcP`*7hFtSX zkM4?{358py(ts>2nz%|2i|ZwB^*NnMckN22+92v$FFCQ>tNHQ2c&k0UE2e44g>|AysygR;4zr_G9$}09(lwbW6xJtNj8R=J7WFZ& ze}+gB#{-@meuGeT;P%j>DO35>gScy%x~-C|bNuRf)Da+*^95^O|f$q5wk?KZc>|1=GYeFZ0lJF+wY!93j`J*QW@_g`s#;A&yH7>k? z(J^K(HapP8YfE8pv5-D&StCrQ6tsz_&0QL|$xXsLi&_=1f#b zjG@1<(eOTrvS=_8x9CQ!S6BB(4xnMfZWIhrqQ)$m#MRwcWZGsnO0R4D)gOU_vz2Ts zl(%0^=3SyZ45ryx>V;P#+GusH7peJC2YRU;@%%gVo0!W3sb_l)JN70De|ZJ%&NM}d zga;@s5I!X3_#{``cz>clx3rF8>7Ud{K$sR7?>b$v!AiWH^NcRGsMsuf1(PopdSf3e zd|XJ#zbvq{y^Gq*Hi4-*)CcNjK$PDsJrh^%^YAt%RR`T6P40c6Wx)gs*YCohoVDkW zKj`q&B`>VW`81I3gS~!TgdX4pxHZecfdjBgO9{8V!E_Bh;)4rF7s8S7whO3}=^Mbu zxeEu3M^K50OHmd;WUh~6aZYurQ2!w3#xPrtC3>o>Xo=_Q)bS)%p|=>CiSESN+h~~p zh3}QjVTRdyjT^! z8G^E=Ew=3WT1K$?_J}plOjsVf;!=6nv^Vcxa)bBuCTk0~f>qIXRDzRl_w_O}l8N)d zrh})*a@g4fy%DnC)e56izA!~^eAIibcoSdnA36Uw6^=(L<3$3R%C8z|M`XjX8WI$9>B)&|B0Z-<7k^BH>cGP z5LCh#Zjc=EjV_>~Njln@ejnfD*$S}2H1}gOJiI&gaHOW{s#aRIlWAMJU{Ff|6GHm# zNO`I66T84Lkg1Qolm737Wgr_quPk36i$~+CDFKS_L{Fv07c7v=nG+`v8nX zHCfl!r-x$(;Svm@5om*~+k65!AXfkBf?J~iM0o@XF<=#&m-OKH{_O%snlB-Qp#!xd zUK^FKprNNyGpDNQzlZDD==+Pbv8Q<>ik_Dwj0CU{;qN$3Z&X;9c?IG@!Sdg7u5U=jlK}Enm4_a#x)~r?!Js^!)sL zGqkGf2vFyntzugben|9N18jElkUoz`sTa1p^7r^(gBXIZul;cVe-@eZ9bjJ|&h|li zOA9PNf*>)#MEctW=SXC-te?pwaWLmbIJOAwh>oh&n7A|)C3ULmxw{`cT*!VHZLWuX zEAe$IkSsBK21q_EgdF2eBcqPqYgY41)*`bJRe;ah3(?`m47qV%N<$>`M}Pr+vbN_I zJ&hp0qyd{)Tcj+d0n<%g1faBvQ+FgrnLSa2QW*R_1gAsemD|ziL0Jcj!6eloAT996 zlV%iTjF0Ib2v?syK3l|Ye?dEn@8SgfzJ<9WtuT%};Ga0_@Pnio{aDHO!%(-s+*5=s z4Fd_@cZs<*i?G!91JAdt0ETjk0qP78m+JZ*yaXDtU+SE|@5 zhUmPT5CG-OR-R75tM1vPZp3jBMUE7dqE0l;W=x-eo=ueGH2YJ}2)n^GIBZ+SFfGR(?KaI<1r88Exa^`1m@ zrjNcD#gE2kf-%{r-3Suopa&kni#%E?4iUNi%0&-^Y8KwoX4onbVxT`bM7$K|iG7G; zYY<4&3{0?SX=Y_YxZ17kpKDA5H_P87P;>|@;vl)Il!hBN0x(8v_?9ER8tBp3m<)Yz zR1M9LH2?=hVK1AEX36T6n!0TXv@oP1VtBd-{7fD=M(rfqatXPQ$wA0&nvkUpU~p%M z>3~I`+`=d1|4!bGc?KRgnGs??LCZT;Z;)6~deE(zv7gbNi{7d4k$t;RR#{b2nknOP zhYmGoSQt!~0UX%jjiM&man_6hmg+t_5Sd&=y@t~ZsVJ}>cAyWzjfVPi*jqo#J!ypr zKHWU6b->nr$STpT(^B4}%Om#%1;YH-=b5V?5Z%xSccJaVAdmC*4cQeAJqN8o(p8DN z+YNP^wdUM1jJ>a3@jO;eSF4!aK)-gXGONRpQ*}eZ0qXKA8Rjs*BR8Zdw=gLo3W;m0 z3q;hTo8nq3iyMFTRl(=b=f^&C8B`muPRBDY6UGdY)DO+**N$L>gB%+aUY%&VyJ_i; zgFY-A;y)xDD~%*~plfSjY6$vGc6B}=cm81=B&$!Mu)Yp@ianZ>rrBsB24i4>pqnc>WJn=MD9Oo`tlp0Q4 z`0H~hBf0{CN^?`=O1sg2<0}RAoNl}e={vy!xMRi~Y-zQ_Dvv^lXiJg~VHXfRF*=>U zm{i0a(p3S?m%NWGSfdH;tWs_P4a_64{^tt&(7}SWT`cOcMrp+Apqfb?;?yE2VMNac z(1gf|a0E4dUBeqk{YNfCbJPlZY^XbmPx+61!K?}&E?PQFyi07hYOBY`gXlQmQfRU6 zB~PNRuqZW92K%c$mvND>TY8FcrKnl7--qKNNO8zGt4pN0kM%_ zvx<9SLl7LVVn)SiFS9V&2yBq+31nd?F36lnU>JBZmpzW`keL!8zd9uKQ@~u692_tN zNjVY@qDV;9%s#Cb@#2b5;k`Us}jmc;^aB|frN0iheEFFTSiv!#uf;ql)e7*b(&5fg`4t~lFBWzx<=zmGKvZ}@;A5u7xfq^R^R>jI|bK`j6a zV)zUbj!8TRGWp;60BvqS=vAI`PMVdraerRrds?U=qVNXc@2rrj9ya7-?j?&Jq-Mpw zs9Ie%BIe4ySY`x?3WrV05eN9nC`@%FTnbe^c_; zntQXEBUMZ%+fcJmlG<8yGfLsF5pB7VD?sqaFji4qR#un9&!?LKut;vrNl~3mmu6Ue zvfM)mZ#$wNm!Lu0xrJ_i^&2j3yPV8@08;K{_Sjh7UeT*uLV22|3N+&(vyAr_H%1^Gkm zLm(9WMB8H^FEd?0poAU5%&9AastLE^2B)|&xfLd6;kiflDz6Ch@KDhCumQwQ#BRPa zmpJi6A94lvo(r@I$HNZ{fHaw-(S&o$S|7DT91kBVn}7p@-n+f}buxNbIo*c?>5gpV zhNjAW#0!+XK>B`{u7KZ@7KsOMc!4OHP!|K@yncZ~9HIaK>$$%HK8>tl)f$nsBmbf` z+{;n0JsghqZm=APiZW@wrYSS?(@NR_@hBb+rB4Q1E~wPuIhY#JUM8!-4u**?XyBk= zv{#Dt5Lky5rg#~SUgddII|hD}{4Smag96qx%fM)!M?!=~I1mmtS##yi~# zkNg+?N6Kc4fJvywwTWnCFXUT&Wz{9&IoyT-0Sgb{xjCEY8GkIVNJIPs&h9Ml4KLt| zbSb#c$24|DiLD(5xutoXwPly%_FxxFr{`ljf2#B%e>QOLXZWY_@N_vmyMQSH7|e5b zz=NZi9z*roMN}Zih>Kz!RLY2cBX1;Xuo_%-EMj3b1Uz$h@yFu>+s+WE^;TJ*saWc! zGPpC~!h}wuR^lydmb!q93vZH9kMazqK%bNRZR$C@+XsmWZ(% z98ZLL_jqnx>X1*(%o78gS=nJE+_-x(m)t`D*XKZ?T-jW|v6>&qydmP|Z=I^&Itnsf z<;A&roBOc5o7#wSy6_=h*fwmdv5%h9mf?2TQGQjTStI=^jf*5%*51~=mvL{Mp$iWlc;xU0EkR~HVE z=no#l<8r3qJZp(;wCGOrn!0S3HeHwKyKM<~kQj$VuG#Iu>Bbl^Ign%2aoT98n%hX6 z(;T^-;_mL#UoEh7R^*OaHpe@Y65v(=gw7Zfuu(p8cW-E3sj$P$OVZ#Il4W?!dV41P z`%cIfEm=%_CgT}k2;^F|X(4__u1~enbviIU$OV^wW_=N|+6zdEA=_fqUF{nh6O`q4 z%L|>^yBGD_PLQrXR0mT3R{xzz>o|Uz*R`n)q(F}-Kkrnw_pt(88Z>wp!~UrTFm*GN z(x5vO;J&N#k!#A4=qDXqV`$V+W88we@6h+baGQC_Q4AW z9TZ``eQ5zl!?1hmR<6@3drp{byIU_*xnI**Gi*85uADwnvUaY!pzL*Z& zn_)P8oyTyYdDEhP;)rG;puH0_9M5?*4P~-h#&F6n!0Y4JLYsiHsv>uc3*_K9!IS@f zsk+9hSSy8d(k+EEz~6BMP@Ml(BunG}eT2&>e!JzE+^Pt3)Hw@2$+=Nil+7af@yc+l z$xY9`$7UJBCBFddTHO^7VuAQFzc*b6Hm|keQSj7yFM?-(yrMoYkY4x|+3FOVdE*MA zYO@f`O}_x_Mpt>Pg@SE?{HDA&9kt!5H;d%8(02QJ=?{zZ?5#NfI5v%9f%=dXJeE4C z1`H^Ckx67J$QSB5zTUGu*7M3K)(R zD$JmK1~a@k61D-^iEh25+b(8tH%HNWL~kbUPSmVIE@f#}-}=%H>`R7v?J)Kq;<*zs zEo?oYI^E0XdZ-h40-6L8^O_a-Dt#^}t zLTd`+tb&jJ4c;9JXQdrba?2Az(>g&t^=5DD!DstynsAGyvJoci}V zF5>E$NA2z@+>T|eJ#)X6zB^)ii-ob()b-67-UPh*U~ic`T+d$!9&L<=5hnU?qU;Zn z^c?H*5puYdiTYk_DMhJT3sQ&p`eH;@;3YR zD3RuQKfGE#^(5cl2)+?ehWy?ClO6hL-253tN(x|R;AH>by_B0;+%X5ONYkIx4-n~O z8bcVhsl9$Sy{mm0Sn!_54r4aYk9Y5e=uzKk zr0O4f^flYJ%iFj2=leb5V|FjsH4}Q>bbzl6tw_Z&&JOQSbz3&d=m@y*On_c@_vd-U z(v$E{v-gqP$Ls{HLDX#v@ki~_+vTBY)-Y9__njlm%jT*ODgVmfHU$Ttbeq?~sE6}u zZ@ZcA_j7*q=)z8EL<5s>nN`ASaZPZoumrh>y!nc05x}RXB%E6ItB+!4zQ)(QigA)t zr?(zQ(AD*JGJviJ_bL?)AK)2;Q`yuh9g5?Vp_UXO?k|2F$8o^QFKLzL)v1Lx!&R*~?XmTQs_)dw{pTf>_mv*kY8q zwa~7MvcxFISSIQuPOCo)RxL(V%9*mFd3Oz-`U>!CTt=uPfr*}Ct5hd@i8E5I$I5bk zd~hH2$7Pf=U}tINBp}N0$@qyOkj8e?X;gtJE*O7qcyo5~ZzUktiQh>?!G9kQ!UWVe zgNjd!%B85}W(gZgkODXlF5(-)X>&Fv8qUe9kFa064olu+tFE;02lln(ytM8!XHCOz zkRAQK8HI}Zb!|mREE2~9E`c!43xdpib)Lb@d_TSEWlRCc*2x8qV^X~eo_iK#lz1L( z9w0>}xX6Xtkv1l^mMs8MSnRmtoMGndz)x;D&w%ta!8(u71%M;BbMwSjf)E&T%tL(U zUGo9PH~tJ1n)KV*Sfda1k=y(OD%$$+#-~luqPyWv^DeFciADd%P8ZV8yG5agE|m-g0~^S{JFK4~qS}1U{7>0icNd?$?fJt2R0Pio$R^%pKcW zANTaQ0b-u_n#Kxc*3hR0%)GflHc)(N{8PZ-KdK1~k}Y#A{IL=;vfYPXo|SOKfI|PL z0v~)Scws8P+E(cbF>Mm+1|ty_-doDsY`&?fhmghtpw{V!ltOTLeBt~k_uo0zjUA9_ zPO=Evc0Y;@PG#3!2Vf2011w-wNl`r4-f*64KQs?FpvrM_ZvCceRsE)`XO!M?GeuAR zKhc|hXt3W!7b)vg!@|69vQ^A30W!>jYKj#SN1D7x4W8DVrHR6n?ho2>`7ocUa+`BV zuvUftb}8N)Sz>I1dfAOEvWXC!nM!F;1Rt*G`6$pav(Hgg6V-p>It#Lf(2X(_xfht^xv70z51)MVNH4BLS3y~MT z`U|*9Nadam4+y9Hh)czxoXPayOCTaPLPp*9gMWD6tCAYFr55*VN6zZa)6Is-Ioxq@%8+Vi^!@^-Ypr4dKc949 z*iy!K7wDZ$A>+rcNXYUl!9E4X&TjC47;90lMxkQ|>UY;TAK6j)$i{+f}pvBeinUu)l zcY8GL3|H5`!ClKPUa6Yb#+BvmiHeT_!5BNh@#4ftbsB)_G}>-;9P72|i_Mkwa(nuc z9Q$iUfj&?~jVC2f@yaAsG!o=zuK*k@Xxtt%+?zUM`MrB zYLHqq6K09Sb5c%Y&xQ7>k()+2d)8ss8J}!68FSLj76}^OzhoR$kPVz8JHUI73$4H@ zg|;N8>R0`98<+CtwU4qH8e4-&MP5Tf@622^j6?NIlZJwpEqAl`gy?6Zv{S7dw}X~- zuw`2eTgsT2@8!bSJ8YWAw%nZ_8#j84eVubk(CNEFy`3b_wFmQ+^ljOrhMx7{r={}P z+oTGq$D{6NCm>(DvqrJ32=F@k3`UB3xbLW;LM`a}_?3=3$mR2{{yn67=tjx!y_T&J z51g9h5Lf?Cw==VQrSMV!LBJ_r95mZXT$Jzj(FX+a9=UJubHP^kbQWtAF#|cf@mzbj zwDhvsndgzFF;Yb9dSq)`*$r|6Q9rB7GesV%%?V3RBPDxEm6;YK7w`*la<)hVcw?#( zIvtp(>?5<#9H_r3?6iq*Zd3%#CGaqKga0XRcVt`5-I1SI9R+U^?vQJy_n)6RkkUU5 z9j=RF5*A|~?WuU zUMTtIbQL*tWEfnsbehywt;?;wMoh=h+Y<6U7|XPd%1&qq^4?#4pvUEV}X(*PTHd~G=Ts~Z+Gj+Ccn z02gwDlBD5D5K-HeytiO!qFG{r%nW9Mc4GDsle32TA!c%+A_(|ryQ{+Ae-DF)g`_)~ zp*kYEqXmC+rKu>TLkj+iWrTn{wPwq11|0Aaz6mBVfw4PRk4HVRl*Us0Df}JbGQty6 z9`$6_ureT<)d}b)ukpot@NvNxxg|Xd&-PhCfVz{yQofhh+o^D_&`U2RKCm>`oOb9q?N-++Ej<(5sil<3@RetNWcOlt`D zOwGga1`|&NW%poim)hxyZDq8A)4J_Bc_d8P5l7zf8388ptJ{wM+59;Ogb?PJ37mQ1 za<2@2Xy+mv`h)@9w+9-6T-1AhMpWd&Ux&*{ZAVi7R5NwqyYl)xO1KQ#)#2~p6DWex z_G)_Et9a0_$a(&J^px^G~#CTxU zT^wRVjs$GlY|mo=y@Nyl+jA06KGFEzjmv0A$rEVzcA>UYJ+`Nz4pC!DVybi-%aK_+ zQ3oC55CO2ni~PG#Z(biafUim%JFa)6!Fk6;Vkf7s5LwPqRE?fCPb>wWyejD})?PG` zY0TNiQI`-S4%Nyi$FxIPv4(XMR-ZD7PuSu=-7@{K1h z-2}kR=(Zwzo%l>owPJ@W`F>g%3PThkhfEBgMrLRzGIh0Mf}{R4nuLparBjWLHT}JG z8giYKtY0xVTiqL>Cq6AbBC5!MEwobwhrR4NZ2b0=Z4>q6{(PD+>xOl{M@(45k!71H z(bLA>7Ah@el23b9Gi7r&+OvD4(~t7_DUb5XzZ=TqTjR&+Z&oJN(pTPjS53G3YMnj` zLhUbm2tlv6c-Z0#=ypr}>zKMoo!zibX$+eWdfsXU3gwd zRgZm|9wR@sUMw5`?X6v8tINZ~!L9tou&2&UqHJDv$}WZgiG+AQ z&DO`4ChshbX`_#vnjYEs%(}6GAj`x8HoxPcC4>8e`kaBTz?f2P=I- zk-fGA0Eno+GzA2ZWeV*fg)mUfI;~*tzp^o)NyvhO&7*=q+8ZO^m4t2DO7dXBS@&Ao zAfIX4#Od%O9YBIbz*SKXOh9OVNQf94*qTxKZ1bA*PX>!>?ads@_A8td>P9(nI&;5g zg_YvRNbpYY(JjJbrRx1Wm+C+saf?xR8N5WCe?)o8ZXO*56kNjCudARmd`rlLZ=w@A zV1MB0Bu3Y>5aGlU;|x2K!ersQGj^ZYBH5FF(%%%@giIT9#`^4B390OPNIqZ1d3}uf zZY84T9KA!McOzk?lK8ela!PlDxY!NRBOUeD{I3-P)< zfRZ^;PrgDZgEKMjQEDd=-TLy9DXQREMXY$9d?e^*nz}#3b-D+Au6WgGv?85~TS*oD znSU9m_A3il-IjV!1nWv@$nVNa=~X@h%%`GeQN<1ruom@|V;`HNJ9jn4w=1XlGz*&( zvtN)g0&Ry%1fFL-@rSLaoRWf)vYlA<8QD}I9#(Z>l+Yst$zUloG;~#5zElNmJca>K zIq9CKj{OC^w5GLDL&4=%H!`n&-8{*akcHsevou+&)6F~WEEE^D(q<)|Nn7^-5Y#7q zx&~|g?#S!~Q%?4byYgf0rg3`_&GXO@UxmskC_IuYh3bt?Hsv{@(qs_q3~|g@Kj|lA zqbg#6@hV@dEc{+Qiqz6?57&m8x$*_S+9|#2$LLq4(PlY!N4dZI((E4BxHI^iAzr*r zz5}~J{r;H|g&`OIB_}mrtD+Nt7zPZXbt)Y74A=>n1+cm}X|> zK@U6uSB06)=?gpa=tWR21nW^MBL`yb^6StyynQ(i<}%zJed*JVMb!f=v4BXWUY>&_ z8mhzD{xbH>qE5baV?hr}4Me49K$805pi6mWPV2I|*G>kxghV!oo0S$oAhfuC{0^uo z>Rug1hYlrE%SvZAqb+%oxjQn6E~)=_x5ll>5QdBz*U)1M!W%jg|G(gn+7?Lgq$l4h z@qd5FsvZaM|7oZ;ecdoeG!{-*Xfh-+hcj9y_YmIrVTNE_%~;y+5<;y-fqhS#;n4WQFt z>lcaD_F$-cHMYI9c_J5kYjmO_d)r{OWC2-i^UIf?8?rW?HCp>k|u#;VM;uhLvS#`%x^J|!-coj>m z=3j=^&qxF4Yxt94v->w@!CWi*zK>FW^ zMJ64-z#X6&pWW~tsRzy5Ug7JWoA$?=XZSxLXiGcDp-pTPgej4JvHd?lQwmIw5Om9e zzt9ozFSh?unov__1BL!eSh~O>Z~3`gC6>ahFGQBIH6eroa3W?!?7sg=c~zEnJXT7z zQ9!c|IYPfQH$jXB?Dp`po6J(%rU;O1r|7Tw4>;0)k!^g=R=&jT(lMq+eqtu>-3`a(J{naM&k(4IvlNZYra)74b|-)Bf`0=$z{}_&IpgrC z4KLE6sOPH{;8EkdqD=%VNX)U00`ACz9>}Cvbn-zO9u%((#KjpBrBpar=)J&aNPOt- zQSQ&xp&JK+@8W=WH)TK3>G~SfhF7vWfn9y)c~0hkx5O2fNrufap*!_8zwrJTiSJh! z08@Z(4)f2QI-Zc9D~^5C-bmx9-twugd5-@fJdcJR5G5js+>4{3VUqd_|L8cby;SR_ zRtTEf^;0P`)0!yf(>d}9vR1M9s zODJROV3M9H?g^X$6$klDpLo5jjmdF?@CA2)ou5xjW&1ntN)PE5ra%HzR#!x$tzVhM zcf0*4KxNDxHDoM8$my-P#V3N?xKS#VBX-BUnnF-rr(U}Te@ie#(W+G)~smG;mXMJhsbdAgtcm9SnS>3}$*kd+%noU~VP=^PE zGwRSr%b=laS$y1$znox41P*^&p2)<(7PG=4;O0){$OB4%jVyJY6Q9Ytp{i6`9o|Gk zTFupXK6kvVN^jdkJWH>M&!2$N+?3J62HsBE$B<8&3!I##enjRAYKpWqZB08f!-CPv zP^MeY5kxT0gr(TS@_6KN+&?#aceDz2Pb0yE$}Uu4`aZhUV;nWWie~zBDZ4xZ6{MIF zz*kKc%4d7zSWwrbzSiBUq*81{lX}*P?(Dxi zlPcJ%Kp=Q+J|1%0$eu;Lm~I zzH070EL~&`$i&x{}OQHO8BW3tHa`bZY+!{TyFqgStH z{d}_9mS72g@lslAMgxzS<(&2DU9>W|lj7g#!