-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathmpi_kmeans.c
164 lines (137 loc) · 6.71 KB
/
mpi_kmeans.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* File: seq_kmeans.c (sequential version) */
/* Description: Implementation of simple k-means clustering algorithm */
/* This program takes an array of N data objects, each with */
/* M coordinates and performs a k-means clustering given a */
/* user-provided value of the number of clusters (K). The */
/* clustering results are saved in 2 arrays: */
/* 1. a returned array of size [K][N] indicating the center */
/* coordinates of K clusters */
/* 2. membership[N] stores the cluster center ids, each */
/* corresponding to the cluster a data object is assigned */
/* */
/* Author: Wei-keng Liao */
/* ECE Department, Northwestern University */
/* email: [email protected] */
/* Copyright, 2005, Wei-keng Liao */
/* */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#include "kmeans.h"
/*----< euclid_dist_2() >----------------------------------------------------*/
/* square of Euclid distance between two multi-dimensional points */
__inline static
float euclid_dist_2(int numdims, /* no. dimensions */
float *coord1, /* [numdims] */
float *coord2) /* [numdims] */
{
int i;
float ans=0.0;
for (i=0; i<numdims; i++)
ans += (coord1[i]-coord2[i]) * (coord1[i]-coord2[i]);
return(ans);
}
/*----< find_nearest_cluster() >---------------------------------------------*/
__inline static
int find_nearest_cluster(int numClusters, /* no. clusters */
int numCoords, /* no. coordinates */
float *object, /* [numCoords] */
float **clusters) /* [numClusters][numCoords] */
{
int index, i;
float dist, min_dist;
/* find the cluster id that has min distance to object */
index = 0;
min_dist = euclid_dist_2(numCoords, object, clusters[0]);
for (i=1; i<numClusters; i++) {
dist = euclid_dist_2(numCoords, object, clusters[i]);
/* no need square root */
if (dist < min_dist) { /* find the min and its array index */
min_dist = dist;
index = i;
}
}
return(index);
}
/*----< mpi_kmeans() >-------------------------------------------------------*/
int mpi_kmeans(float **objects, /* in: [numObjs][numCoords] */
int numCoords, /* no. coordinates */
int numObjs, /* no. objects */
int numClusters, /* no. clusters */
float threshold, /* % objects change membership */
int *membership, /* out: [numObjs] */
float **clusters, /* out: [numClusters][numCoords] */
MPI_Comm comm) /* MPI communicator */
{
int i, j, rank, index, loop=0, total_numObjs;
int *newClusterSize; /* [numClusters]: no. objects assigned in each
new cluster */
int *clusterSize; /* [numClusters]: temp buffer for Allreduce */
float delta; /* % of objects change their clusters */
float delta_tmp;
float **newClusters; /* [numClusters][numCoords] */
extern int _debug;
if (_debug) MPI_Comm_rank(comm, &rank);
/* initialize membership[] */
for (i=0; i<numObjs; i++) membership[i] = -1;
/* need to initialize newClusterSize and newClusters[0] to all 0 */
newClusterSize = (int*) calloc(numClusters, sizeof(int));
assert(newClusterSize != NULL);
clusterSize = (int*) calloc(numClusters, sizeof(int));
assert(clusterSize != NULL);
newClusters = (float**) malloc(numClusters * sizeof(float*));
assert(newClusters != NULL);
newClusters[0] = (float*) calloc(numClusters * numCoords, sizeof(float));
assert(newClusters[0] != NULL);
for (i=1; i<numClusters; i++)
newClusters[i] = newClusters[i-1] + numCoords;
MPI_Allreduce(&numObjs, &total_numObjs, 1, MPI_INT, MPI_SUM, comm);
if (_debug) printf("%2d: numObjs=%d total_numObjs=%d numClusters=%d numCoords=%d\n",rank,numObjs,total_numObjs,numClusters,numCoords);
do {
double curT = MPI_Wtime();
delta = 0.0;
for (i=0; i<numObjs; i++) {
/* find the array index of nestest cluster center */
index = find_nearest_cluster(numClusters, numCoords, objects[i],
clusters);
/* if membership changes, increase delta by 1 */
if (membership[i] != index) delta += 1.0;
/* assign the membership to object i */
membership[i] = index;
/* update new cluster centers : sum of objects located within */
newClusterSize[index]++;
for (j=0; j<numCoords; j++)
newClusters[index][j] += objects[i][j];
}
/* sum all data objects in newClusters */
MPI_Allreduce(newClusters[0], clusters[0], numClusters*numCoords,
MPI_FLOAT, MPI_SUM, comm);
MPI_Allreduce(newClusterSize, clusterSize, numClusters, MPI_INT,
MPI_SUM, comm);
/* average the sum and replace old cluster centers with newClusters */
for (i=0; i<numClusters; i++) {
for (j=0; j<numCoords; j++) {
if (clusterSize[i] > 1)
clusters[i][j] /= clusterSize[i];
newClusters[i][j] = 0.0; /* set back to 0 */
}
newClusterSize[i] = 0; /* set back to 0 */
}
MPI_Allreduce(&delta, &delta_tmp, 1, MPI_FLOAT, MPI_SUM, comm);
delta = delta_tmp / total_numObjs;
if (_debug) {
double maxTime;
curT = MPI_Wtime() - curT;
MPI_Reduce(&curT, &maxTime, 1, MPI_DOUBLE, MPI_MAX, 0, comm);
if (rank == 0) printf("%2d: loop=%d time=%f sec\n",rank,loop,curT);
}
} while (delta > threshold && loop++ < 500);
if (_debug && rank == 0) printf("%2d: delta=%f threshold=%f loop=%d\n",rank,delta,threshold,loop);
free(newClusters[0]);
free(newClusters);
free(newClusterSize);
free(clusterSize);
return 1;
}