-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblc.py
146 lines (119 loc) · 3.35 KB
/
blc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""
Binary Lambda Calculus
e : 00 e (Lam)
| 01 e e (App)
| [1] 0 (Var)
Var encodes DeBruijn indices with
0 = 10
1 = 110
2 = 1110
3 = 11110
...
Closure : TE Term Env
| IDX Int
Env : [Closure]
[[e]] = Return Closure | Apply Term Term Env
"""
#------------------------------------------------------------------------
# Structures
#------------------------------------------------------------------------
class App(object):
def __init__(self, e1, e2):
self.e1 = e1
self.e2 = e2
def __str__(self):
return '%s(%s)' % (self.e1, self.e2)
class Lam(object):
def __init__(self, e):
self.e = e
def __str__(self):
return '\%s' % self.e
class Var(object):
def __init__(self, i):
self.i = i
def __str__(self):
return '%s' % self.i
class Return(object):
def __init__(self, cls):
self.cls = cls
class Apply(object):
def __init__(self, e1, e2, env):
self.e1 = e1
self.e2 = e2
self.env = env
class Idx(object):
def __init__(self, i):
self.i = i
class TE(object):
def __init__(self, term, env):
self.term = term
self.env = env
#------------------------------------------------------------------------
# Normalization
#------------------------------------------------------------------------
def span(p, xs):
for i, x in enumerate(xs):
if not p(x):
return (xs[0:i], xs[i:])
return ([],xs)
def parse(xs):
if xs[0] == '0' and xs[1] == '0':
t, xs = parse(xs[2:])
return Lam(t), xs
elif xs[0] == '0' and xs[1] == '1':
l, xs = parse(xs[2:])
r, xss = parse(xs)
return App(l, r), xss
elif xs[0] == '1':
os, xs = span(lambda x: x=='1', xs)
return Var(len(os)), ('0' + xs)
else:
raise Exception("Invalid expression")
def whnf(e, env):
if isinstance(e, Var):
term = env[e.i-1]
if isinstance(term, Idx):
return Return(term)
elif isinstance(term, TE):
return whnf(term.term, term.env)
elif isinstance(e, Lam):
return Return(TE(e, env))
elif isinstance(e, App):
l = e.e1
r = e.e2
wl = whnf(l, env)
if isinstance(wl, Return) and \
isinstance(wl.cls, TE) and \
isinstance(wl.cls.term, Lam):
le = wl.cls.term.e
env_ = wl.cls.env
return whnf(le, [TE(r, env)] + env_)
else:
return Apply(wl, r, env)
else:
assert 0
def _nf(d, t):
if isinstance(t, Apply):
return App(_nf(d, t.e1), nf(d, t.e2, t.env))
elif isinstance(t, Return):
if isinstance(t.cls, TE) and isinstance(t.cls.term, Lam):
return Lam(nf((d+1), t.cls.term.e, [Idx(d)] + t.cls.env))
elif isinstance(t.cls, TE):
return t.cls.term
elif isinstance(t.cls, Idx):
return Var(d - t.cls.i - 1)
else:
assert 0
else:
assert 0
def nf(d, t, env):
return _nf(d, whnf(t, env))
prg1 = '0010'
prg2 = "0000000101101110110"
prg3 = "00010001100110010100011010000000010110000010010001010111110111101001000110100001110011010000000000101101110011100111111101111000000001111100110111000000101100000110110"
p1 = parse(prg1)[0]
p2 = parse(prg2)[0]
p3 = parse(prg3)[0]
print nf(0, p1, [])
print nf(0, p2, [])
print nf(0, p3, [])