^%WY|Es~M@x58>>xup8LT#f<;TzJq zbqB}?lLus%+=^!D^ z0d5eO|G|C0$GNJF)5hB=!Y{d-$#Wij(_3W!A7JxC~JT5taDzO9=+Eaen#;b2>S>v6fRGMtPx}!d| z@Q>A$KMke7v}(|FdBc;JNqJb~qmmb9Q_)D{CK!W4=p?fK??k9Pho036&SNqU44VSV zNM~!JtI%SbL&4H;_5R&l(M1nPaJMW|R0)=qBDOz~)(W9~@2qlHDk`FCE`V*yb^ALa z*8HQp$@kUq-56XbInO~5acn(m%blUQ09)9_AkoQ08akxYYN$&PGEg$_xoJsuPkWEa zfc-nf06SD`SEqO4ov*$RO9j91M+^V%xnbH`8s)-#ex%+|jhGTRjTfaU{pj zXDJIfZ*!OFHhS?~@Bxe~QGBmFXVi(@`+;%fG*4u*4Ca)%Be zNkH`+ub#9P;U@o$Jkbw#`@VrO=k=KX|4}CFDFg_@Bq={AdVByY$Nv#n9qMQ~;k3m2 zZtF3|JgGXc0Aa)FpR1gaOq(c^Crz!bu2ne}HB(qrGKdqQg*#r{pSSej!-lmfJV}yp zKJk(K!okeFewoFbD-P3UO|md7j|`iWkTn_0H=r5;hEr3#Gk*z>5++vZgBoIyMbp4( z21rTb%-LB7Bzrd&vZO6Daz#4F%Fxhi_-Bbq2ZPqIXwWiYGM3fLvL{tlI;`c7Ymzmp zt6SFwMUTqa=ASV_qT3xM=jdp4OO5}D&h1xf3qcLJqvABtXnu(V3$ zRqS=Y_%0u_QRdKQkj9!?ULpFV>`u20QJoJFrxaV_Q!N#4CQduo&{Qqq6I(a$wK*y@^hE-YoNb~n(sO#3|d zbLp&*Knpf|7p`x<0{BLa+o9XO$4N>yCkOJ^)A)oWy36e;@JOLYT076mQ@ z{^&uEw}8vbxJUY1N@P&gmis3HR>nO)VKrzBCDE0s_?#4|vf*yb&lxrRz0_rh1%W<^ z1+xB;>VugXFh`uYVq2rHIc76@#eTQx*Mfdbi8@ezpd|^VAs<9pV&#d{qXN?FagomF zm=afrsZUlQ`&dzZKtkMV%fua#f)5(hqVWRn3ym1t%wXtpy`eN15H{aJgK*uC!J(aJ zVJndEiVZ9qDWw_CEfM2{LB8@RqZyjgDOhUb0{jF1dEEBwWU>`emk#5BLgOJJD3hi*bm<}8?Tv;<%RZw zf|1}sNf@r4oVXM8TLT~xw-a;&OW7HO!&n%5VYeGVBzk;4YM?r3JDW)A?Qcg6OKa2- zYfLXaS`9q{axNqJ`NuSt1c*L4YSxjZP?u(^@awGBqc{*N5D<1%>QxULO9v4$oIS2! ziHMNELR9yf(v#`^X!<-AvFW&MIm^CypJ0|TG4(X`cvqR^4Fu?4&Ulm)^M$j!gcM}! zuO`*P!_M(>y&G_KddlDI;(6VjsFC-z-oB9Q?$Xq4oN4FRa|U#Oo;J*Ui5|V(Ub=YQ zy?S=7W_7mmZtl*zRXlFXcduB_tY1!u9a;Nwy*?+{$!B-5Y=+Dn)?tuuTl;QgdcPKa zKDxGP*(|XxHv?SdOLSFeiv5;SS{gewbdfmMv;pU0N!L-+^Rj%wLTusdolN}2|$ z@r%@0uCuBVq@NpKu8v(BY--RmTsl@dZCidY0e^>=B4_v3#6_`Lo7JFDUvcifo(l;AsJGEDTGZ4ysdX~H4x}SRU z;Qx_HO2PsmQfsK>Pw@=yd8=ZO|2|T_U0qxSnXFuah zJbJ(I?EvTsu3k<}?K!$Mt)XQ^wziz8-^j>vl#1wauTCF&tFwPN9Cx+_0eV0-j1V(z zZI_QPUs-;|U$Gd%sU;7R4x$L@d4tEhBf>*!ln=agdq(+J zp+oQl7N#6SNr#_6jAI@K&_u2IV@5;6Xd-iwNdfjE3N5+c*y7gWihj8rW@3|jmQCGV zlyLFdQPB8HN%u_A#_b4NC|2hi`;`4*;)rK|6G^c0n8@$;fk<)OWC&P+c-O7jQ&J`_ z*SYZo58ySiW%j~2g25RjN)OB_aEd%+RJ~CwX|oCy5(<^+8KC}9yaZ=v@Sklw_(Io~ zi2iOY#k(KJJg~ty_nWFsuoW(NL%~EdMH-F~2PCkz!k{~kX zDo}1g`LwDWb7fqlKAiTYAei_c9*TOk>$vXR7T*XHYXB`)s*IRF%m(fio2Yr+bMUxp z%#$}9_c8x+8SUroA39c8NVSDFIaC zQ5^`x3e=a$;Sx+z*N_i0)Yt2p)?TD~Ug}%zU!e(oh21wM*wo*KZ0wLwpsYfS!;kFs zTWz)*@`{~2YT(f_1@<}Y$L$GCvq(-aZGlLUSJ4KM)XJqIU4MMGyB_R3_`RK<7VhP73Vu#TrT}K7&jFW?>vYW- zQ?@FEBVDn3t0dE*PC=Q^0p0ZiE|3Jzv?uQp2q7YxBI&&qkd;M(X5Kda1RVsaZJ{41 zR{e;}l77GZ<8PyrNMwd1$mQ7T5U;gRVthn7cz1nYI({*Vt$!7ida^pYB29|5B0RVk zkuL>4Q=5#`=fFBrUzHqQI0J5a{2&KS5T$f}{$y(jJ++lf9uTcY47K*Kui1{89QfA* z-*w+h7bTHv2COinGO=!b;|Wn$OC{x6`Bvpgfqy1FHw~bvm;MF8dG-OQ!u){>1P@hM&!dcUlb0~@NkV&XLV8Q}E!=Yx{l?f{7SH+*g&-25Y4 zoffZ}D;m-~dt&y^<6j5CBR#DkT}ZS+MHQm~_8IE8Je{;ooc4SEL%R)MF_DJMz!95!}ZQXd=yJ z!)m`W4@kXv{j@Kye&z@{8QVO1sL(htjP%j$Fmbq&JAL>1XHej0dy5*M5BKjL)NtU3 zJ+0modv@Y}-B{9LRe<4G#p8>Q=I4&*ObTA4q98)Q=+~CrrgKgIFs}YexH#FB+&#Ag z4S&Y>twY3v()#sWj6>0TB&eeDCuMYZcq54+hCQ>(Ac=~wQvtAjQ!l)>Yb3rb4EtCH zv`=@5kcB-nU7^-XG+N& z{?Zi`3`c!@5$6hMCtG+47k2}9QLS~%hp6+Tm0HwBiFMb-X|nt~_T2fVI7Yhmh{Id| zT@Qw_hwxVPyAIIPlOnWY)T4SEYG(vML?U2vU`;BMx#s$Q{LuP%J~-aIdfS$hn{KY+ zxH*5ac5-Rb*j~uE92z@3tJK+UWG64N!#HmkdixM@y-C;;#phhGvXyj)(U^W4wz7QH z(Lc{lLm{CMH|TsP9jThtLEr1{Z^-RG(#7gTf(N``wgBEtU0yw#Jest>h41`oJ&7O} zXuAQohPR)l3K&U{VF!Y?E7${NE055e&a) ze7r>8n&w`5<$T$_zAyThF>0z?FiM!*+t!=bAIDNItsH`mx4j)OZ+=*x8ZJeotsK-KRKCI%+L_q?x8<;l0{Yt~K$i~_hOV{HYFDS7>? zPb;*0mzMH~qq&_;yu+~Y_~EedVTldg0Zz?`{OecnmC?bNI8*LmdPaZEOPmo_^D|r- z0z+A@VjCh{o!2<*jVix(`cpq^9DicUW`rCXf)|3wI1jE*RFy;CsIpzk?hD?0O~k3x z6Tv1Us(`aAj>n9y2TXyW`kHgpXQ9BCSuw&Jv1w~GZ~K=gMr zSC2=To<<6J2Ysbml!(rN3)Fci@*wA_#jS-H6qiWxPkAP57`PjhwNUBTVoWJ4QB3HY zcWVGAw)*J69Lkk*WM2(aVuF_owOKmjVu0na%B229s3nfVW@H}9818Dd-xXFijvkXe^Fw;T~36|Z>NF3T8i`}(Q zKj-WkG_q775Qkc}&jZKlP6h#r6cVc#f~9GtY*h_sJH! z3*cPg0qH8cqreE(udRxOYmn_H~zfoc*86FS9X z-v+Z5372<1kK~EfogiGPa7P^JaHcdV=nqB~Qm|lzBM!B^ToZFmudpC8>D zVE8t%>tbrd>~q%a6aKGTPvpIADr;8VDY@f&?MX{2W;8YZlhbOLD4P4=oDmCFiBi_A z9aU3V8fVg4W9>H0($uHd`)b%{<+L6bY&0WX626f^kBVnxey$1^|4p-W5k-A+o`y)q z`*V04D*qAH-s)dKBvj&@5iVrWfc|%GF)A2gM7k2{1=#{_OY-{r90?_dPHp0BnC@ue za6h<6abq$(CD=ctB3#&CT_NA7E5#7c3xD6Q%re@8Z^cW_oF*2K45*Z`G2hsWeDZvi zArW}jgq+<;SA`roNHx47)4Js4wCBzif(&+JjbS?a3C7R?ra|2Cv@ap-KSs?gGss8B zt>z$%x}3aSiO#$q4IRv_nxV8kkNQQ8-WlxsEHFBTvEf+|LwvFnrd^2UQ9vzK6fYLK zV@E_#Gy0If4XVua-f@$ zZ7!7FXi!sIEjbmJ3ej%_*+hj=VH8r-yVx5J?I ztt0{{q%{A4!M^K5Z$}u%{8BEwd`zO=#<3qWYV0OEe(D)i13u9kUNz?>TxY{|{3U~R zZG|H*$iSj7LV0y30u(IhP=P{5Ol64CLfk%G;tLzrvb@nK?8CcT_FNJ%mdo~yc#Nyw2ivz7}WT4s@d=wNClC9Fo_d=Xv6 z{00cgXW;qKiC{yt~V_85wOJPWDm z&IiJ(4yd4{8ly`m2MAI6@#kC5)xs*%_Hly9j^0c$Jh5(r>F!Vh@En7FZutRfMG&k4 zrCEvn+Fm7On-|S3HZOJ_MZXM$*Dc71b#YCPHP~5Y+Efg=1|2n6Aokc^KK0fsxo^O1 z&NOA9{?RczbHMV~@*3cR$5;pjE6u5dF}P!&*LGOkj>(Sr%-KL8(`+87`?HcvSXQsCw)CzUOzmve0IIf-`s>1!R9k=m2{dA@+wX{6=V&F zN;|z>Ga~2JK{neb;}s?|f$UP7#6@EgHvtUqcK43@{EY*|fIOIQS=qL1lRf{%e``A? z`r@}+$H|f}-fls|zpzn)jg#bp;GbQHVSb@6ji2Gj0eVs~=Op+QEWJDOa=kZ|_u%>> zafo(oAG_;KLos&ql;cxEmmh8DOf;eGRafiuQ^OP96((v}e~FbhHs3+G+S3B3}wML_|d}Z7vkj=>0Ds88xb&eT4Ip(Dw;n{z{G)G_3wx*LJz$Q4|nredPSN zpUmuKOId?Hog?7c9~#c&M0dKXhS-trmpnQvj}{z$biwZy-`-32(p}iy5WJhh$REof zAa*+dugE!F>;dTEob_!h+U!&U+q1JNFO!64u zJVKD*!j&ZFdjP4E)j<1Gj<2a+yLWBV)rRr2Z0Tq@fopr-dn(tt7C2>T_HJ0y-UR3u z+jMklSK8IctyfJipV|Z~qnQ5vU~o1iofKSM?(;xc@{GhZJ>U7%_W#c2<9zq<=(1}0 z*0fbQ1p3GjO}l5+?el|9=H1S!hz7)efa_$L&Lpopd0a8g3>xhTZQI#mm@y66dU&qV ziL`e|k#q54$UxiJW~{{2dc}0plNG?7yFI-DaYWNb!^>IE&~-wlJvp*iL(M>bG?uQ7C4h9morF-kAKRM56%tif32k) zb=60mxCQYWyU>I`uPwXQrAD1~pAW19+?KX>&Z~PibZOj3@5OWCP3prRP62eLLcxo8 zHYMMKK&3o+dpC$omH4xy)78lxIr8!|420+)Qs70@UCi*NgJ*lx52CNL7>B|!umjeL z-Jr=MC5K<-VFP@cHvCl{G0VBp@|T7e^fjK4Rzm!bm2D%+oBD5Kb`lukmuck2w%C~Z zIUoM_PI#7ombJV-BS^McBLRn=!arWR8g_e@qY4j7fWG0Fzh^fz7j<2G2z-_Cc(**tY7HI%% zy&JVb*T$x8#OK4T1}H`)8EXAba@3Zt(=@)=xRw?zZ#eH|Fdh2(qT-MQi7O!rXj z^q(0ujCd=PaoOX?SBi#X^CmjS_?UtJq3RugEBWGX?bx<$+cqbf*w(~m$F`G+C!Ann zJDJ$Y#I|jI`QKab{qC(gwd(2K`&8>xb@$nO{nq3}K6|Gn!=(Jrx#ZJ1^!wwH$K%My z=k?8_88H*b;!$?c~!UK60``qKt(`v!$se z4VWw#vgi$HrfTL^fB&74m?JU=FRg@k4G|}+AVj!W7E#i?T(58j?M-lG@>?{m%t%C7 zG!iA?8$(q5Bmza3Sfrk{w>*3&l2$Nu94L?#wIHl)B4g)iw0jj2i>we+lI>^oEG@So zP*V>@nHZK(MDegfdyoXw5Ky^JA}>H4MUJS7IM50#VVnocCi^+=k;z^3YNKYDjR(6# zszf0pX=PAwwPO@xW*jIw(_9BPqwCZrr`!POCiRc4n6>jmmDFirw3I1Fq*p1YT5|Q@ zQ5tJ_BPV7vm$C;AK(H0ie(t8cDjtxcbtugGnmJ`r9qXZ>_E6PocTlJ71iOyW6o;D) zAoQ*XQh@5nnfTSE$dlbu)F{mc+(i^%olbD<7YbNXiF@jtr3aF`l6Pi}7%x%vt|$OI zh*2C9P2!Fzk z7$~B}29H98a~!T0MJ+h5nvxV<_t{lRVe$?5Nil&#T(u-_Bix*p)NnH!_*OA6~{4XFNh%4zy zx(l~1&`KWmlX0KdN?F0{1eWg%WuNNHudhUR^de9JhH(?(hyxOaJpxU$H-e9dp_)sG zWB<(yY>x?zY}E*~9-S;5m4AWcrV5>#k(7ndv4&SKSOUd7qJ)4FOG=4#&?}N`9Eujq zA=xrD^gWE_Mk7rkl3%Kw*BQtem#z~U(idYDAvJdqi-Q=4hu4%qJO>lURlN&?ma!0w zy874S8m?^2uShd#Rba)&l;Mqpxm}zZ-P&ZPw(#HUeiVPGFgu?ZJmIfG< z5??Ykn2Bs5x>WBhh8VykMr!^#K$?pnMKfGeBk?;_H->DG__azw4hNIM*_`StOKC%n zby+V33qeD^Z?vZ_sZfI;$%IQaH&p|5D<}*@(43hn$M)7_u9 zd;Q~fZtnSU?*8@o#=Rxy0a>9NXT1dRSfj6OXdOAdzRNG!=gO+U)T4=LA?YjK&~N zKEv$iOFHlzJ_uwcUIf;O$Nx!RU9IKxcCy-~Jtnu)ajYRrXIV+%A688Lx*;B$o+=fVcysp?#2J2Knk$K(k6XuHZ$7;~etUw-|C`j@{z>1v zy?Xt;0M6=b&~_Wkdg@*$x1?@dHlUx1V7;Oa`rBzm{VN>}jk7*{I(~8WSuu#yl)NSv z5Ekg_PBr%AkCe9ko@QBe{kk=*21rhz4Jws7gs;AiZ9BjCSDsujb;ytdOvVJ*M$l3u z2qsG^AQ!AiZ)+L<@Z&yCpN}8%EGBtAOec8{#ENueOj)22Z`S6BrF{){UXJhH+`pG0 z5p!vcH35QBF%&B*A|XZQu3;7;{TDW7M#-yJtpe9Ebhy7-FMNH#$6YWc2_b_ zfX8h9ql$Oau7gBptoc`*@}eT8tEps|SlED>4IP*oI_!_1yMLoQRUbV5IiO9b&&etk z4|8uQb+&qXzyJQs!^}R^{8&-xrL09Y$SvW;vF0nJP*!WFcut6Fx+W7O!uo-I*yUcy zz&tV)4U0s35R_>{8q>}Lyr$_281}#xfiDv&Ew0isKM|TubI3?Vp<5omzj=;(C($y_ zZ3Dhu-g(W@xBJ)Ld>fPLm&z zg}S4+9(Ql~rGC4#0diT79^gfWUQm2!RKh1==(J}Q<8cF0$1ghTjJ6aQ7b1pcrC#7* zXfb5lkSB=H66U6sL_#d}*qKP-n#V`e@xaR<`Yhz7PT=3z^zy5>m(Sw;KYuRMOM`hq zqz$No73!N^@Z~y0e7z>hU^Cz8Pq6jybrUn<{W|GW3C*CoXTeunmuY`mmAYvz+qO$M zZR+?(4A#97#G401Y5Z*Cg-3q9^e|R0T?Oo4 zhbJvIlF~4#79P0MvRWA#%HpT~a4(0bc>OISE^6n_fr!mb7*s>X+Sz@|_VA%F6vu_? zVFagc?M45puxKk#G&Wsz*6TF2L|moQcjo@$gfVm4NIjKf8Z2E*+-yE@*2~6tGx>!5 zJ+xYGfo4x&=C9lRT0huES|Zhp^%-zJi2nMGSnTk@9e)mzFNX4Rf-=fdkzC(i9H*VV%>dN0@ZQKMkdYLM*?hnp?@w{~47?ji5O zM)l$DzE5)Gz0cNQ@@(oq3s*Xv1D_Xt^$Yw%f`CU3Uvnv}a78C6GW#gdOO2Zj8g5H5 z{Cl=#eikUDEKj9uX~v#-p94T(wx?%Z?JyClqqTIB9FakPAWgKK79#zX{iR{%ZT%{iZ&E{ z7G|-@?UnM{@oxXN1^!jnT=_mcg%-1&1nz+rvy%k>rMq8>WkeB6EE}*Q1-E+ab)L#@ z`lpWRVo$0Q)Fn#_E&rPZ1?YtYcqF*@06FY5`D=k@9N!#h4M0_6;QGacy|yO zi=caAuS7oPH*7Y1d!v^nOs$XTk@wO-5U3Vw5)rk@O308Jz>Nci>V5%CBPN;VK42tt0oD=o!t z`)fCBCI$u;n9HY@kYV|1qnH*6fPoc2Arb2X!GSWtANgLfFlm#kIf3X9;HuoRPpwQ0 zeUB5E00kz1`gIKCC=((e6ub5UP6n~BQ@?m8%>Tu?uPa{stvY4ZoB4Cfs^b&@14WO7 z(yR6NPQJddO@*qS85*$8^hiA_;qZe{+N|!c<{AW`3zDtugvm&1t37VRvd%<6LXy7D zw93sZ7XKNJouommG*!EogRIlEn!5#NsFy>5b=CsdvaW;?6c{)tA_N5JrO$4y=^B0I zG&R2~6}_Af{nE{XSn?##v}zMW`uT}Z!hrg*CHfbZduE=Q^in(Hz zYmmtyXFOF--jV=(u|MSRzYG|l$PhST?`sql&yyD1RGyM*cz40MECCo$U@;_BU^5f- z39~v0mZVDHpkeO9tRpr>ov`8#YXUx*(1L(5#1ayONY=UtNYOGfgh))k2*?1B|B)ho zInw8h{|+0_ofPI-g34KHNrac*~I5p;~3qN#f&RJub4>A*17k`2i-$%(Ulfq#q#70)z6sCO(ciz z{Z-EpjS26CjQIvjI~K+M@k3zs`R?sb`{VZg-TURn^Np3bF3X}SQ+@9lcjApzH*xgv zLq$7AVZ>2`ENnc+9ElBYv}bW# zsPiD+%!X&oz?Sg0VEo{4a7#CnZ!l&CS!5<7&ynqBRMsZ*OvF&;5BW@91my+jV zs_kzNlU4tRQHzs zx+Fhn9rnB4eNMJazF*u5_c^7&SecEDTD(8M;VLh@WncM#^apQJI5(FtE9JQ}?ayvn z-l@w`@bPSk$<4&K8ZY3hIQ%u0KbGlWe?(J;zW{<2^pz(}o4C<6ic5O0JaPNh*=Q(> zUE3B&2Vq=fFuXg?h!@zBF^SKTb-2?RXgXmZW9pRt323!ti*|D-8FGF&33g8GDWpg{ z)a?Bs0PePkmEnmi2%UXYXuGoGumjrdL{*j6-l^FYkf7DPV+^#}M$gqh;_mdyw4-o0 z407_m4e7=q7y~!m{ZB#9hf43So9z1zhCB{~KiV1FTjYJl^%>fv8oU>{J_WSK3puuI>{ohQAip* zmr7R{(U=)~^y*6CXzYT^t0>dx%yZ!&?Cz4obMr}m@&>#BT6cebdE6Dq_S0++*V_g? zlUPLx_HhyEKNY~od{=?Ni_kDxqMep6p%C5rxZ~99zE1?oc(S-^+T4B`r&_s4b?~Fl zw!{cro?&+$@%2nf{3=xBtd%9>=97ekUI1hvD0VGnvvyZ(&0a;cDZY}NFnbU4kg&~= zi&j^M5YQ=4^Q*5J6DQ!b9RF9+VHNgr(uSQ5HQw=}#cA9xbL*>Ai4Zw58!6+ai@pWe z(V_K}=<~N#MDy)(4yw#N-`9^{1~w}_weQxGNzuxHM8)<5Suw;@KzVJ=3DH3>T!-%{&4neaC5jRi?mY|QM9oQX-+uS zlP$B>52Oy`vTFnXw}HXP=GAoXXg|@&*;Bk{RSeaVv4ENVkz}pkTg#kzH+OA*F?3Ir zdJIUbW%`@R9ib_%`oFATRjonHepPH@BPn#RNqj_cQwFiNDF8v+<7UiSDWIzt80 zU&XvUzJM9l?