|
| 1 | +import pytest |
| 2 | +import boost_histogram as bh |
| 3 | +import numpy as np |
| 4 | +from numpy.testing import assert_array_equal |
| 5 | + |
| 6 | + |
| 7 | +@pytest.mark.parametrize( |
| 8 | + "storage", |
| 9 | + [bh.storage.Int, bh.storage.Double, bh.storage.AtomicInt, bh.storage.Unlimited], |
| 10 | +) |
| 11 | +def test_setting(storage): |
| 12 | + h = bh.Histogram(bh.axis.Regular(10, 0, 1), storage=storage()) |
| 13 | + h[bh.underflow] = 1 |
| 14 | + h[0] = 2 |
| 15 | + h[1] = 3 |
| 16 | + h[bh.loc(0.55)] = 4 |
| 17 | + h[-1] = 5 |
| 18 | + h[bh.overflow] = 6 |
| 19 | + |
| 20 | + assert h[bh.underflow] == 1 |
| 21 | + assert h[0] == 2 |
| 22 | + assert h[1] == 3 |
| 23 | + assert h[bh.loc(0.55)] == 4 |
| 24 | + assert h[5] == 4 |
| 25 | + assert h[-1] == 5 |
| 26 | + assert h[9] == 5 |
| 27 | + assert h[bh.overflow] == 6 |
| 28 | + |
| 29 | + assert_array_equal(h.view(flow=True), [1, 2, 3, 0, 0, 0, 4, 0, 0, 0, 5, 6]) |
| 30 | + |
| 31 | + |
| 32 | +def test_setting_weight(): |
| 33 | + h = bh.Histogram(bh.axis.Regular(10, 0, 10), storage=bh.storage.Weight()) |
| 34 | + |
| 35 | + h.fill([0.3, 0.3, 0.4, 1.2]) |
| 36 | + |
| 37 | + assert h[0] == bh.accumulators.WeightedSum(3, 3) |
| 38 | + assert h[1] == bh.accumulators.WeightedSum(1, 1) |
| 39 | + |
| 40 | + h[0] = bh.accumulators.WeightedSum(value=2, variance=2) |
| 41 | + assert h[0] == bh.accumulators.WeightedSum(2, 2) |
| 42 | + |
| 43 | + a = h.view() |
| 44 | + |
| 45 | + assert a[0] == h[0] |
| 46 | + |
| 47 | + b = np.asarray(h) |
| 48 | + assert b["value"][0] == h[0].value |
| 49 | + |
| 50 | + h[0] = bh.accumulators.WeightedSum(value=3, variance=1) |
| 51 | + |
| 52 | + assert a[0] == h[0] |
| 53 | + assert b["value"][0] == h[0].value |
| 54 | + |
| 55 | + |
| 56 | +def test_setting_profile(): |
| 57 | + h = bh.Histogram(bh.axis.Regular(10, 0, 10), storage=bh.storage.Mean()) |
| 58 | + |
| 59 | + h.fill([0.3, 0.3, 0.4, 1.2, 1.6], sample=[1, 2, 3, 4, 4]) |
| 60 | + |
| 61 | + assert h[0] == bh.accumulators.Mean(count=3, value=2, variance=1) |
| 62 | + assert h[1] == bh.accumulators.Mean(count=2, value=4, variance=0) |
| 63 | + |
| 64 | + h[0] = bh.accumulators.Mean(count=12, value=11, variance=10) |
| 65 | + assert h[0] == bh.accumulators.Mean(count=12, value=11, variance=10) |
| 66 | + |
| 67 | + a = h.view() |
| 68 | + |
| 69 | + assert a[0] == h[0] |
| 70 | + |
| 71 | + b = np.asarray(h) |
| 72 | + assert b["value"][0] == h[0].value |
| 73 | + |
| 74 | + h[0] = bh.accumulators.Mean(count=6, value=3, variance=2) |
| 75 | + |
| 76 | + assert a[0] == h[0] |
| 77 | + assert b["value"][0] == h[0].value |
| 78 | + |
| 79 | + |
| 80 | +def test_setting_weighted_profile(): |
| 81 | + h = bh.Histogram(bh.axis.Regular(10, 0, 10), storage=bh.storage.WeightedMean()) |
| 82 | + |
| 83 | + h.fill([0.3, 0.3, 0.4, 1.2, 1.6], sample=[1, 2, 3, 4, 4], weight=[1, 1, 1, 1, 2]) |
| 84 | + |
| 85 | + assert h[0] == bh.accumulators.WeightedMean(wsum=3, wsum2=3, value=2, variance=1) |
| 86 | + assert h[1] == bh.accumulators.WeightedMean(wsum=3, wsum2=5, value=4, variance=0) |
| 87 | + |
| 88 | + h[0] = bh.accumulators.WeightedMean(wsum=12, wsum2=15, value=11, variance=10) |
| 89 | + assert h[0] == bh.accumulators.WeightedMean( |
| 90 | + wsum=12, wsum2=15, value=11, variance=10 |
| 91 | + ) |
| 92 | + |
| 93 | + a = h.view() |
| 94 | + |
| 95 | + assert a[0] == h[0] |
| 96 | + |
| 97 | + b = np.asarray(h) |
| 98 | + assert b["value"][0] == h[0].value |
| 99 | + |
| 100 | + h[0] = bh.accumulators.WeightedMean(wsum=6, wsum2=12, value=3, variance=2) |
| 101 | + |
| 102 | + assert a[0] == h[0] |
| 103 | + assert b["value"][0] == h[0].value |
0 commit comments