forked from tavoaqp-zz/go-hnsw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhnsw_test.go
242 lines (219 loc) · 5.21 KB
/
hnsw_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
package hnsw
import (
"encoding/binary"
"fmt"
"math"
"os"
"runtime"
"sync"
"sync/atomic"
"testing"
"time"
"gonum.org/v1/gonum/mat"
"github.com/stretchr/testify/assert"
)
var prefix = "siftsmall/siftsmall"
var dataSize = 10000
var efSearch = []int{1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 300, 400}
var queries []*mat.VecDense
var truth [][]uint32
func TestMain(m *testing.M) {
// LOAD QUERIES AND GROUNDTRUTH
fmt.Printf("Loading query records\n")
queries, truth = loadQueriesFromFvec(prefix)
os.Exit(m.Run())
}
func TestSaveLoad(t *testing.T) {
h := buildIndex()
testSearch(h)
fmt.Printf("Saving to index.dat\n")
err := h.Save("index.dat")
assert.Nil(t, err)
fmt.Printf("Loading from index.dat\n")
h2, timestamp, err := Load("index.dat")
assert.Nil(t, err)
fmt.Printf("Index loaded, time saved was %v", time.Unix(timestamp, 0))
fmt.Printf(h2.Stats())
testSearch(h2)
}
func TestSIFT(t *testing.T) {
h := buildIndex()
testSearch(h)
}
func buildIndex() *Hnsw {
// BUILD INDEX
point := mat.NewVecDense(128, make([]float64, 128))
h,_ := New(4, 200, point, "l2")
h.DelaunayType = 1
h.Grow(dataSize)
buildStart := time.Now()
fmt.Printf("Loading data and building index\n")
points := make(chan job)
go loadDataFromFvec(prefix, points)
buildFromChan(h, points)
buildStop := time.Since(buildStart)
fmt.Printf("Index build in %v\n", buildStop)
fmt.Printf(h.Stats())
return h
}
func testSearch(h *Hnsw) {
// SEARCH
for _, ef := range efSearch {
fmt.Printf("Now searching with ef=%v\n", ef)
bestPrecision := 0.0
bestTime := 999.0
for i := 0; i < 10; i++ {
start := time.Now()
p := search(h, queries, truth, ef)
stop := time.Since(start)
bestPrecision = math.Max(bestPrecision, p)
bestTime = math.Min(bestTime, stop.Seconds()/float64(len(queries)))
}
fmt.Printf("Best Precision 10-NN: %v\n", bestPrecision)
fmt.Printf("Best time: %v s (%v queries / s)\n", bestTime, 1/bestTime)
}
}
type job struct {
p *mat.VecDense
id uint32
}
func buildFromChan(h *Hnsw, points chan job) {
var wg sync.WaitGroup
for i := 0; i < runtime.NumCPU(); i++ {
wg.Add(1)
go func() {
for {
job, more := <-points
if !more {
wg.Done()
return
}
h.Add(job.p, job.id)
}
}()
}
wg.Wait()
}
func search(h *Hnsw, queries []*mat.VecDense, truth [][]uint32, efSearch int) float64 {
var p int32
var wg sync.WaitGroup
l := runtime.NumCPU()
b := len(queries) / l
for i := 0; i < runtime.NumCPU(); i++ {
wg.Add(1)
go func(queries []*mat.VecDense, truth [][]uint32) {
for j := range queries {
results := h.Search(queries[j], efSearch, 10)
// calc 10-NN precision
for results.Len() > 10 {
results.Pop()
}
for _, item := range results.Items() {
for k := 0; k < 10; k++ {
// !!! Our index numbers starts from 1
if int32(truth[j][k]) == int32(item.ID)-1 {
atomic.AddInt32(&p, 1)
}
}
}
}
wg.Done()
}(queries[i*b:i*b+b], truth[i*b:i*b+b])
}
wg.Wait()
return (float64(p) / float64(10*b*l))
}
func testReadFloat64(f *os.File) (float64, error) {
bs := make([]byte, 4)
_, err := f.Read(bs)
return float64(math.Float32frombits(binary.LittleEndian.Uint32(bs))), err
}
func readUint32(f *os.File) (uint32, error) {
bs := make([]byte, 4)
_, err := f.Read(bs)
return binary.LittleEndian.Uint32(bs), err
}
func loadQueriesFromFvec(prefix string) (queries []*mat.VecDense, truth [][]uint32) {
f2, err := os.Open(prefix + "_query.fvecs")
if err != nil {
panic("couldn't open query data file")
}
defer f2.Close()
queries = make([]*mat.VecDense, 10000)
qcount := 0
for {
d, err := readUint32(f2)
if err != nil {
break
}
if d != 128 {
panic("Wrong dimension for this test...")
}
vecDense := mat.NewVecDense(128, make([]float64, 128))
queries[qcount] = vecDense
for i := 0; i < int(d); i++ {
newFloat,_ := testReadFloat64(f2)
queries[qcount].SetVec(i, newFloat)
}
qcount++
}
queries = queries[0:qcount] // resize it
fmt.Printf("Read %v query records\n", qcount)
fmt.Printf("Loading groundtruth\n")
// load query Vectors
f3, err := os.Open(prefix + "_groundtruth.ivecs")
if err != nil {
panic("couldn't open groundtruth data file")
}
defer f3.Close()
truth = make([][]uint32, 10000)
tcount := 0
for {
d, err := readUint32(f3)
if err != nil {
break
}
if d != 100 {
panic("Wrong dimension for this test...")
}
vec := make([]uint32, d)
for i := 0; i < int(d); i++ {
vec[i], err = readUint32(f3)
}
truth[tcount] = vec
tcount++
}
fmt.Printf("Read %v truth records\n", tcount)
if tcount != qcount {
panic("Count mismatch queries <-> groundtruth")
}
return queries, truth
}
func loadDataFromFvec(prefix string, points chan job) {
f, err := os.Open(prefix + "_base.fvecs")
if err != nil {
panic("couldn't open data file")
}
defer f.Close()
count := 1
for {
d, err := readUint32(f)
if err != nil {
break
}
if d != 128 {
panic("Wrong dimension for this test...")
}
vec := mat.NewVecDense(128, make([]float64, 128))
for i := 0; i < int(d); i++ {
readValue, _ := testReadFloat64(f)
vec.SetVec(i, readValue)
}
points <- job{p: vec, id: uint32(count)}
count++
if count%1000 == 0 {
fmt.Printf("Read %v records\n", count)
}
}
close(points)
}