(S2w#31EmhY=?^+{8piOAV~XVf~W+5^$W=wmy)-rfQZoLjP--aOEZ& zB67Yb&g&pl2y!MERuFC0<){V z6(^~kZ`FjBKkclb@mg7)7ck)y!V%hrv5nSj5*t7UJ%qq;Hjy|~f7}4)B9`bnnh7?^ z4*H^DivB(gS2sUsA?;GYSqj`xWqCv08xoY%tfa?!e^0mVfGAk$J2`T<oZvj{bjcm@#YqBshO)Ix%mnqV|9QcXpx zsNjd9Lq?tR_yiEF1`Yx|3 zrK~s&wn7vyq=Fc!p2`KZTl?6-xwFz){{jn;t%~N+*oy<(W=Z6S!vM44(2)l(*SFeTqEF%8oL_Fh?cE$;bmOA8(_bY_iDlpU%J zY8>Boe!T7pLlcXA# zKqF_s>Nh*YttN}r5=eWUWr&Wi^~2v=%yplg!~O@int$jj89i{B7Pet0Y{2ydwHC{h z^sd!WIvUxJphYk?o56OZ>7Rm~x&8EE{>R$~cprnj?x#_kpJrWyKJKSc1Wr4TCH7b@ zb3X)6)|DcY)8MO_%%rX7ohA)e7s;P-2WOpn58#}=79a%Pg4x+c9t&@G34cV2=2V$BCW%Ot-!YU$?vcRHng7x zAO!9>%ZK&ow(g7NSFNd%)@W>4h`Dj`b&BPmra=U*IFAMP{Aeu}$*)*rBdJlhhea8t zbGXf;lv;ZaiWS$tO7m;Bzscs(#MNA%J%%1;Z7zac%g~*Kuo-7G2b11UV+|~H_AyBL zxuj>{nY#p&jB23Njf^V2=!}Y>QW~UlIJmNxj@+sZj67_b{ZRCFj64;Po-8%*X602zl zf#R!a@PT5hX>jJDP^>IU@;}Fg7iJ>8T}71b zv!NoOl~R1G)tyv)@y%bW^|l_KGU>!y(kGi4(av0Yl`wkJQPRgxXa`!dDEZdBEA7eY z>+U(_`K*{V+?;%L7C^khtIzy=h;xd3dME5tZy)`GQuoi)epR=)A3(^lNimTQkBx$( z>!sC&MQ@)9(w^&B;Ld9>)jBgeWFcNW;jCmy&-^NheB*$PT%*mYrn>efDWeCZ+m`c# z?NS%{wHs^svCnI~aDA%c?A>z4RB=?hXEBqi5Wl=!m<(yylqzD5u(+lY`QKTpKfZZC z`#-(AcHaN$@=y7(4+QIkmFu?_q#37aW|f&o#E;@MBDe^*)K;=<&%a$Xy!UL^F?|1R ze_EVf1u+(O#lE!R@6*}Ec=DVpx*IauyZ1&HBK!YzwRD;ug+m zmRX}6he3zK=zO0&`8B(>zUd&d1u7 zZDwUXP9T2$9eYJ6nI2c_w!#jo z@xWlUvvEhRi!^Nb+mqm;W7YB9*{5-*@(#_cQ zOEdUJJI&_J5VI!ZFz4@CEt5t9rr=jP2N_Z1`K+8WG|7&Cj1(A1Pbj^kG_4w}z zH~C0vw$+c{5!Oe$?RQtl?%o3;pH^QP8_~n55XatqQ@_*mw%$}Wm4bYc&Q8ZR?=B5D zK70dx;|||;fY+aAWU#RkXW2lz(urj@-mfc5Sg3_`kCqSCZm=1D8yJ^T@#^dku12fQ zY!L27AVg=O5vx&S(R-dxA7AELe`EmvRpa z^CrI9rm^^1L-dubC+?73Qhph;oP6tL=*Z{&K$$KffJ0c(k6d~-d2-eN+(7?qp!QRD z+I|;e1(Cg5YN$!7`BKM~Z!bFxBK+Uv@l$_fqYK}Mc7v! zfYKdBdj09;ZPj3K`$IR1?Yk8(LRpYL+iAzR^A0G)@a4%bEIjXPu;tir?gE_2e>!=e z2gQ*S7`Nx|!W=F!9r5%TH^HyiW?QxAcTVPn>i^VlMsF>c;W=;@B@e2%$9BWn?pc*2 zl;XK}S80#^<$&F|$`j{4bD?{#Tk#G!dhcSa{>7vK;XIM)@oI|ZLvt)UFMPnCpgQM@ ztI}udMwweaVp9?`_OxFXFyYO2wgxV|<{EhkgtGJ7i*{j#j+l;l`n22R@i+*|+KWW{ z%iH8%Piror=n$ac!q5D5Nb!^_z+s2Z{bvJ1*gb@gMMe>=nw?%QO5e?ST=RjZ!>gRQ zhF_$;ksW!i1lw90N_=sST$i!#_|SJ7UmfKxC;Vyd)+mtD6$lc1>iZz_@d)8sRi(k= zhB{~Lch6Sw&$*C#-k~L0;y0JB>b*y{=;LovYrR$s!%UkWOHq+{ydLSXVs|~dO=fuH z{=-|>|M2@`k?2_JD=_AGlD5sU_UuG*sY!uXdgK4M&}r{NlL2q&>_1$%&~A^tb(?w} zbF|Uq=zwLd!xOoNLo+IbWh^UL^yTUf+2+ifU^elbu)H0^@z0yuxsQ36qY=8HCos5O ze!~l24B_f7*yb#laIp4Nw7T`d-KbuJ!XZXkVJfq%IE(~#PK(3-q~mqXGC9mmp*J@v zYW~^P(>c&vF6{W}zmrpITpPbCAOZzf*?z2g~ovsN~@jxW6i2>Ni!bOGb1RC%E zh4Fao6j4HLey=)AVhaf8;sQgM`8cRwO@M69qJjW)jKxk!(IoXbR}x?MRI$1CNet0> z?{uO&2Zd+*h%J*M*J^1$3~v6SURDC=OVPR%)X|(j&5}K`J4b_#2;v-Ea)=Hg98xMD zS^_B4L@_L`QAWe+Fi8I%Kn>(%Z4?0 z939}8XCHiPYU?~jYBF1WQBmZ9@bq+X>1F?6)qmK)w3NCTV3nt!7Ve5SY2Q$&l=gK1 z)6`=jl}wdK40UZah4r340lF`C?%aAv-=3emFm@#2MtIT7ykgVPO4K%sF_yGQ{0zm+ zl>ETv$P6WZJ?!%n+1%_#YP!I>C!%Ue`VoR`RfEfQv|D$|pf<4x<#9;RoGGA0{#_I= z*kW2>f2GV86(&oR{bns6mxJ$D%~ZZuU5=Nv6_J=UyOmTfK1VQMvDYffZZ&9UGL4Xx z_#ResgI`diRKVZXW5Lnd;~p#&Yq1B2x)^b3YeEy>bm#N3kblBwf%ikey%Kzd|FlMg zNr9_P1mZp$P7`D#&OuHDI^kn*KwD6letjuJ#5fQ9u~**10L#Wg^#kkv4SMxZY$c~o zVXcvOCAL6Z6dkaF>P5~Haj_`-k`nPRIY6-v%^Wa(Htku}@PJ1|E@j2KD}&`gtNaqv zQEA0|Tv2?^K#Lgbck<30Sd2$n78mYTFP_%K6G_ED+;W3?jEw({k-8l8&7i-vpAjR* zFW}bj?ZT7sxopA4hwln4dSVoqZJ@@7SAqYyqv`{9Z4x5N%%8OEC$TU+Ao>z$vd%L~ zjG6{^KGk{gl5p;LmmnxLk%zl%I{%iLC@7^<5av{fX@f((Vi>}IyXKf}lv6Slv&U-l zGA={(>;K^DNnXjhLVk-tTvDdoquvh<2;3OYYgt*lq(%Nl_K`6r-Z$Zp99W`gE00M@ zhNKn9*!tZfJC(GD6Ey-~8olfN?K6@-0 zn_x<8xaA@;O`b7Et-m>Hy9U{ zKur+HC0Vg&`>iO3rv0I0A{K^*Hk&I_798ynLH4#b4MxxvSAGoS6xFh%xhJ%1++biy zfwe2_4F^Xo>VpX+ba_TgPzEw0tG@-;ggYc6kD3LymLtJy@;5b<39LZ&suW9)HVRalJE{(*ZwrDxVm5|zfaDQW zc7_YORW?ln8+e{0LG3wFF{wqSSmtUt~{+Q5Gzw^j;#AX@j_g%zR3Aa*TC;Anj}{^_J&W z4|)WmY#en+#V|Sy4=N-*BI8t<*U48V<##>W&`&9{z>FzNg!Ex*L~JM8$nvOPaAA(Y z`)Jxhh?%3=QwFMGwX!}n2;Rfq00ZS^C=LZIf`yckY@)WJIeL!x-oJnXM{v;rsO==0 zIw7n5ZRp)_N|FJCldV8-F6GUhtp2Ajdx!H$yoix23(NO;1c8;PAEpG_8(7-P0;pmK z`<-5y!SkwOTwJVo>eW_B<$XN&Tx#UWPyjhA!SbjrFxt2o@?faPP0`B*Mfov+i>GiDqpwU&fGO;oh@+0npa4BB0)G>tL<|(#8 zQE+3?YUBR9VW9H}7;KT|KuRA4oAh-vmmI6F*Eo%a&lD;%fK89RV?X=kY(gZ?Kjt+@Vkt1u02yPSyMj)KCs+~W+x$AtQLw~F$iZx zNKWVDdd!qlZ7D(Io=n$DGR_)`qOXBrNdDr;tdlD_^vJeFKKh9aV4SZ=&$b>Za#m1u zGFC@g%I%_a>1TRKPkllLK{;DU)M%ecT>F}kTlG1wmCJM3V~jDeN zZ|MJYWN1G$_N+vxa~l8Gu=n%nRO!>n_x%Y{U7AJh4N(!VE*w&TlfeiDtNUZ0`Ll_R zJw(;wd&2W#zwYJ*5SYzSQzWITFRxhil15h)7M2A$kX9z6_)|_=pO$bTWss=9#<~b! z)lI&!C@bwm#%>}mcYfhaCL(BafiF#my7M8*&3d1J-TRY)p8_? zWPQ0STk5Qn;<1FXDZDIMS#4~{7vaN3<_|8MeUYs@86ctZ5n48>6Q8+LssO82GC->~ z>t0euO{UEQ1$vO^;*D0`+^blupdA|_5njRthwhiBGt6Eqsdw}`PsViT7xnW*cHc+) zzH|Dq98s*`vN-nth@#NfBB$=rE9m8+PI`Wux|1UiI6t3}2H9h50?Ng{x{igf`W4d2#pBeP4`%x@-070=Y*t!8V? zRqqE?1@k$w#b1A=S2uL-+=o-D9|Gr#h^o)7;NO)gxI`d>3j5RQdND_l0FfCsOwjU8IPc#j> z4jjCS-fiL*{pvDZYA-)}EeDR2g4053V0*J=a?Z!`z+A-z--2Yg=j)jxT*ZGBn2;>| zVrC-qo#Bw^!{(NwYg$rWHBUMqlsYNLmgv(*?j%9G@IHV{99$r0j^N;u6ECXOCAU3n zd(I3IPWw~T(SJ49rdl_~GmlOk(NICeBU+??-vdi_{`+vkmp=lZvhk~AOq0K&uCSHv z?pA%%eHkoSV->X`O1Yh&RgjF`DKGnGuCT-NWD8*fAv@_eH(^CLAS*`V?J-WHQKqT{ z>1MdRd`xC3#MR%)-I%e}7pcm-2QsmMl5z6J^n<0G0?KoMt{A_N)M-~clCkOg56bu! za==Pe-kstl>_`>?krhb5!8f5`-B!g>zUFx`5F zuN`xO?mHX1&kF$VrT^%aS zOUZvm+Xo%JFAaxBRUL@GTQ<4kg@KBH0`DIWxQsd2 z)nOW6XUZazPqq{?|2^{D!&g5zGK+;1ib{UC!1Ell z*+geH;4dO~Zph?tS^Dw#{(9_qp*aCZ-f;oCbM6fcSH5q*wE=?uf^{%XLl};iGV}au zZg_jrazc&*fDqD}bz!&RXS#=<;KqmS3COG}Z_T)e`9hYy=?W6^;P&Z`F>A;7Fy`p= zKH8JpTH(&P&|^w@OVX83?2DE>hj67*u;zV#n1^K1=j@Gc!l}o2K~(%aB=plw;=ev$ z^TL3b?hC_j>G2<_+25Vy7<*FO@Jp&5S1Uia)qoYl%RFJ?siDyT6PFLR%B~CF*4V8L z&)uh7dp;KsWjyNLs-zz#0wgWgc*#T-x;y|=QUgfY0C z9nUV09B?$1<{UG9un4Yau-V_yb)~QwGH)@a(pb7`Yc9w31@?On$5Qp3d~HN4YWtmC zyWE6Ai5d#fpa(7rRZ+kg6L0y}t6BFsB!E01PtOjVkN@PYZc~a%hxETj%D< z^}UAu&!+qy!!AV^(Dq#x;-hOjO(HJ^GzTk+-D*+xO~}!-_q7-Q)9YOhJI&$B{^Pi|A0^$1C8!;k8IwAKbrJ z;c@tSd`JI0d*#+ca6#RLyP=$UsSr-zk<2uCX!m0uTHs>crHlQycwMY-#)3h90m+Xn zh_W#r!Hd`=v1Vqf9$=3+k` z57vptpP27+;5{52v{ARBMRUeG;RT48zPsv&mR$``xb!)hm&mtXq&ATj`pxMFgtKr1ABk{O#6@ZH<(gAO<`E+o`>1u1|G zV}dr`?$`RA0foN>gh->r8YZM;%ZxZU^t5v=X%)?=_J?qL`??cdAj2sQ;_hvWXVJ;& zq3&0Ke2{4l$%)`wY)F%_?q@bfv#{&4DKT$N1^A&J(t~9)-ZC`8<&$8-#cUR(!O0!{ z@MX&L!m;>xI@b0Q4GO9cwdg&B^xg&2rCLe43=%E&pIn>)+~_7#8>$+Z$ij#~tXHXi z%bOR>6)-}4li%JpFP3UQ*7No^=ntF}6n21knc`*f#Zbi*8%{@jmP?myq6t|kKo_WU zee3a-5i<)f23J2kfPu43b*xV58b-BXC0l?@3Dg#Eq(K*T8x>$~#4C233_JmY5jo=- z@XR)yrqN6R*zS6J^4L6F5E!#yiP#{a1I;{)i)O9A+!^O^1WDgw-(# z&p<32c_;|P(%fskoc60~!f2R9mS*-`9nm|E(LTy3QrJ5Qllf#pjgD&t>D8W-Y%T~y zlq8tP4ncAX5kd6tpP&hK5q3^mkua(Cu)SeTtwqEE8hks8jX0f;cEHfd$z#5;;DdF@ zO46kn6ouAIJb#~WD+XDB6SfqaO-<(be3rD#9npM)Cj1Tm(&}s5bZJ>L!5;irhr{>7 zIA6XB-m$QZatG^B<+ZwSR2bEZY~T%~1b=hAmDk zU#x4Zwfk;GJy<=;T^9IOs(%C}i5F)mkV3Tsz`d`5AtOJvqQ&Ojr|k7f$D zm(vTbZ)w4zeRA{CGUOs>Tui8e+TiFOJPyfmHkwlvo0pKS9hR&b1h^;KHQ-}!fl}Ur zQ!^Y0A;hsu$wNNDuu8Trrh<94LJw>U;AH(ZvS#%xL4@Rt`gjA=RRM`drZwoXDKMe| z_L|}9N_~Wp3BNTrjvHO+5LO`Y30WXS3uNEl$}vOjen*-#?>0}kCPpo}iEPI(y7Eo7 z1Va(P`qdnA=-}AzuHI45zatK1*oheRHOBat#ze}vMF}6RquROkDLWY1Y|{Uq>q-9# zG@(m1zcvD7fiG#=8*Qo|t1i<%f2aCy_UDAADQ3&!+}CH-mO+sB>Gc=MkkdMB#=qnT z2jz28-S1za+&p4k^~by%|DHdg4^?XY(`P)zzlsjBa;7t@ii-gpZ2wQu!BlPCrnBFO zZ&Ne^V9*87EU~_nt@P|I^gt%?`)H$SrKK}D&(8{6j4qYP@wd?Fb|`RthAAgm=z%?W0F)8kOjk^7HTOTTB6ih!Pi z{VGr%WBu(`-7j(9isW;eABuvkRSGh&`5$pxQhh*D+hIDErqI)jM1Xubo}zu zZ`wIBcY{)#73byKSBbgCoEmXD;;lssOThE<^qHIm*i~^}On^j zh9m<}*Bk`2zZBp3Lh(YAl;uoMe(D$@W5Fvr{-)yF-4H=Omo-J!gA5q0s+O3vrCeAavYFswvRAM14_e zM2c+bU7(9NcF+Vm6vui=&qJ?42ktR*96`VWo&sf*m3X7s!&KScO288Z^eX^U1-erU zjuO?n)cl9kO(yNhx2T5T9ga(_k(1Tm**u0_!~sV)*N zRucp$_C1NJfYHINN`+CbV=Vyc){>0=|@am2v5K{f|3m~zYSnCg&P;k(6i-$FRxtc+$HRS3`jKHjka-Hqym6_nvs z1-|4dN#lva-UwnBGZ^DHK4~KR7W5AdVVBzk?$R!>hO(rr8-{5#7{mNP^$0s=S{R{l z^r5-?SWU__K|`KM8J;OoiPGpp1*5>BpE{Fe>->f%sf6q5&2;uyZSmMaQgUHTIbQ}$D{jt+|&ByeXvPU z_h8(S53|+#@4WBh#31>}Nfn?~=gw9vJ8ZFRb?GhY`Iz1~Hbe)1We!Hxh>~cm7*97_ zK_bon3|&_Z`~m?MQcJxSGUO3@Kb=u({@pMLPjo-e^(gTk=1qM@1Rx#Mz|ys6Kdqt_ zkvLvo!j&Bl`2re7W{_}-)WK6YShSkhK8q=38i>lBO7L20M5r-0qQ>+3!J*WUKCNvs z^6O(xLOz+}P6H$>6JOC5!RbM$>(9nhtW*!?$Hac2Vt<-J8om zqO=71j8OguFCTx(USZ~Ap@+e^<$^lNfAs6OCgVKCR{aV+dM|U#_FNXPouIpZ{+$G~ zl0C_}SC?{YC$pnLPNXzPH_6Rlt7zU`UtAGZ<+BSg>?r+F-^9>zw(m=Gj~8jxj}*o9 z4&gmmU%Hng%$=ivk%b?m-bT7QlvyRMe}aj(+25vezYAh;iBdwTE?}KEqU_nP_{?|e zdDy3-HW#28=o|Y}n$EfcM9<$t5aptY1Jb6v{Fz7OH7;qy>y;@FCtC%}&2CK)I7mqqdrf!`7o_W3B}j?b-^DKApJ+K2Gu~EV9v+cUn;;p>iYkoL>Cxss zetWFhHnYA%?B9M$Nym$&jm0dw=as!Kv);Ao`y2Q^dBP9Ht{rb*i~RW9r*Hn+Sr+bK z|GL3_Rq~lhe>}VG>>7Cg5-}uOswiO#U|=2tljSvw?VTdPdilg7Y00qhQO5ZEwA2aLIw|Ae_#gxqH!jJtb>el#$)U}Xdct&0y!B3>QGcLmp zcYAodN3o+*4p)=HZLQ1I$`^=0djuW5gy@b{onIxw-2V~dokS;JFVJFXz`S8~5;z0F%F0D@m8 zqi@Yn<;~2Ig1x>u>0Ypc5Db3^n6lm}4Qi&%LEE-vj_mn{*HdDF*Xj}5w6SjHK$YYIl}*c> zuL*nRx|}_AAC8Uaw#Npy*J$@}7($W4)-+c$BXg4dwXFxxwhkXpayO(#FVo*$RP+uC zRLN!{Y$@<;43k&85RbT}zOo?5x^FumC6qjfKjMc&AzDK6>?YPt3F*hy@kacu|IbjDmV6UEEmHO)oiikd7+QqgU71j+hjOW9<7ZS)7ZmleYjWNmnU;4fL&o3$D?C4kE&)?&__-r~`0F++(yL17ntZ75Ap6s7&mXay zH2$giU!p&OiBgED zI76NXkR*v>V>rr=)}Y3a5bcethX>M)lhjZlXgXH)KuOYw!sb>`DA9ih%IM_SVajRF zKtOwDtzbfH2drS>{lD@x+H9A=q9Rrk{t{!MhN^`@<%h4^xEk&@ZWlonGGdPorS4Qu zo7ut4x110@6yk`g$}yTgkgoOKcK$z8EWt3aMtAQebJb@_8zMjX9 zKxLjCj6aYHlK&Ej=y3N7*viK1ym)%N0=D!j)=&{ zr_sNfgGEOsaDto1`_t$YCskziO)3P;eIJwwmPX5pGaLN2WH(z77qLjPM5+b~g3^l) z9Rhtq8_cSYckPIe!aM^+@d?Vi-v(*-s3uDk41yBLk_KG!du~NI0H$>(Gzoj1WK544 zwcQhjwFSxT*o?xASOCg_hR{Q-%$gnUA}%xXws3^}qbExOHUW_zp*fCxgb36|V5f=G|=;q>iFO$IK~ zY7eZ00)H(b3Xbr^G3t1jPzFRwc^9heXqbqlQk#fd%JcZvtypq~8y|+dXxwQ$ z32W(8pmgO+0`egpyG-b8o zV(Za32e$~W%MG7fqZKU`AWI2@dk%VVcMb0D z?jGD7g1b8$+#Q0uI|K<5+zIZ%J-EBy+}nST(S0B4wO(qEvA?y}Ts12+YNTL-y5n(o z9r!y%MBl_5ET*8j+N#L?gYxG7?f39~g`nFmYnGQvY-7WwLp|k^Ln!gY-2n!0ua@?) zUo^)wptcEP6wlMnAf?iS+38cVwMcjo*_MrmOYV?FAts%RpJn{Fmx6g?{lvW>XX9}H zBB4r3z+6XcFzo|_w#iI!>aIRSLWwvr&XJZXyv=|BT;N&u%fF|_Y38*%Jz3fveDL$?2BTuL=~F&*%@+^r`DFRD<61OCbRNR`;+H_Bhx z3E~J{e-#o)Cj(P`@?68-BrnqbYuJ#kWd=$5oM%7jbSHiX|ImXyyV0?wRYKA8ORCR- zZa{=(fEctUac31horW-zbwEX4^_4xf7434DP^-$K-ulfOysIl%)|MA1@- zH02PTb!E-q+z*_vUCY?&dlV)=tH8N@n@s$? z$JyF)FVTjDCIsbgI0(-WLFF+{J>LmFKtX3(U#>dqy`6s?wt-lWx$jCRL7RRuu_LKcj+M^?H0#P+irDh(e6%^hNAZeKtw5fz;BxZ0U~8w zJS#Q)sjpan+_#+nq}23DUbB%&&o-g?ACrgL--3xkaskRoy9a~BhZGuUVn11&dbo@7 zM9U=AVrWH#S$kO$)rAoPHJOHXB|lYVJP8Za4H^fTfPBXk%!Kz2I3`R8%BTMId)e@~ z0;!-x*Q$aVzB7$#u&a8& zv4DM*FwXA`94{K-TL^YCtlTQeEd6i^fWJ;2^83F*>7H6`((zhklwxdK`R#6dN2zX6 z&_o8UAY9@b&lqy}r8GeN%IM+GI`$whEWn(Qqi@uZqo`Vm!Q|E2CG-DLXg`?@>o;=& z2$Zl$-?(B=KUDwC#x#m8p46ewCX#RE2L#u|q}1eC^4VvO2-%3R+2d7kQRn?mT8hEd zep%E7yO*dfjPp95A^PEKo7z&k$hR1JjH7_)Y~IhzS81>DY$^BG&KiDEJ?>*apt^AS0q$Dj63V?MpXpXm{d zw99RP6l90IfTv+UN(IZ47^J^FQh^E7Dl(Y5Y^HCjA+VcSSL@3rGm9*<8-HFcOS|EzuIjyUP|yg&&U^CcHK*5FScqCS47kT8D}>gMqt(9qIbo8Ko-SLK zPoG*eo)20xqNgJ>j@mBmH~iw2D+OlzH}%$+oKcGVAqif&81VD{`{$=14g~ReSrpNg zxBVl#=V_nfgDb4|6KPF897yrC$vie0DSuSiesgQJx;I1H@q&P@ckuFK+xjx);-4YG z=*qRPpn~a=vl_BKZ+>%gA)l^bQk&%Mf%?+?w=QHu=yffRsnGK$q`iYP;(sSB?*Eyv zIC%b7!qPEV+NVPHpQh`CK>5E3Yv0^-Dk3(JS%WDE*up+&2bo zS2zgO@w4Gje%Zl5fbAA1N1H1gn2dErb}aTC2xy(DekMccl>&@*v9Yn#iLI-n68p++ zcCfLb+Xim2Q4vAk5DxGP5E@1yu4aQHzS(AtMxd)f|FN0mDrBNC2guEYQ>=qv^hE_w zA%2+wfkS9=D=n0m>?#I2k!{Wgp@{dg0kZH9bi;brYPIO(;3wMs2~KfS41IO)Y#nL9 zgC;*jG9_W%{w~#itgB&U^zNKjyV&14Ri~ZrrNzPRa;FtJhw;aWwm{6%HD2i}l9sbwf z`DV~7F0h$jzyvg2B_2itBwuq8f4T904bGPv`&Ag5oF1MpHTIp!t_@^!7|p^qdD#vb ztg_C}=r=&nvV^x?PDSoC3d3~w$wWYFbMf26303)ozOlZ+8`-*KNXknZr4dwAzW=qu zrMF%b>Ws~J+Y6PRCe}Hfo(6)7JXTH~G6-Ib%vHSPgmU3TMO^mfwx0)<{#(a+ymdY3 zfQeikk7;Ru(pbJaa}x>;^`%W~8?0&6E}O}L049Rc_X%Cq5K?mYgn zm$B|m=j#3TGcZX|bf^u9mK*w)^+E`Kv5tkS!Ipsv5 zHOyQDRZZOUw5MAM`IN7Ba@afF+y${#`{4S=-N#e}d@->fq;P?pm?@p33kkoj;#2!i zL9uzOTlXea%Sm_*FCv2y))EpV!+QilW41lf2@}wEUfMF~Sfh)G8^7`#=a zMk9yXqPb&IYRlO38(oc^B3K%0Za2H3LGo|(tbMN*Tk)^{okYWozk#KRK#CDLquIEk zvKqfgzM2lj9dL!0{p*0qzpamt{LhcePw>@T?ridJWb^m;X(RCa^BRfzbb^0tu8L{g z$mVN>c>wQr@+0ouePf(U`#2;oTR-x#@Z7H<vxTDAYZgyxcJb2S&UL)ow>G0rhvyL%vpZ)oTj{J=y&fq=` z(b@~28SXzXMLp=RGmeABUJ4-C_QXzX8PA!fSKcORxs`EI6a&8o*z|zd!+57$Ka3Hm|ByNo zIVpq?_z)Z)u-|JN)px{g`J~zn z!cBNRTd#leV^e8kq`ZS8?02;)Uu0gb|7ffC2I5q>+_UpE>!&zQL!WddyriAB2?tyU zxMiya=Ma>5K4@%=e*sU1fQ9)sa>;LM@~>>cMZm*Z*tatFZrgo}6-nvmH0JIuY!aya z^`iQ|MyjiG+9&KME7|goq=9!yL9C5Mb;0xxSv11=psV~k5sIZd4$hXORcPsuKo+xgDpd&)6J`RT3$!DJf(wgXd6S~nM zPD2vd6SnUqU~2~qYc05fC>0Eod0FX}gs*V^zU!rHtpvc4qxGe3BRr)D7=f|mQ`0Pj z!_AX(%9-tolUgCAVL#~rKYX}XNgu}YA0|c9qjNTX#~bCd^(*z=0z5vav{(!vC@SK` z?Yjpz`aU+VPQK2B-0T3+R&*JiB0wEmRy>0|n6x-2b|kZ%vTeM~D!aRLQ^sCC z=jiTZ_!H_E2a%u93nEJ~@$tYDSw`KvvP!KufC|w3;kVi7m8d*(*Zg{z#1E$hhZv;4 ze-XC5gs?P>Zf;&;J8sKcq4w!;ioi-eDBkOXH8bUJoBT3=2`L<5^wjP83iCKTokxAq z(M`fEZ|7W<{yZMp%+*btxv{l@>BTJ+nQO>{|G8D7V5sR|*;cOZNiLRb4HW`1GK8Dg zo&WmR=ErXFjn|?y(;1%K*rW*A^ACm=sPSO_@a8_ zNuFN;pNa9H0X}T;#l#?<>}ds>j$&;Gi_4oaf}4ipZP_YFyi8+i$ zE$r`KpF5bH)myZ7WvcjsLrlbSr)Kga-|05$0q;p@o2L0+*Lpnm^Wr6l2v^cMRJ~4U zQU&CBs;I%}EPC+z7#*RIqP#g8V5u)!1HXsi&TJ0hE;PN!{Rb0ACNe@4d7tQDN+oxX zg@Wbo2!XQMro<@NUk!7V`+H#Kqe*jkf}G&v7UV1=1JMS>z#yxTDzS3C zLr4Fdz?^ttNG1+ddaX{G%tpG{8EsKokIaf;;j2eyZ?ihw^b=)sC^=~C7xcJ3r?kkTCtV=(DzBoZB>xAe46%F;Uti@(GbgJ zW>};u*`6QaF}R#?6v)^(8yJ_~IYRHzHAY34A!QtAAuuHvqoCHaG zL0I}&nubK$YP|%CnjbJrNkS($zbd}e1gAnl?{2s7&C!6=D3<~~{&67MCR!>sz3dmH z8pcql6Jrga zB;+6ngBElj&EU2VMsnLmAq^55fjfJ^r8Y*ehH`0R1YK^g;9?>sFo**q1sm|s)SlLi zNho?pTW3bFyxYhJsU)EA=AsdqiRjZvCL88JDsAR;;>Z)V8YDxZsEE8ZCp3`zqqv+6 z@LDn`qzM=bH2ZCHqOmiUgYu+qTt!scZ0!S|hh7Lk60Jq})LexBEZKSzXt z^H5sA=THFn?GgO>{Et(E06NVk1TJEt02|)a3IH?A&|=V&l!f?tuU)UtezQz?;Yji~0n64yf9Hm~tU&NG{#aQ^$@n9JvN)|Fui16yg$osD)HXkN)4Jz7l%~%`cFyHx?-hb+H`G;T!IGNyIf2!+8SxD{^KIAavA}Qc zAqiy?lh^w((!VoLXSKjFN4^|d$%0W#Zg`Lq-m zSPAgHMktwOq;0eMi+Pd|dxlyz-nuq``59fb-V$BJGiSm<0M(GiTj7N_0-YYl=U3pL z(8SyXe$pc5&*HD3AS*n*%ZftlEwZavCuUn@9P}qy6Gi{IZB;U_tWmH7Wy{kUz%=i~ zrVj>P^hXbimpstal|=Ahn^bugqOdmf+6v6Pte3Ne2MbmH>E}94xi5Rp)VrDd5(jPx zEH#6_i!=8cD%uf((hFxfq-sZ00SY_mR$~|uz~Z!;-MjkDq?X8v68M2oeh^%8+RkzD zUTpF*J3iOiRk_p7Yyg%Pk9VM9MImrbU#ctmC=4$=n23z(ngZfdq|=1v$HR+k}6K zU=cp@)lYIIw;o`DwpgnCYXkK^J45Rpo>_MZMLWsH`88hC5pM7(jW5FfO7`@I-fngU zj&ozY{Dlg9I0@S&++SU`sC%s4-~^ZcS(JZd9G^zr?`|%(ZGE~$Khdq^bW~{e5N9F1 zK>EXEOvF&y*&UV+f6{K$#7A>%xpiTJ>FrxX|I&xT>$fkmDHZ(vD>LI;a>xb*d3L&d zW4lC>!?gMF_`=|qOHUXYzBz5WO7NIy4>i5LUS$=t*^rWO54-XVN*6@QvphIDJ@c$; zZ;@HO&10R=`svsq?ou%400i;^pqq_YzYLJdv%+D|0xm+su7!P;3CKl?bcKSzp z!1P0>Yq4`e{n>A|k@>x9JRIzJ$M4WYamsK+O4`^3ej)!?*#1Z$T3I1Uj& zhNzMUYCa!8?q?UadHT=^hcs9}(n<*n-C8{^2fW^_IJVl8St)PlGj4wq?!mKr&okDa zU4Hk^rr~8jWxJK?B8h%&7sCfIxspYlSBusd3F@wd`<&G$j9LV8c7pHJ3f6|d2p&%= zOkB$OOBrX6Azj+F5@C`4|J)qWZ9brFBsJxKqE>mj z(6ePEqSg^B*#Q<}i~++s#`Tj!I2i{BZZLAFN9lJL*DHOy#jLC7+{ZF#PN)>tESGV*YKOqOb%qm9G&8UXRQk#6=LUfuAzdV2L?ZVzSd#9-n zc?5X}`RWEe(j(}yuuB{P;l#gVp`WlL>n<7pFFQf7vZjj)i&On)_V@o&TCyGoZD{MS zm;%69LZJQt{o4Br%)8Iw>%WeT&^26i)oR66)R*$nQ7F0ErD9?}36v)B>_zfDVf-C|Xr33lk!?Gd+ECD;ps63xS!UoQjkf`d5BN z+)}cj#Y#ue&cD+w2-V)woK5CX&%3%4C%C&obc-HJ4d@l$4zCBfW5VG*t+?_LHu+O{ zifk0R5=mbnbnhG%7!f|$Ebd(gzVt|c`KlExWS|b{a-x_uuCPEVCR|1BggZHlu4mHh z1dh{K=uM%QEf-`_yj(Ur6TAX0f8y%0$lbD#1Cnxeg>T{dd&L!JYG|7Z08X9Qy29N9 zX?Egt{#{75Gt=uSrv)+GFeovMM||R{+7oAFfyXU)Y}tkgX31acSydP_O|anXkT7Iu zCb){303au1141~M1|@oD_%8`WGX?BlQctOt5Hn3f0%R|6S$9HGMl!&}BoSIKrTtd* zqB5KT#WoOU5U9=QOde6*Y|``0Je%JGSaZ(g)NBu1rvxIXH!>*Tb{w2?jX9+xFrKG# zD|aGc(Nh7#q5P_#Kkh69DH!FZX6)xbxNq2z1ftU8#RW4P>If-aVK%SKkdtY0+z`V< zVuv}7B4fF48p-=Q!4u$MXtfg*_yKSH)p*(lZfN23rWwH2(lo%&&|2EB#GA>cM; zb+1^Za!CBx61XZl=9f4phyo43S z&7(-oJ3MO&kGm;|UdIqTmI5!t{L_MCtJ_W<)SC7wmYa4a)+`?7G|EQ!Y9e^ddGCPi zXCSqhxhWELxuRy~)+n7in+_Cf%+)4GC)N12P`1aO)dwBI}KcgE||g;Zfzy`nZPLB zv~SxJ994G`M=9MURDF2A;!j#P{#?*HXLvKx_FFoNd2Z@<4dv$491IKWyh;j)BYv5k zGs0Zt2Hz86F23fz3M~?}w?%Bs5BWz~mW6rA^Q=B6r<2NjBO;dOJ8H-u zrGs!+`03u{y^it|2Eh}0i!q`MV;{kojwt9HVCn1h7}YxLB1!tami+g%FcTYt=!Ljw zlVNbT2B1q#rKeWaND)eImm-KBG^3jC+~43JDn}rn*8O9hS+1hEIpxsTfg?y@0TyVb zH%^~mfBU0VTiL0JWRz(yY`)|9Pj^t?ZP(LNdBKxdoZI&W27_1UVkKX{0*?;UB|N<2 zMd#_Uer!!@p-S6XBjeVKPHkzR>dE~ES8k)QZesS9w(p|{KMZ^~J>_=N&|4KXirUu< zdJq?UDcm|h`mpY1CSrC;rWj8q-l9j%vmI$1Jq$2>(w%KHFXDgKe7<7Lk04W`isAaH z8u-)4&*)rzm>{(7C8moLb7SjZZ&%@&8F*qJW6X%xiuAe>R($!YB0Ck&anIThc7zZ9 z7FSQOeFF>4`HI)O*w;#Q>u~@#F(MzZ9A{Nr`(pn>K;PFDvT}A~y^MFLHImZEIiz|w z=oM2-yHuL?f+A4O$PL?d|0dj!bLa{Wm%qovp}A*={g9Rdx?1*IBO}#Fm%rbf2xSKT zb=|s`OOY>KZ$)_NYW^kmv`BvkF7jEU_rv0Q{j2D?9DD9bB_5sUh`w^cwD=bV9+ziy zS2V~1L8QYmff(C%-ssyn(5M1mk?DemBd-}^h1(J76zlO9M&(LcZXq)^gu|nSH zb4iskz~OP|Xdvn7a9?b;BYDHP5{K$Ggxda(YTagmBBZmJ4b#{0+_a)n@ZX|A@6cGO zD%pKs@C=Z9Q@J%>HN(;~r2S@mRm=QhdMN4G+E>tjlh!gp ze_=!w(Zl=lRniQaa569+OpOKoW5MI}XnMj`&q&>qC@Hgci+-$C2KZh$*3|=A$I`y+ zz!EX4`^62r{m=s8VylAKK-lVtADuf2jo-e>b*c&UHV`~~y=|&rX)_6*m%qfHcx34& z$X%av+!FK`{r0)Tgh9|%IO~A0-Rk*O%7oQffP3zA{uxJm8UI&4t7C(58rjXj_yLp1 zVtRRf*R%@i*3Dh5Eh^aS#c*?p7+)0gd+EIYw@U)xCoFoO=i-0*Pi!pz)qi4Q_yNm=N=Lqtq7rTW6w@0*!Y|0yigPZ*fu$_>g4xrsOO9?VeFMMgq7VZ_MwmcSI&h+b za=#OCT*&w)BfQ{7NRDDn7GYci*_5ok(?T4)sEr?CW6CID&B^eoiZWu z-YcM+4e@^T9ioYN17`V;s0ItxNG}I=>o;wexZd3W?J#K7)6^r}SsJ*2@%`cO*@6}x zgV3Mc+hoj6Pxh$c;d|;P9et*=RyhZ)iX8ld+3@F9`oTo*V3Fvrq*n3rhfp3~+xbW` zF^~w=>jb7xOV^A7UaZ=L>Z6seVu2ccn{F4l`VbkcF)GCyM7Z+o@CQbWg&Iou29;Q> z8Gl=+*2deB`S}`93~?ZSKPMsQK?bN#096FWTIbWO`Bf`~A@$ z4o-S^-b_<6nI0l89j@5;X4!|y7rmH>hoiLhDeQ5IeeOhl$!Jis_{-ON#pQ{2#ppRT zMh+z@j^u}U6zD{8pUqLLfdF!wz)g> zd<^|%oL09^yan?-$1lx#56Ohl z0^~FehqVetTNq+6bvREcM>5eq8tY49Zw4Ip3c76Ym=+BinNS-t3DYXIK@5gL@9jm zLZoJSzPL+v6vz`3smv7C60aRfAWm@*cG`Gm4tQIfK#Qk|Y%f80IF}oiNquCjO)afy zJ_DhkY%b@3`;`Q$L$=O@NHrBzZSZR>uD{Hs`fz$5RQ3G0leBCdZ9ObUff2+tNB-G< zBx^Pm#qDA~jKRruLeJ;*G#J>#=B*A!NPV6Lf4-bz{ic7VW&FXac+WcQ0$(KT zKs$B+mF#UyIeAtWlNF|y=>4C1cBi5P+3m|#~eu)9|c?_O)4t7wcGRx3}V)-gO)}x2v;tP3h%(lm-4~$ z!s37KibUddx2MV>o)MsTivS)qsP|s$({#J8!gS?DH%-BLhWmn!i#U9 z-KaO3!?KN=pGu(|Ek|t{#xf=n$h0(X-6*)zpiq4@2?oQ5Ca%sWlUsCzakMce>?NAA zR{Wou+H@y0t4iFsT1bGx5o>TCyM&2Wq)H$2jVA)?-0yb(#ZN^){YCLX#(TzY-=3<= zE)KziPqFu(D!7;e#Uhu>B2mdUCb&%7_=l+4*vR1ZE5~O5n_g5t9J;E!;5k7y!p_r9 zs|u*M_*T??^wXdD-*jfaX7m++>9NeRQrcNQf~%K$CXcAo+H=L}wG9rr8=adL2#Gd{ zQPF+jm#JgDIUtRGc7~6vMkszVRGMicW8f*wg|Gw8AP@}E2nA^NN@Fie231GVWXKC? zZ;!I)p+Kav7JM=Qa=+oZz>gY)7^;&%sVkQVn~6cKX$)9sA&uaRtG~0(`i1T=BS)uN zj05#>p=6aXW*zh|XTZWP_a1<(Bvqv}^{q}+2O(_ydq0l8pDd_Gvk$&P_Sqx|Uzb=W zKqKAIK^3``zgHUpVRC+03fBc>KB+@ken`-N)sgRS(BXxW7wOZi#v&j~7CBe^)dh0t ziq;tMTl+rfwFx@kkwcal=NC73afH31P#7>ibp)!8*%Y7WaKHfk7)h2Uv$q<6K})W{ zR|6<0v}S=JW(Mhdgl%*&#naj~%^zfHFSU1wR9_}lrlMD{y_{JYUPaN`UFWq(gHqJN zG&uHO-AN9MSMyOk0(N_Hh5z_4zStiUh&yktY3Y;{9O{#qtftY!)IINO)lQq336jEu z2oM&G`OCAQ;DSANTVtqwr3Ic*vdZRrIVZYw^Ey(={1W|Cd+dkk*vDiYyQvKyESU}h zMqMkLF1amUnlR@MJ-!6YBKfHYdm_!wv9Joe31!xm9#!~PW0^WD&D`q%KP7vLmq{JV z5I$%8?5^QjrgY%%?D@{gCk+m4{T6IYrUhLSYB9%K(!d6`J6o&F_r;h7CxNf;T5r$} zRp(3r0f!Mj;g?p^=T)N*M~Us5^|7_-KPW$}*W{d2zgR{eC?PE?O3B{lt2G?%#Ym6} z<-TmTI1VqqhjNJ~@P3U7ecBhphWf=o19{?+5^ttA-7jmmPl%U0Qz8sZM1C z8X7`9V1P@0izQ`aaJ;BGoc=*z)WKiP#s>`9bu+W3$Lqh=fGyA(7NYfNsYmarSnK5#z&3)SS2EoGUx&A=8QMAT_0+t}TiYi_t%W=-YwAr;7z z|KJ2s&GD=Dw%d2N)VyaF@O5bp-QQ;0{DUls!5R!+0^}{^8*po9)Nc66{Wf~!!Q z7Q`86r_9=h*is=5Kkm*~OllU}&IIR6N!pBAz^D?^KcoicrBE%(1{|tejqDnp_psf) z*PIsnP_JIl6GxUb3xncbVTYMfUm8hTyU(XfjoMauz%a?BwJs|VdG+<9uX|xH+H`g6 zo8ZKO)0;MD$;bq~wqf?-Gk9DhlFjr)cQujHl69`UE!tTe;+_=?_OkJpX| zIq!};#P(VB>J9fUhKgAhOTE2!xtsLoBf_=mdrh+B$aTRDYs=DlhNFYJLLUEu*Nxk& z%SnuW?Y#6>JF~`4JwJ;5>|pZrR`PEDDFhOXwPTY{NU(yN{C~$Y*7Tkx1_}rsmh?hS zNJ20t8^`~g5Z3C9$5Tq9ZQNqDK*_5g(%*d1A^*bghtv#+&}+(i@lRf&L(IW06P6_uZZoPn{hPw0`rrHDMD`+b3e zZyGLz=K|x7f|UfHx*qBANADpO5hhF@WVEW9a>iL_UNGcuV{`Z*n(uiiR@Yb{!6Q?a`SAa~0 z>suMz7xG?Bx!Iq+<{&U|vwsi1Oji;T3z-}F0UwFU1X}v8l1krh0PD$QTPGn3G7bm3yD1wS3u$LM*AvLXbBLi9-JiH5MEL9tGUCyKa#0 z*stxd@}S)-%b9160{APQiul$bV1pR7#VQ|P|E&7B1n7?vW-j>aU%n1@-lE-3Oc9{V z6dhkS;?Lg)-q_?m0uXJBD|;EHoZRl9%pp6)VbJrKWiVQxZ6gMkU1ib>hoa;54eT8AV>y7a6lEtil*xC7D@3f}Z1%>EB;CjYP+0 z{trB?DXJjoWPUIRjdY#M>|{1{l*Pt0KAsaSL8>lE~vLp~YrV6CpVadx1(P z9T23A_TJBmFQ^#TFZST`nY4(hu)+muG(Oj6hnlr4Sc|Ij$fcMqTPvW!rWu=2B^_ku zZkGwj3)Zr*fl_Y$2EEBg=}B2+nIUKt zda`+kWfIWCGE}G$<#6ALU`#Q~C29v~MEAoU$aHlpGtx;dekWd{enm9cM4t_NvaIfP zs7+Je-%a!jkXt;2N7RA06AH2hp*~ky1dS?H7J;)?Ev*Z=YUsGs<}(n}1SG^}Q80l` z0P3c%+G*aJXbi9MZW{AOc^@AM;NV_%c7;s5&X40m67bt{eK*FS7r6de$V)K9;?%do zu2pCVuc7sz!L?bSt+6XAz{25#=i6epD6T`VA8ya%z$1e%V*t(-z5OL;=E~Owle7&n zSn&H1_spVi{V-rfwD~kii=C#co`j$Dc@scz7E8E+sQg1gWFv!7UaktYe@75@#&Oak z0r;zISrpJ@sij}A=Ow7#;VSCHPV7J-+Z7{n%c}{KdQbW^A;t2AL)tpIf|4HETY8T9Z(}70g{G2T@`!ESjqRn*V_a#J^;TGXHJWOKZ;NF}cu~M)w`f>$JlFf?^rJ7^)J-1MW zIP)(IAU4l{4nRlpJesS*L!XvIDze2|4PSKXZQ-BQB^&|5k_b~YQGCHCS1k{o0UHm( zr9l%+ZE|06-6?qfG)1qYI*zS$fkCUim^cj#T|rupgfKuW48rXLcql^WdlGdAk}e2& zL?{%cVUlU8ir_T%L2bBI;=Cl;kZ zS`4ViiXx{R((O{)&G~VH)nnPvQ3`AOY{YU@G@5chHD9*H?37P;fL|7?=x|4ZFd+Iief${G)s9G=@%kWc+vFwg!l9+fS^>55@e|IntOJcc=z8yAXC&t>-vFl^^ zRYb#y%R0)<>9}fYXuKdR+zAY&zF!h<4>JwEm!hzxsZ(4r3C5$|Ii*CDXfX;nh8ldG zDSSxe1*JuqAp3T#%`}0yt5&c>(Mh@wY5>X$W(%2j?vGXwW|cOm?qD!dQ$qpNv6uXD z@czhSGhZakBgWM-naq%+(0ZZs36M|JSIfr<+-6a!{C%>6A#ZbULG@+pP z4QIwYE)zjPjV5cnCsT4q{VTDY>OKcC)2ba3J+_`_8`QH-iRm?v^rjPYh#kAQ!rS)% zq9SLH+0`C`0JUk{9qbYz(Gq2FvyG2&pEGwaIj*O%f{Wt5)dxEip*UXXEsjF7e2ElY z)EM$OT2zGDeX=oAG1a(#Y$aH4Qf?pAcOGE`RN2@A6-asN!kc1=VQ{qQlW~9_uL||? z+@LFMn7(c4-w5SQ`ABc3+JCI7@ElChLVa^Mv28KFaGYUbDF!^Sb?CcOK@;4+v6ckc>$jvmZVR$l?{J}Pn>pc7v)|!GO!Rv8jTUM zsh{3F;vJW2G3@q2m!7ZtDLs%Xe|bFEy@Z%{wP@gAgN5pkv^1Yj&nH(NvWY5r6^#CT zp||!(XIz*p>0qpz1Zz1=dl0O4&F$u`34gr#_u286*NAoPH19Q7z6dh!OdW0wOnUp2 zj$~!&RfTg5TTeOFZ5rquBenbrS=BnujK+y#$&m<5^AEtB%2?60lE&sbwqh>n({Mpu zI5Aq;2b+lVOYKO}WZ5-qsa9wfA`LOGwECvSqmBM^rh@u8gXwwM==mB8B;AF@0z%LF z2`No6U${a} zfLr;}bEsN6@N+745dQSielySR$Ba{^D|o}X0Oyp9A?_?1&q(Lx!`3X~pYDsEpsM>> zgdnt(}m?_|)h!7i%H>v7*=U8S0Kz|?3t!|}TlGnq$*9ox3o z2-2hZYFmd|KrY%L>x<}?P12~lVCHuY3_gOW@6!$jHLW7yCn3!m&-(WJHqvLp?wi~PMh1{^b=v$Ous{fjS~z_}|V za6!q>*Hy`6h$MuXxBlKOfw%!Oz^AF9GopVGYOS{0yz`t*q42&~9c$Y?T)o6u8)$(a zkqQ&9?LP%aXkvM!(^8=LefPJ206T0Lxej?C30Mo|50C$?H;*KiN!BS=xrfv9{7K;Q zigPz3ISd7|Rci1rMckl%L2NwX9ey98 zH0Fm`U!Y_T`81VzW>Bw7>LERUdfT|>deS*Q;cGdLwX?~53}K>3i{v001WP{d04F-> z10Q$aR6lB6bpj2R`P>V#6QYF>eRvEE@>J=!J(=I?Z1wn1KR&Q}lyY61-^H>zWew+X zUjJ4X^}JR6kumheyLWyQ{v{-s4JPXhZg1}*)R#6}>iXb(_igKl7jSdv`vqI_lK<^p z^Ky~=}XTLdMv#wUQ0uj&uC^Zjn((_0Bn&*dOH^Pr@)LrJZkoSn{8O*q= zu&^27xBIpst0@)-yN#;HPoOvdE7N~UKyIG@lz^=NRRVHz{4YqfMNhtd<0snYqn6VO zOa-G0F-1_X$V`zzGfgnpF9c@7*A67*KSBO#&7a-uIZ5#nNh3Fm9WoN~3s-vr-FWd+ zVHvCpK+~x&nscH^BC;^%aLq@#=;HAeA(%FHo}`0e_nb^$%5d+A!$9BN2fv_)fa4{s z!l@Mge$R4O7uVIkT%;_)td2L8Nxa{H|AKb(3rl==T?$jRk4x^0MoNuWGMRE=B~7p{ zgvb&nCJeTuuB1S*(AOJXDsMWRu54^H6(|{fh+)cOqU5BrI8su!V zZM080)I>}-Gen~eIU{EQS)9ryJ$T(>>@B)6)g~&f0wo4fhXozM3DAXg>$520_(W%O5T`QX&>6Y zy8F341hdT%#mheBIHOKldJ!Z%VK&vEVvdO8nA?nf%q*^U>lamA==#;zAK*%Pj=|Jb z@pkDVCr*^649&#}9j9s--k5H4bSNf@4^p|^EH~16jcbyPuZA*c)Y!t9ebMaF%8L~6 zI_2=)WW`nZsTxh%d`G|WaE1Uk5LLIM@|jS6Vo7qP_PU0c6}uj6g5#RWXWW+VYS*Ls zGOfjz8o+<(k5__NS}tZ>5SYS2KW)y!ghqvvtWHB!)jwt!Ug92URw<~6SWm34baI-F z4qo}MnvLqgms9cUg#MPvWEBS$+9tVqT4fr}pOev%x*9^!j!gK>=p>7s1{Wni6Wh$b zwnGOZW(`wP(K-3jJTCa4W3yQ;rF<@02xjW)(Ny=-or>$!xLDJhR)BR#wKA*`PSs2z{z}B_}70sBW zDT%qm3h`j<0=lT7uPV7dV~j;ZUTkJvm15cW7{@pG&op|eDh}-T-lbGV7w`ZbbwmpC znQVL|6>%IDk`e4nbnp&qm4}M?@B*1(pzK>K?zcD(%uk7f%*e`()WFzM{2PzP;JsCs!nb`309Zg zP3b3&*$ny18#mw%Taty7TitR~G*H!9lAyD~X6~O$NmrSK4d%YUIv-BWmL4@_wI)a_=`r9ccLo1HDxMusi4@D_RsVH6*!TGB~!KR3q4_d*oa#>8Y zWJJj@L<`&x#S*EaD)EBhn{y^hC3LjZ3R!OIOtEG4$zWAZP8rJ6tgNkqXb9Tsr&R$7 z4_s$76f}tMNnk5!DIMuJj|G;BZgCCjGASl|DvlxtHI?0LiYoKa^RhEYxKxLG%3ElY z(8v>nnjkX6BHe|OXfabZ%-uNc!TFx|hkuDk@cs6B?J?nU3n5JYP1cM_VLTbTJ@}3K z@p*%6hjh91LBVb@&+(Cif#iOrI(;i@qNnR^Z-hjs8~pZOFD%^c|8l$+fpZ5DaC@>i zF8p?Pe4C;PqQDw3GWvLqdyiS`33$9tM^V~oJwAAJ6cP;ZYMc`x@%uc!HsV8C?fJNQ zx}>h=+Bd2QTn0tK#s`gwtpssQO0d5G*OC8hs&ECGU6#1J+I_ow740jNp2BiPj20q z)O@SAFf@g~$)M%0mW#{r9kZL$0Bo2B&+curP-14(6PUjxWi<6Ed<{d zVOmxgbeXr@b;@R*Kjzn(H)hvrOBGW2ZRqfCovh1&V2KM4QkyQJY9`e(x%?GTby5&J z3BK)dHcnB0u{*MW;dpM1w&VRZ>&&6;(5&u1-4Bic&|}Q5nOf_Ho4H^qV18|6y6^uG_Lf0; z1kD;~fFQvkxI4k!-3jjQ?he5hcefYU;O_435+u00LvXu%_1#l-&i!+L?(|IUZ1wg` z_e}Tm+&}dLzP?H5@9!;i1(lj!=lzLmkFPWHw_18Y*!j;e8;}ji2-Kt@8L6AEo1lBf zCxVH(JouX|F+oO(naV(^=eOTautabQNEz5vG)5}mKP|aGg%SfOAZ20G(O9W0lx8*x z?l(>g+J5LRU^d?Ab-!NphsMh1R1(^ycoJzR+o;y5j@Bd^Qug#?GaJ%(_eoc19 zS&$ z{YlSVErxUQCj*T1=&ulm)S5`KY)*$6g??se*TmDaQ73~$7u~^-gIly*_3UG#{=D{Q z1rr9F*#<*fxyL<8^(Co&3idK4<$a-Q)|7I#YKIVCBF4i7>aVY-9i5It2dTI_OT~Pi zxDE}&E0?t!9o6u*3RiVCbE`yjBDhK3x_i2~XGvy;`|MYEXXnFP!~XU8Cn}2Kv0g;3 zB;fRsH66BXRsBTePi-~)BT8-J;?QD1a^n|QG1WC8opL1xY0PSAP<)1a9(&LRI>E)P z*Ab`FclqZf(VH1=noxaI#hhKs1#A0i{tkAmFKO-HTm_BN!?sRIEJ*V8Fl%l1h!L!V zld9~GRcOe%b}Kj+8!@qZEg3lbq0Q5(&D9vf7q?b2jaL0HH)Puh+7^}7anMtMZwCbG zo|W@@G}e<3aSkdKWP9U%=Ppg(5k=_bzJkP*+OUX=h?`eDo$eqk`*`nVvr%DO)<9T8 zB+R-P@x!Go$u62f}nmd@hxIYPpOEx)PEJW|`dHXe_v;J8~do6>MlBlCDOi zp2vYtP$SXxm*68==t~bjXj*tc{wJdVc~(!R+)uxygpJ;>zOQn=Wg+`1{|t76Du-}{ zvXu#4=AkK10xPkg%rPXbO%JnDiR-^4jYqDaSau(|`9fWu`8B)sc=7mIM~+1ApW|P> zBRFR_Ep0&)U%4T^1=N&$WCb6>H&hueH!UTZo%}(;;mt7g*SF5L?45- z#y*fv<-n}{*E7V%O@CYlqtmp;up6K6uzlJm7g08?kYxIN@2uY5X97|do1KGbN5?p7 z#os;p7mC6F7yWh|yAvkjpoftuc7u2rw#zs;-lsI}m{esN(8)Ffv`=F#UH*8lB}+Lp z4PetQX5%YnLwZ3pBcVDMr4JpNOP6Y@Xj~xVL}Zq6W>Kyl!mT#m$&(#(HRP-QGo%mG ze+AJ+i}!q05Xoz*xsGs=b2?+qEz>-Nv%_fS(Dji`eAV!A{yS`sK%5|VPp|_ioOK@Q zdVjEV35lV3Fp_~8h-&i)d~O&i6`H)p7Qd2*IBKMtJAa{Jh9{Pbjmq>4d*k@FAt!v4 zjNw@rym26I?_AK_Ix7u3A;S2?o$3u<@AE_K137#Ha*&r*E*ykOL%BP{619uq`0oUb zl2SjDBQwp*AQ6wlo-s#EMq&Q+$H`Z*&X|0?w|R$|5PD?~Gc=oI@FTMd?y{9afA63Zc9e$b#wu{`+#1GXTgcLfeI8oo zE}mzIg!9-K*tH7C<3AuQp6-)>Zh4a&WI=u!whY*oyLy(pYWVIMa?{x_y1`GB`gQKr z+Wq23tFEo(clJa7*F(O&?n~msA2-H4*CkuT2jh{>`d53* z+oC2|%9tC%e4cfSc_R^o>z)$mX8q#wyjiVual0 zUb8@DytxQw+Jom*pBLuxd(^J~tGc?1c;`=Q2aou<2a55*kc5w)@yoO2f;XFyirFT8 z%y+W^e2nQ~B}-y!au0j5L^l-32!OWuEg>i?D92Y(=dcrwz&Xl{Rd27XeUATgXgo@)BNf3d!|VC(TfdTa;Q}Ki) z=`ttoFRoO_8lv)Hh*e_9bK|srxxD~%Y z@Y`k$urR)R@%s@4q}zf!Y7l2Iza-ab?nnRR*zIbt<9do-VpP! z0}j>P^z+uAEC)O_P9&)VozC^Ug?hu&vr?0hf)J7KTE5%b{;?8_L#<6g$+WWkB5nVFSk4@v;PGuovNt4E>T=23y&p-hSBUQi39N zJIaDJF^~vc#NW^wocs8ov^bq5BnXoDl;ivPT9Kd5x;Qj?5ELyQL$x2c!GpfJ;q(P_ zadCqs^(OQN)57qW2M^lBBDvkdAJpG>fP2{RUG*mYULi)_TqgH?-9HKF$wd1B7!Vi@ z2G$2aT<@`UFB(^Pb~RQ(+F){)gT7v$^{9xCh*-zke@%ybh*Yp;`CTEHAR_qt3=?Hj zcbP90pAc;uN8vh$VmcrKGF>P>@51uJaQw>U7#+N|KyM#@(fSyTQCzi?`7TbF@nG*- zT+bP`BZlahhyZtzoXAs!yGDNjK#cNJ{6%=t!(Hx!m|46tqA-CPfJ-{!M&XE_J+ZP> z`!aMX=DtkeHI?)|g3I-?rFMt(C<-T{Jc$Q3ZdAF+igNDqOZ5Sn5hCfaDyC>!nDrMg z+t`6Akx$NzJ}UB$)g`iP__>vDlKiJFt%s_`WkhuK5@o9gGXD(E8{r;=fl~sM6Evk0 zYkYsJr3RW~HV)0D%4ht8dV=hQ@zThDjR)oP;Uir_WXb&hAcyF|UEw~|H^sMLUM+QN zkesg@VMwAnLR3#hMDfg)L(^Z_HX}WwU7-&alfM>oCE7E$KHAQIW|`Tp{bKmd7?Op$ z>0if5zMPd=sJsJZ${@Ar13c`9R&V+~y)6O0Zy^mBXLADHPcI+uFL&dc@7MMpx2H=v zz-qH$_YFwj_Z{K;rmraEXC6Y=>(gNl@N}M0J;Hze_5k#;-EJSSUUYN$N_QX169$vO zst5P22wCt2V;~ZvcH?xjf7iOLn@JbXJ4e$xrT^VjimZnzT!0J<5c~0hb#2FNg3ZvA z9Uu5SodWOsa#ZcyPc>P>omr324LS^*Wte#ETkHN<4aPl8f9W1A&4tVto6Wn&41C(3 zROKUZyUBgdc9`MKRS`^UU#~2YFGR0C+QQY5+X!Qv&$y# zgiJ3D1}YsW{#0!NgV!pYRo6pJqh6& zaj`#=oRuu!lL%yUdxQ9T^<=ja8KO&O6cj|#BzuKQuIm&E6iYIN>4MHj1I%a!?PE4k zyIID`>9pyO&00T8HMm;Bbq(ZaE_g@lWv-zvev09$Oc)mdd!((7w(_c@yy*F-!X{`= zb|p$h7)h>hW0L_+{(sPP7JG;Pjl0@jdfw%pfo&4{zu2=P)ip!sY_{LSaE=dRdlo~= z$Enbd@SPw@a=Qs3p8fTaSH5?TED|h|_2*@WbVbU;G#W0-JzxllIkwy6sb00dbGKGc-lUqR5Mmacqo9o;?uuq6EtY?Aj7_YDI7Pxxsg$i{lUO`+K zJ59|g&-Ak>?nY_T0aeUTJZD!zsyLAh4|74!WN|eT;BTV3E^#caFwRgq+LP|*nth3o z%POd&KRdwddi3y*3JoM55vVYcN0T1#bYaM6KwD*1J!euKpZOLUU8?0`S6Cr(6Pb(| zRMdcIh=lBlF8qg(U$harimq;gq@tjD&PQGA@8U@p@el!8;k8UR%MZC|N_PGWPPSc;-Y^0p8~mLWdsZ!y=oCqh#o!-*m^ov0CELqn{+*90+UAqbS%m*rSWFi` z*2dhNQj%OKQ4p&ab%ZK>g4-Ppe>;SB7K#Eb6XN^E}XSJZdjc=v@1tg2O>7w zD%}=xkH1Cm=j5*S+N;R7)2Ql(CJkPcb@F;xxv1l;C!dHs7)=jE4{q((sM5K8%|N&H zvJ1b+HJ-KmBR-i>A*{9Y3nucGc3pe=J>a@#G5@K?^49Q$YDlGVJFagB`KT^sZhpn) zH15{O%2c;JVUuVgpQZjSv#{GJ3!u44t21lK} zR!n=|X@zJN(TlxVG>c`t_ik{6XvepmS@B<#U`X!g!D~2IU0cb>0(hQZ-7ro$ePH3- zPA$`^{$VAu;*H>}Gw<_8uv;lR=s^>%DkQ-1?nIltL^D^jEZ_CIy7oN1)oEWZkgds zZOWo5X^c5crzl2ukb41}6TCmJ#2klLxKrVO>?6N3*IR$TmS=w^gJKb9e3KcSQQJ$h z%gmJ5Ymp2k;)imAccJDkmJcInCu>^PgPf87n>g;$KLq*y6^1Tb!skk}WBODd?L4rP zWu=?a)7m(Hw-Xls1%+@Loz}k7GMu#Gmg{IuOWvAfWalqTV1EVR6r{^Fk?!l7@MqVY z(zTkYS|xTfOQlr(6+L_Rl=5oWC5auW&gwK*71L|{?@#W#H{9B-^O15RhNxx_b^*cy znCOW0Da9ZL_SJ1kZoHqNqz?o|K$$E2ib~p{?_SkJB{52CQl7`#*1vDBwZ0=p3^%hh z=LQA%C?9h%kC@hgvsjMtnz)!pl%p&r3U93AqWo4YQNv>f{!1WivyZ2_=n zCFR?HBct7Gx}Q_w*3_eUC$yNnhLrwj;)Fulr#_T`tz2ucu3j8l(|Y;3@wgwj&?=pc zG;)zUPHCb-NEKO7`_6R7--0-b=c;w#9Sk`$+oqnbgGEMN0eI zyN`C3q+9aQYLbbn9O$kvl>iC%qBcOvhI0)EFuETZrS5FR*Zr=zNDGfJG;!J6eZChh ziy`Kd&rx`8!t@xrCH$U(Xp#t4+7!j~H%IECENYqnNreyIxBFaOC;)j$nyVV`;XaNbk zY31(`FDl?aHk8BjqBt!4cf3j?yg9kqVeAm=o?7HF<4+M5<4jpRp8@;0?v32;MZG=S#g~S!4|51?P6b?DS!p{D` zb4+!WR;>aBk$oO$?wJa|y0YmB1`Qx1d;T<5Iw}A$q3^VPqSAI(^BB*u2hbn7PfaYZ zGbOrYM3@;I=((CgL6qYvQXRD`CilQ{a`e@3m8UzUqWF%pgF@0e4sPh|{nM7;ub!^& zUgywqL&T$eQX&E0)?@mG8<(|Zg7RF7w`*$uYwY6HvlXP7qWlXDH0-Ff&{A)K5*qD_ z@+v>d$j-#1|ldkY{#g58(0lD^nc6@Li;=L;wG~46Zz}^2B5-D zwm*}k6hWJp1^C|lwwc>Jq7W)Oi)I2z*?LYYgD)0e%ULl6Vppqc#??0u6DH4)m zM1D(5awgC(uOrYCEbG=)n=z*uDS8m$QMnbAH*R zsT%IypY+f7^@R=VRyC89(%q(pPfm&U4LE5Zc5Q7z@r_a(P$72AY&H02$@eV=(PhJF z4wXo%mrpl^C;H_OjKItLHCgvX_5$KW$v@U40~N0iu$SXv=7*fs0Llvg6eFN%m>@OP zBM~%g7}PJ`jIT}4H{^|56f%pqJXv<^=5T6bUsRjmIc>*p8lK{G@-86w4eV(hy=91qOWs*?o!qh~mQ1wZJ zX@18|8F9mr&!!*6|B#3PCjrLnrbxL>T|Go&>@quo2Q-AxoK|2Hkis#3(;Q(qj`i4n z%V8k(AkarA9)&xl1dlnUjD;ifS30K6B(qB(@6=GLtDwjDnR1s?5~(lL3MD!F#3lI~ zXRZ>3YGs%!;z{$Im_%9z>9+>glAqmZpt2YqI+F9*X29)fK(Vz9T{5Lg3*)mo(?hHd zZf1LKc2sRQiWlTZ>q~-Ee{0rr)h|U(04&4mMD)KV!~zns03!!DnK=Hp37Mwo+OPa) zy?a7$J!4gUBn`*^M$8pMr>fm-l|(4mYfIV)2HA4dt?#r!8;-3MnSGnhKxjiL{i49f zdPlCw-#Gk6p_8!G#?`Rx-O=)Nhy5 z1l+$&Ka)3r+FG*-e}Nue1h&tgYppMvr?U@7i91O4o=(wFnXW_{pSbn=4n=M~Wz@>W z5@_3Np1m!*6L_3CyMpXH&wqKr*sgbw|I%(J9zXEp_6eGv(Lrs}sHVb~h<({5&XjNW zvG_Hqtx=)zph-!y>9ZI)gJ%P@h!SA}G~>WLkS7)PM@W>AdC6TX;p@;! z)P-5*BM&^}1DN6d7>sNmLwcCWL71;M+y{ zbe=sAWX41skQe#jTXBW+Wq!B{g1AmkOfVxA-Zo zL6KuOQ$KZQOB3=ZoJl7aYI1m{p-st#Iyv7Ru~#M_kWsXyl#xVAbVd&Et7wvoQ8ao% zoS{E^u!4**WL^;C!V$-yx6_T83ptI1zDPkSFjwn(NJqPGQfg325gBS)aqQ?_7A24I zO`1tlfrce9*oq6!n!>WbO=p5$12n!2d3wV-S0_16Dl3*A(?Bv8QXsulschvY%Ts8+ z)S&F!!OSz)qKe*7)(6&$Q?}hQ1CK}Fz0K_~C8{EBLRxmP_ten_LNP@-)-=zqU0&f6 z+C@2DCgaVR9xUGmGZgZbOP3%cNkAzim4&VXpdRdzci{%!SDMxnGxb=G@biGoC0VRZ zQMqAdLNNdU`%8@||38KRrh-cWu>YTO1>FQ~>(8wuc=HYY<*!meRWlipaQ-*RjHda$ zJfBTjdg&oj{=__OJiGR?3y{bDh$^q zx6ysy&&-Wy|8!9`Iymq^CTH01Z@G47hU!gRd{gH3Wn|1rbZyA8sDCQp|Fzfe-t2Y(eEoUWx+X{Q*6rt8E(tOUB{ zLi|`Xah3(DAnSzi8X#nA`qbE;$G}nMb9xFk`#wJe0DCmB^g~Y!D?^HDERjd7HZR;32SO+;taZv7D4*7th_CpPhI?ZZ;Z?fXY1BuYi$*3qJElUMci891BNJm%Z|AD-1{D3aHywNE@GbIN1(g);N| zP)idizVak`1eZwzvKsIyDeXSP!h|=O$7I(HEw`JL=1UKR3Ewx~Gmgz^FIB(eWP&#M zsInBmGDkm2Cp(4*r3RH+ic3%1U~1x+z1@v(zO)JlBLu_ven}(mbTXN4r;cjNG6G+Q zi~58`J2L^Eba|!;vqb12N?S3=DS&sZD5z?ZJXI&B7xt-z1mj`|T{Cw)^dmr7OK~)3 zZR`5ZJ=577op?~xnygmH$(U?d=;mv@#2zXDDat)Wx?OkS>p&=UFh-taHRqj=|>m2U$&QG0=*xSAe&956%C+3Nh1ibA6J zE%dWGGn6-W`;-x*d8eR(!OF%Cnq34V2mKQhW&V8P{LdhsW)pEyMO+A0cEOrVEO;BZ8U0G+wZbtymfU8Z@NK=8Qk1- zVttil=2<;9K3vZ)KMBnEfenGp6P9InxOvHybo9fwGK*adT^Y^Q!{eeANvWVwHMuP6 zXHx`X_hW%iNtCKmxN`F1qUsJC?zi>qSQ%5cAxp|+wiv!Pr~JPT$$)f7tnj|BNo;k1 zDbnu{qO)(Q)VY+Y)I+p0YE%~NN`=Xd-a~3=4UEFSs4YuKLz+?K2hG@w3#0QiqI)y- zt*H&zAgvoR^KZU==SD=?XiM5RB)Q~!`3u{MBp*0!Wz+UZJ#z4 zZ5#=;!!@^RK0Yh50Wsj7=F^3GEh^_i{y1KI#KQCdW`au#f}~=Q@SxC_PpKCt6y;V$X&tLW8q@98f3>d2fg(TJTA>Je(YP zInUNm=g8RnxtSEye$9^xMT>$*v(y6njt za+9D{OX4A6_`evdKP9=A1*j!Ks0NylsPx7YR>AV)j18ua)NV1{_3$e4a(z=FDTb6a z%Jmn@!D8`e@=_8GDWv|U8FFEAtAeQG0yg9KK!vjfRaJz>iLF`As+Pha=Gp1aE#eBhZ?QHEP7jL3D;QbQgWLdYM6o+SrPTJ>MxQvsM2^B*873 ztk5u0vWh6y`n?HOcnutUcYqpZn;0gFM;bXqIBP?{L>Yh}*XT^0-RX0}5_ zFVk56PNLp@hYZF=A**ZB9Eb@RcX77+jAf1@>YwId%nbT8;4vb5jhHl8ahGOz?uyt3 z7T84F+klXUWlJMoK?|&-9QF+M(f6CVGRsC!_?f(#N+c<+CnU7>iRXsoJI~3|Kh&p< zYtA*1qvbb+OO66hma1LL7Ien}qk6((2;dTkD$B%vxK1qx@xtj?>JQ+veb>&`rZ@JGhiy zw+HT`Pg-TY+k618dHb_@QgY*rVF1ZFh+*wPY_=*!yIyqWWqL;44?;Rcdy`(2jy^Dm;QsXF2GR# zFT-xlp$hu)XSF(k7cY0Kws)6))H#$Sk9&CFG&Ee>S+*u1@Du9+&MH>I-rgMZ*Wvkj zy#T#$&YF&n?^D6^9rhSq-dHz3u(8dNCaWKVd0r3t=pil8JoK7}IF>B!-u*blpSQPL zIUePLUdmeSN~cY?Ss*mWJU{x=0r)sKw`9v0?g6pgJ&I8mbt5JJ>WjVDoVT;((g@9W z2OmA%lJVE(;m4r#;($hbviUHpXeQS_ej<$pEPd$g;p zV}$UIhPKCMKk9%;ht@{i}q6R_z{_%>B1w)ZOv? z@2o};g+!(TANHoIwh)7X#jo)H=B z2V3&K7!^^>?wQjmkpt*hVN#5k)c!zWBz-ji-*dS_p|%i&NycM;ol+*7APLXP zl2=-R*^>QAOKFP~6*Df%CN;e^1=QT5F_@}4IHb7s%^yMg&+*Kc1$56i!V_dLXcBK( z`QBjM+I6^<&+q>lsJIyh$+<=rfI6bhNf>v8+r;X2G;^7HRat18_`4+L952iVh*;1!k=-aW(;F`pIt(WnD#i;n2lwf~bJ(pGae|5&n_ zJ^P;jsgadn&p1>1C!`nGOwr|`;MdTtkeD1)TBOPCUj%^AXkP~^^5fBp_m?s?TJ;t} z(YhWHduGXzVbym%!FP!Pl;5i%!@V$?sWeP@H0rl;nL)d0nE8p8E##EuTh#$yp#^13 zNR>3#smx!>k$G3}@S{U}HTyV9GDZ+N({~V}CQBm9nNSj~CNJ3^1GOg(h#^*pxrk*3 zU)kW045)w~BjN^E#-zQJdB03JCt@p3R2I$}uiq(%^=3gq{iv_`-Bg%wcs0rHQH6(O zhEDKis67PO-CXZG&}rkO1*DrVysDVTc}1o*M@|?U5fjHVGs23T3_gpqe_{M;f+W&| z_Y2QO0f(8mh$VP!qoV zH{YYjw--r-d)l{tWS43q%aH@tzsq~U;@4>lD0z!Qgfh%Dsk-~_4gYOlG>g$k>UHn& z5thszyKfv63v_V#++M762*~(a+hZmkufK|T@wD=CXX)x+MI-4SM&6H~9`DoI>sC?R z4xR%`=9HNAn=6L}9L<chjD{-E>MS2w4?owk>h zLGJVYX^k|Tw>2LkuNHscaq7s#SI&}Y8O3XvUl^PD`Aes7AH7)KM*CA!mX6N_RMxBS z-R+*yHTH#7U4=5ntHcjcUDu$so@$joBsHK3yHh-mlS?2?Pq#T4r?ZVff6|a#r2=-R zJ3j#M2Y2SqXl6)KQ*eLl-t~>ARrzH!DpXCeL?@8y3Qdo_k;23Non5e|Vf7t~huV$v z+3nx-@zWW26E?y#_bdI-jLDF!DbVudcyGzwdz6CP(juKaiS~ST|0aLwi*3c4Jq6^% z2stJTsl9PQjk-Y%5(gf|N<5V__7P$QsnjG3u~#wuI6zpmgF5%S0rQ^|0oU~T;@>pw z_yZVYx`F^N?Em)f`uyc`%2%s^b;RixUzZOo>YYT42cx4A_?k#GX%x}{^zn}eCl{bf|^u=S~7oZA% z#R=c}69;p5u0=GrwgXqLucCiY{d?Aqh_L2IMa>WVp8Tvocv2*|9C4BYBxqSaFV*$> zU4}1v-RIu-g|5|htM^C!XP!4?#}zMVjAZeNZ<1(heBli(2~#sTH86oGv{Hbf1~QkE zIYTaCP?U&A%}#zo)7t4)Nv&DeY2VtdvAi+(PD`eI+VEcemdZOYy6nu@pJinz{ASwRPSx0GRwkQh)_bAfU;;5M90=Kzxfj(@%>b0g&t77fnn{WRG%{^H~}Z%F0>*C0neq3?Putn5rgj70WERbAQPd21%QQr6(nIf%>16} zJjHdG=?wLg@h~&6lEt|4m#L+RS7RORcpa@J>y1T&-nnPf>5JFnq4Pzn>#3{jpn7%N z%Hi!(*9U)(dUr-OG90*f9*g%Rgtxy~7ocfET{Gd`#hAm;a|n0;L~FHV#&EAL&eF)^ zW?F{w&_`ebUV{N;guFP!t$`U>OAuo4V{sS?D+Hkyg?)(PFIs;swzvTq`|yvbAq=d* zTCC7(T0s9ywuqb}b-K&tlsKL(*F)P7mBJXd$Oxxt$Yr93JvH367Qbm2F*SHO6$ori z4aKkheqaoSVPt+5Af^#Tt`T9X5rbZG{uiOWpvhSN%(QEZzz*S`8N$H#2PXa9kNq2; zQOX+3Ns2#6FS}px!U7!_5e;pTdVCM8+a?;>lNK97Lbn}m8(WTwVhqX_?#o6x%r8 z=|TFi&I)j_3$A0K#=N#bn=k&dV5Acu?U<%H?Of%=m8@w-deJfg%iLfdsEi4RqL7|q=DDtE7I4e$mA_=@6y-DMBOjknW;|d`a*b|*Wx;Uw;Q4} zi}l^2ZdTH?x__z~w;@$FyWjmrU!NrtygdEUZ|W9zY;}L<0$ToAl(DS;K5FU~KdV@? z3LXGl+<1*V5N|}jI0z8b0DfUzRX0S*Z?r_mnDovg;7U%fUebaGT+_PpI`1`*XWy=w zLqRPQC~%L>j`aLiVBM{UvTsGPn_66@^gz`8i+1H)F}?GeRdT2&TW5;b1>WTiWeJ`| zV~o!}GiBvsxJ&iHYN2mn`}@qkyr#p$R|aRpn9Z6KE_xsx14{ERFqv-qYpBoeZBhRZ zV@ttik;HxbtERQ*KagILXUOK&&rqFrJUaNMt5P=Yr;cFxjQs_hYr?xln}_bUS4iqm zt@`gEor8Qfo~JBz=NAcIQX^}v7SVl&opFr##rgee4bjt5J=2RNdgWksx*he8edZ?z)@K{?~Z{*Pp%ly0i2MwYkIN9ZPsc>f1LB#*ceyPq+IHXjHQSHW;o4AbP~yeW@KS ztS})B+*1SH$hNMPN%RRFghK_UdmA*6wH7IA;8&yw3kD6n__X7GJY6nsILl z$Sz{|YKjMKy$-EB6`lX?AbLAt-^IjetOeuK{|TK?jP#mcGJV!s+r8abc{EDje4Ga4 zb-M_YhiTsdl@=L*nUd}ugiX)lH$fHoAu^ecXK}shZvK)YB*EM5wR00#!fX4@pUvye zKpIBtvifJ($pwd_dCNFb-c1EL!CUQk$%AXQdn&owq}$W>9s_D@%>Z;~j`!6=Oi$=@p)%hNB*H;qo3NHjqxs?*_(Txw7*v>S}kI{2*tbb(t3_73nfTyq3#$bc+AkQ8>!}_ z8BJ}^PxG6Ndwi}sW?*Td18|P<@#HneW{B-heiofjJC7+1EoCOkYmbS3m}^EXEjJ|r zPq-ifkbA2qXLqmc{CAm?a-qFzUdrN5M4c=I$cq@OW|H#B}N%r<< zP<+|5_71eCdsC-e)45EgnVRdyzhJ(kdy`+#0}A9Oxn2WJbu5o|V&|L5-h*=Jc6Tl8 zt^B&7tp`c#unHaliOZFf=~PqiCvy%qKW|h=y79+lS`ZT1<_hzBCusbu=8*mLqqg;T zl_gUvV|?pd+pzI@(<=BKgNjgMtcbf>un@bdB)puw+a6Sl-wrzC@w3@0dcpI^&RSi6MwWgY~;+`2V;)Lk-8I)&a4WxbKZ|z9uR|B75~70oPrcvw%Zit zKd~)+bt3F7-s(3Hv^;eOtFELhVJ+>Z#fxrF1bd;#52AGD_T%?8s;lCnjFY4HPZj$aTP&c+B^(uL-uCc>?Q(xiAt>+~7iJb=lJ?i>40 zj>>#pvxxl(&b^(|3ARZmj0GDMpyTgqI#*~1AKAm-ub>>ceVH9>&Oc7_T@K3TOs+u6 zzM8yi+H#85ZrV~G6941m%TDh2be>bw{@Yc+_yjr2(v7d)wCO>7nmjG$matAxB;Dm{ zy7M~f38sdGe%&~2W6Z%_B=^wMWqjqI6E*toD5=JpHSWqcZIHfU)*_{6a%e}nyl-s! zt{wT^c$m88`wTNkU)C4$8fQGmZ5`NOO3)YUKwQ#(pSxV2N08B#?wGx4ezym0iu&?h zo2>XUFAFqBNQoSfrqC4yDO!=Vhm0cg6w;g!7{z5Py;*J%& zr8xdkcd(Mz70Um>nO*amvw&xM;&n#BA6!iL@r!M^)Dy=me0qnAHx`rj;{#}NOvWr- zGl#sh>WY6xf2ky@D;(FMC?M|$P<2PI-gc#teEOwctvA55gR2&It4pSG3vp&gL~`OM|x+9f~&f@4~3zy14{njoQ#u6fg@ z<`2v_*4h0_Wgz4cjDJAl5evxKQl@zxj9t^2PL;MkYej!69og59>y~_-i?CkOG1rgp zmU&%?AO+WbM|h%9%XAtr-AHJ)8ca*3FVGufqq)#kH+Sx8aMb&O z$`IkZmA}t(bbv1MCnB2TwINf~k$Gad0X4Nb*P@K{fqBn?(bRy_)R0Ohe3l9m2WJj@ z+yeyisez`yQ&QB*I!m=t%WCO}4itB2V&*Yrb zz?rpHgVmgxdiHq|m$)yD$eSrzyiq*(UTB&U4nOv8$br3riali?5Ec2KfR+iV_p17F zP+}})RZrF5Nh#m!O`Yg$^pj-;q_gnOioMuzU0Hi8EtH4euD{b#T^~~m|BA)6O}-!w z2ytSCYFGxQ^Ev;xTe0eQXi08*9FoQFRk0n8S4(#p-Is{BH!eKya!Z>vXm$U7b~#)p=;n_3Dx2N&fUoNzgl{jhfU|xQxl`h|9+~g%xkB&}5xQuO?0L z?OGLS9~UUoXAAjMCG+d=GH-B-7ya75@xpsE&xljoSU0l3y*xXqzV^ho?JUm|5D4c) z>3q4k*O^>xxf1|+BeM%%BIe`oqS|`2%`bX6?E%%95*_}f<&Jb!!;>w^V^1x9@|)rB zH1~HyMG0E%9T61FH_0Ik*9` zOsI(^pHarBOOI>I_lIp6tCZTI6C<>uUA>AvE9%dC&aqm```$dx1gR_*^|;pX2aT0! zZ{WeueQaUiIyEG{9N(;9irqTww)RW=j28Db z3h&Q-tsNG30)}1Jj^Kw9ozPQ9h^NrU)Rfg4C~jjaHr()bLqfbLEp=lDlH`mq%3T#L zYw1^5fw~Qs$#ogLAXlcKXPb#ZITgF!O2CBM7$v37E)?0mA76!fBl_hU<`V|MJ$&qZ zVCkB@62TnKtp{&D4S;q8a~mR|?R7d6-ccBs+Yrahh#kWKCHXVj`Sjttzj5qhtc7TmLx=q;;5Q{K1A=Mi zJsyd!H8TB@IU$SlVwOb)oE6PuOe6Uol5*sdso!LV+t-hMAtCK0->DusWeS zaZ~8S-BIM%_3>Fe}H>5i74Dd`Ci{aGUBzUBiRe)5{sv z>cTePF?@})kze$^lKlHA&TqPww2mqTn((EXAnixJm(ux-yUcy0!}=6u=M0Q_2<$1Q&}_|UC2@VkbS!~unE_iYQvgPI))d>F`a3> zCO-LLA!5p>g)1d1y~E)>rhQ;5fhS}N=b$XqblpmJKuTjVW3Nc**f4-XujvxMzM@CE-SZMnt&-zTMWUYk#(i`1gliU(PR$ z@2+|)(xz}bKJH(TuEW>EF?Ud@jTuv-rfSO-4)Vb}%N?W^*Xyt*!av+uC0bn8B#6_m*Ih}wt&zO-@!%I+8pN{ONs?=ox~1743X zIf|bgOf>Vl=3H)KmCbr8MGAiip|=(A!i^oklS@;@%}~qqS5Omc*w`w=SB(%i->6ST zttqfsO6PT3t)!N5|J3pw81W~cSVs?!azdEjQfWK#By(dP%b8PN7$VsWnBVn*%^%sh zV8sjpj`Pq)@@KMzRX+dmOb3KYZj-0}o`*{~+hva4APp;WrjXBSo%m_)Z7K=iV(u`{ zs~+Pew_$b#{67K23p@1Hc!zm=VIMNhsLUZgghx@=(DSIPwythk!@9-=U~Q(Jz%!_Q zFAqDSt}j`vfA!zAW^@ItO-(+Td|F82TWhU$Wv)Yf)_-9t3#d_#J)N39Og+k6I(NOK zvXDyctGeGGNo&(l*Mb&QcE&Dbj#D{~)(Y@C-liR$Gj;!d4Ii=$<=BHt^;J@+EGAyX z)VdgoO>rfzqq2m`m#FJt55CJjJcviAEX6W1$M7`YC>1rflSNHAaUPc7Ijq9FeBTNx zD~NlL|9`}{*upZj#HTou%C0Qo18k4Favj1A%&RuLVRvfOyU^X`d}3{vl}w#NWe=7? z<5cRU$B7X;VEj3 z%_P=YD*$U_FovS`?ODVPu?Q#QbexUzsML984jGMmEW#zY64z2Qmv}wu+*k)gF$}eD z>j_H)Mq>=dV@qsB<$PM}K}OqD+d^ww_p@`T)RCw@z+%*so%Og8H_@8Pe={OhXQ@I+~kXeMwXfqMD zwCWk^tgHK%#>86MU95lY!%wNy-G7a)8vBUD_`bckzLZj_`TT*At}&KPETP6}!}wmMd@tQYZDB55 zRdrW5lBwEokYj4qr`W#${%TYZ;J%!YkQr}=Z>RIr9_QMEljv5&_g{R5rt|Se!u`{Y) zt$UL*WVYij+=~bC80zj!J>iR}=gZpeahQm@gV46iK=m{8umE*jsDG!eF^UVQyD&W^ z(YVk;T#74D;}1ISG?KO%)vwl5C+&fUs8p{>&)I{qJ~qZ?sB4GrFA`BtuG?b{EvQ$y ziOQ>}=Oa4aHO6}sPvKc=^d$NMUcqa$7L5t0HC9cmyY*Zw#1ia^>h0?{6$4TIia5NC zYX1(EH&JKf$M^y@)_?t(?Wl2DjnZq>R3n^v$~GFO;0!A75UY=&UrH=SjXml*`;JOI zx%!8L|HL}zQn_(2jqSi(b6CXsK z88q4%i}9FDT5fy{1HFG6RqBY1*J?KyfnsZT$Tmr&0xHLCN0 zHZQSFGcXf7pnpb(G@kR3SmP@CC5c8Y%27v_j%e+x>i_IR-J2i7)2K7mXReGsEB!xz z>+W~1;!V7Z_i0%p0J^dpaYrmfJ+mmrGSuj$_RpTEkqRB}dTzKAcT=hRmwk8;kKsu? zgBtq{#2{2(`U>if@)^C6Xw=xUda8P6k&GFr(Z4)YpMOMSMB3tU*qb(Wrn*N)qu;u_ z(H*Fs5l_Mde1vbP)YI4yGTMTMx=TtS)+mjBbD}#J{qATOsz)~l^;sEI>inZ;pfB(> zzQd2K6ZKSeKNy6;I0Q%FXdFjn80xO15~tvFoP~3!(HUkQ%hQQi&tCQHSkG{uQ`wmK zHNM05_qu?p2w4T3iT`2Gk6xyp?=+T z5ij9oynQYo7>f0=0e?2e zFw{Rq=-(llVN=xqKSc0*Y5kvo-igk^Skym1w7?|PKRoC^9Q2P38JLXv2L}D$g8tJ$ z|ESOw+oS#^K%bb0`dt6-*4@-Jme-sWw{Tq_rkspnE*IsYd zPelFqj^1#eg40oNtk1$ZsQ(nwJAdhVV_pB`qkjil#XB1M*7{eOEvUE1H{ov7+v57~ z9sRqGjwAhl&OSVV$5H>0at8IkF8aq9{Toa*UdAfChWGF$>aAz(Gtck=KEfxcz4s-4 z!Z-L1KhQ!Q;?GuA8SUQIF|36_n1W##jC!+1@6qUuUA-xzH+-973`U^dc7KV+WQ@gl zOu$xn2+Oc7>V4aE)O)qLs5fWzZmiyZ)tjn$sCQaRu``ZEy)jyWdaJZQ_Qc+(_d|!` zKpc!?a0Kd&PQ80L3HAP_-qzInl2cIcJkG$ys5cxJqTc=28-+`8IqKa*y&Jd&*P-4b z+=-iUD{jXFxC{4i>}x$}Z+|&~hw&($N4>ju8qZ=CUO>HncMGrM4O-Sa=6ai6@4?+e zy&eAupQ7G7d&ykdyY$|f-YnC5WS_0PH}9|cYhtl3*23BthQSzu^)Vb9ViSzPW*CY3 zAHR;M_n!0?mEM_3#0*TvRBVlUk0}%LFx$%Jdha`z&9CFR;DzTR?`vKDvSr?zq-D#0 z?7mC6m95<6;?7ofJkZ76{P7$Ycd@d2yItJVAOFe4MOOBcAG)}Ym3`IO#l=?M^oEQ3 zTY30&7nfLh#7Gwp^2gpgjOA^=cA248-mZs>ORc=uSKibS4}8A=4{qMg-j}|TL>>$` OIW#dc3MC~)Peuyh=Q(Zw diff --git a/docs/index.html b/docs/index.html index e6331b8..305d17a 100644 --- a/docs/index.html +++ b/docs/index.html @@ -86,11 +86,7 @@ } } @@ -235,7 +235,19 @@

+ + + + + + + + + + -
  • \(L>1\): Choose \(r>0\) such that \(1<r<L\). Let \(\varepsilon=L-r>0\). If \(\frac{b_{n+1}}{b_{n}} \rightarrow L\), there exists \(n_{0} \in \mathbb{N}\) such that for all \(n \geq n_{0}\)

  • +
  • \(L>1\): Choose \(r>0\) such that \[ +1<r<L \,. +\] Define \[ +\varepsilon:= L - r > 0 \,. +\] By the convergence (6.10), there exists \(N \in \mathbb{N}\) such that \[ +\left|\frac{b_{n+1}}{b_{n}}-L\right| < \varepsilon= L - r \,, \quad \forall \, n \geq N \,. +\] In particular, \[ +-(L-r) < \frac{b_{n+1}}{b_{n}}-L \,, \quad \forall \, n \geq N \,, +\] which implies \[ +b_{n+1} > r \, b_{n} \,, \quad \forall \, n \geq N \,. +\tag{6.13}\] Let \(n \geq N\). Applying (6.13) recursively we get \[ +b_{n} > r^{n-N} \, b_{N} = r^{n} \, \frac{b_{N}}{r^{N}} \,, \quad \forall \, n \geq N \,. +\tag{6.14}\] Since \(|r|>1\), by the Geometric sequence test we have that the sequence \[ +(r^n) +\] is unbounded. Therefore also the right hand side of (6.14) is unbounded, proving that \((b_n)\) is unbounded. Since \[ +b_n = |a_n|\,, +\] we conclude that \((a_n)\) is unbounded. By Corollary 21 we conclude that \((a_n)\) does not converge.

  • -

    \[ -\left|\frac{b_{n+1}}{b_{n}}-L\right| \leq \varepsilon=L-r -\]

    -

    In particular,

    -

    \[ --(L-r) \leq \frac{b_{n+1}}{b_{n}}-L \Longleftrightarrow \frac{b_{n+1}}{b_{n}} \geq r \Longleftrightarrow b_{n+1} \geq r b_{n} -\]

    -

    (In the other case we assumed this is the case, so this statement also holds there.) Hence, for all \(n \geq n_{0}\)

    -

    \[ -b_{n} \geq r^{n-n_{0}} b_{n_{0}}=r^{n} \frac{b_{n_{0}}}{r^{n_{0}}} +

    Part 2. Suppose that there exists \(N \in \mathbb{N}\) and \(M>1\) such that \[ +\left|\frac{a_{n+1}}{a_{n}}\right| \geq M \,, \quad \forall \, n \geq N \,. +\] Since \(b_n = |a_n|\), we infer \[ +b_{n+1} \geq L \, b_n \,, \quad \forall \, n \geq N \,. +\] Arguing as above, we obtain \[ +b_n \geq L^n \, \frac{b_N}{L^N} \,, \quad \forall \, n \geq N \,. +\] Since \(L>1\), we have that the sequence \[ +L^n \, \frac{b_N}{L^N} +\] is unbounded, by the Geometric sequence test. Hence also \((b_n)\) is unbounded, from which we conclude that \((a_n)\) is unbounded. By Corollary 21 we conclude that \((a_n)\) does not converge.

    + + +

    Let us apply the Ratio test to some concrete examples.

    +
    +
    Example 43
    +

    Let \[ +a_{n}=\frac{3^{n}}{n !} \,, +\] where we recall that \(n!\) (pronounced \(n\) factorial) is defined by \[ +n! := n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 \,. +\] Prove that \[ +\lim_{n \to \infty} a_n = 0 \,. \]

    -

    Since \(|r|>1\), it follows from the geometric sequence test that the right hand side is unbounded and hence also \(b_{n}\) is unbounded.

    +
    +

    Proof. We have \[\begin{align*} +\left|\frac{a_{n+1}}{a_{n}}\right| & = \dfrac{\left( \dfrac{3^{n+1}}{(n+1) !} \right) }{ \left( \dfrac{3^{n}}{n !} \right) } \\ +& = \frac{3^{n+1}}{3^{n}} \, \frac{n !}{(n+1) !} \\ +& = \frac{3 \cdot 3^n}{3^n} \, \frac{n!}{(n+1) n!} \\ +& =\frac{3}{n+1} \longrightarrow L = 0 \,. +\end{align*}\] Hence, \(L=0<1\) so \(a_{n} \to 0\) by the Ratio test in Theorem 42.

    +
    -
    -

    Example 43
    Let \(a_{n}=\frac{3^{n}}{n !}\). Then,

    -

    \[ -\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{3^{n+1}}{(n+1) !} / \frac{3^{n}}{n !}=\frac{3^{n+1}}{3^{n}} \frac{n !}{(n+1) !}=3 \frac{1 \cdot 2 \cdots n}{1 \cdot 2 \cdots n \cdot(n+1)}=\frac{3}{n+1} \longrightarrow 0, -\]

    -

    as \(n \rightarrow \infty\). Hence, \(L=0<1\) so \(\lim _{n \rightarrow \infty} a_{n}=0\) by the ratio test.

    -
      -
    • Let \(b_{n}=\frac{n !}{100^{n}}\). Then
    • -
    -

    \[ -\left|\frac{b_{n+1}}{b_{n}}\right|=\frac{(n+1) !}{100^{n+1}} / \frac{n !}{100^{n}}=\frac{100^{n}}{100^{n+1}} \frac{(n+1) !}{(n !)}=\frac{n+1}{100} . -\]

    -

    Choose \(n_{0}=101\). Then for all \(n \geq n_{0}\),

    -

    \[ -\left|\frac{b_{n+1}}{b_{n}}\right| \geq \frac{101}{100}>1 -\]

    -

    Hence, \(b_{n}\) is an unbounded sequence and does not converge.

    +
    +
    Example 44
    +

    Consider the sequence \[ +a_{n}=\frac{n ! \cdot 3^{n}}{\sqrt{(2 n) !}} \,. +\] Prove that \((a_n)\) is divergent.

    +
    +

    Proof. We have \[\begin{align*} +\left|\frac{a_{n+1}}{a_{n}}\right| & =\frac{(n+1) ! \cdot 3^{n+1}}{\sqrt{(2(n+1)) !}} \frac{\sqrt{(2 n) !}}{n ! \cdot 3^{n}} \\ +& =\frac{(n+1) !}{n !} \cdot \frac{3^{n+1}}{3^{n}} \cdot \frac{\sqrt{(2 n) !}}{\sqrt{(2(n+1)) !}} +\end{align*}\] For the first two fractions we have \[ +\frac{(n+1) !}{n !} \cdot \frac{3^{n+1}}{3^{n}} = 3(n+1) \,, +\] while for the third fraction \[\begin{align*} +\frac{\sqrt{(2 n) !}}{\sqrt{(2(n+1)) !}} & =\sqrt{\frac{(2 n) !}{(2 n+2) !}} \\ +& = \sqrt{\frac{ (2n)! }{ (2n+2) \cdot (2n+1) \cdot (2n)! }} \\ +& = \frac{1}{\sqrt{(2 n+1)(2 n+2)}} \,. +\end{align*}\] Therefore, using the Algebra of Limits, \[\begin{align*} +\left|\frac{a_{n+1}}{a_{n}}\right| & = \frac{3(n+1)}{\sqrt{(2 n+1)(2 n+2)}}\\ +& = \frac{3n \left(1+ \dfrac{1}{n} \right)}{\sqrt{n^2 \left( 2 + \dfrac{1}{n}\right) \left(2 + \dfrac{2}{n} \right)}} \\ +& = \frac{3 \left(1+ \dfrac{1}{n} \right)}{\sqrt{ \left( 2 + \dfrac{1}{n}\right) \left(2 + \dfrac{2}{n} \right)}} \longrightarrow \frac{3}{\sqrt{4}} = \frac{3}{2} > 1 \,. +\end{align*}\] By the Ratio test we conclude that \((a_n)\) is divergent.

    +
    -
    -

    Warning
    For part (c) of the theorem we give some examples. If you try to apply the ratio test for a fraction of two polynomials, the limit will always be equal to 1 , so the ratio test is inconclusive for this type of sequence.

    +
    +
    Example 45
    +

    Let \[ +a_{n}=\frac{n !}{100^{n}} \,. +\] Prove that \((a_n)\) is divergent.

    +
    +

    Proof. \[ +\left|\frac{a_{n+1}}{a_{n}}\right| += \frac{100^{n}}{100^{n+1}} \frac{(n+1) !}{n !} +=\frac{n+1}{100} \,. +\] Choose \(N=101\). Then for all \(n \geq N\), \[ +\left|\frac{a_{n+1}}{a_{n}}\right| \geq \frac{101}{100}>1 \,. +\] Hence \(a_{n}\) is divergent by the Ratio test.

    +
    -

    Example 2.4.13. \(\quad\) Let \(a_{n}=\frac{1}{n}\). Then,

    -

    \[ -\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{n+1} / \frac{1}{n}=\frac{n}{n+1} \rightarrow 1 -\]

    -

    so the ratio test is inconclusive. But we know that \(\frac{1}{n} \rightarrow 0\).

    +
    +
    Warning
    +

    The Ratio test in Theorem 42 does not address the case \[ +L=1 \,. +\] This is because, in this case, the sequence \((a_n)\) might converge or diverge.

    +

    For example:

      -
    • Let \(b_{n}=\frac{n^{2}}{n+1}\). Then,
    • +
    • Define the sequence \[ +a_n = \frac1n \,. +\] We have \[ +\left|\frac{a_{n+1}}{a_{n}}\right| = \frac{n}{n+1} \rightarrow L = 1 \,. +\] Hence we cannot apply the Ratio test. However we know that \[ +\lim_{n \to \infty} \, \frac1n = 0 \,. +\]

    • +
    • Consider the sequence \[ +a_n = n \,. +\] We have \[ +\frac{|a_{n+1}|}{|a_n|} = \frac{n+1}{n} \rightarrow L = 1 \,. +\] Hence we cannot apply the Ratio test. However we know that \((a_n)\) is unbounded, and thus divergent.

    -

    \[ -\left|\frac{b_{n+1}}{b_{n}}\right|=\frac{(n+1)^{2}}{(n+1)+1} / \frac{n^{2}}{n+1}=\frac{(n+1)^{3}}{(n+2) n^{2}}=\frac{(1+1 / n)^{3}}{(1+2 / n) 1} \rightarrow 1 -\]

    -

    so the ratio test is inconclusive. But we can compute \(\frac{n^{2}}{n+1}=\frac{n}{1+1 / n}\), which is unbounded so \(b_{n}\) does not converge.

    +
    +
    +

    If the sequence \((a_n)\) is geometric, the Ratio test of Theorem 42 will give the same answer as the Geometric sequence test of Theorem 39. This is the content of the following remark.

    +
    +

    Remark 46
    Let \(x \in \mathbb{R}\) and define the geometric sequence \[ +a_{n}=x^{n} \,. +\] Then \[ +\left|\frac{a_{n+1}}{a_{n}}\right| = \frac{\left|x^{n+1}\right|}{\left|x^{n}\right|} += \frac{|x|^{n+1}}{|x|^{n}} +=|x| \rightarrow |x| \,. +\] Hence:

      -
    • Let \(c_{n}=\frac{n}{2 n+1}\). Then,
    • +
    • If \(|x|<1\), the sequence \((a_n)\) converges by the Ratio test
    • +
    • If \(|x|>1\), the sequence \((a_n)\) diverges by the Ratio test.
    • +
    • If \(|x|=1\), the sequence \((a_n)\) might be convergent or divergent.
    -

    \[ -\left|\frac{c_{n+1}}{c_{n}}\right|=\frac{n+1}{2(n+1)+1} / \frac{n}{2 n+1}=\frac{(n+1)(2 n+1)}{(2 n+3) n}=\frac{(1+1 / n)(2+1 / n)}{(2+3 / n) 1} \rightarrow 1, -\]

    -

    so the ratio test is inconclusive. But we can compute \(\frac{n}{2 n+1}=\frac{1}{2+1 / n} \rightarrow \frac{1}{2}\).

    -

    As mentioned, the ratio test is especially useful if factorials and geometric terms are involved. It is important to make sure you use brackets correctly, it is very easy to make mistakes.

    -

    Example 2.4.14. Let

    -

    \[ -a_{n}=\frac{n ! \cdot 3^{n}}{\sqrt{(2 n) !}} -\]

    -

    Then,

    -

    \[ -\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1) ! \cdot 3^{n+1}}{\sqrt{(2(n+1)) !}} / \frac{n ! \cdot 3^{n}}{\sqrt{(2 n) !}}=\frac{(n+1) !}{n !} \cdot \frac{3^{n+1}}{3^{n}} \cdot \frac{\sqrt{(2 n) !}}{\sqrt{(2(n+1)) !}} -\]

    -

    We can simplify \(\frac{(n+1) !}{n !} \cdot \frac{3^{n+1}}{3^{n}}=3(n+1)\). Combining the square roots and working out the brackets carefully gives that

    -

    \[ -\frac{\sqrt{(2 n) !}}{\sqrt{(2(n+1)) !}}=\sqrt{\frac{(2 n) !}{(2 n+2) !}}=\sqrt{\frac{1 \cdot 2 \cdots 2 n}{1 \cdot 2 \cdots 2 n \cdot(2 n+1) \cdot(2 n+2)}}=\frac{1}{\sqrt{(2 n+1)(2 n+2)}} -\]

    -

    Hence,

    -

    \[ -\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{3(n+1)}{\sqrt{(2 n+1)(2 n+2)}}=\frac{3(1+1 / n)}{\sqrt{\frac{1}{n^{2}}(2 n+1)(2 n+2)}}=\frac{3(1+1 / n)}{\sqrt{(2+1 / n)(2+2 / n)}} \rightarrow \frac{3}{\sqrt{4}}=\frac{3}{2}>1 -\]

    -

    Hence, the sequence does not converge by the ratio test.

    -

    If the sequence is a geometric sequence, we can also apply the ratio test, which will give the same answer as the geometric sequence test.

    -

    Example 2.4.15. Let \(x \in \mathbb{R}\) and let \(a_{n}=x^{n}\). Then,

    -

    \[ -\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\left|x^{n+1}\right|}{\left|x^{n}\right|}=\frac{|x|^{n+1}}{|x|^{n}}=|x| \rightarrow|x| -\]

    -

    Hence, if \(|x|<1\) the sequence converges by the ratio test, if \(|x|>1\) the sequence does not converge by the ratio test, and if \(|x|=1\) the ratio test is inconclusive. Of course, we would have gotten this result immediately by using the geometric sequence test.

    +

    These results are in agreement with the Geometric sequence test.

    +
    +
    @@ -1936,8 +1993,8 @@

    diff --git a/docs/sections/chap_7.html b/docs/sections/chap_7.html new file mode 100644 index 0000000..f3c9927 --- /dev/null +++ b/docs/sections/chap_7.html @@ -0,0 +1,676 @@ + + + + + + + + + +Numbers, Sequences and Series - 7  Sequences in \(\mathbb{C}\) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + + +
    + +
    + + +
    + + + +
    + +
    +
    +

    7  Sequences in \(\mathbb{C}\)

    +
    + + + +
    + + + + +
    + + +
    + +

    Coming soon

    + + + +
    + + +
    + + + + + \ No newline at end of file diff --git a/docs/sections/chap_8.html b/docs/sections/chap_8.html new file mode 100644 index 0000000..0528e7e --- /dev/null +++ b/docs/sections/chap_8.html @@ -0,0 +1,676 @@ + + + + + + + + + +Numbers, Sequences and Series - 8  Series + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + + +
    + +
    + + +
    + + + +
    + +
    +
    +

    8  Series

    +
    + + + +
    + + + + +
    + + +
    + +

    Coming soon

    + + + +
    + + +
    + + + + + \ No newline at end of file diff --git a/docs/sections/license.html b/docs/sections/license.html index 680240b..b7ae876 100644 --- a/docs/sections/license.html +++ b/docs/sections/license.html @@ -65,7 +65,7 @@ - + @@ -100,11 +100,11 @@ } } @@ -249,7 +249,19 @@ + +