forked from clementfarabet/lua---nnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpatialRecursiveFovea.lua
613 lines (548 loc) · 22.6 KB
/
SpatialRecursiveFovea.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
local SpatialRecursiveFovea, parent = torch.class('nn.SpatialRecursiveFovea', 'nn.Module')
local help_desc = [[
From a given image, generates a pyramid of scales, and process each scale
with the given list of preprocessors and processors.
The result of each module/scale is upsampled to feed the next stage of recursion.
The pipeline is the following:
input -> pyramid{ratios} -> preProcessors -> padding -> processors[1] -> output_1
|,-- <----------------- <----'
`-----> processors[2] -> output_2
|,-- <----------------- <----'
`-----> ... ->
|,-- <----------------- <----'
`-----> processors[N] -> output_N -> output
There are two operating modes: focused [training?], and global [inference].
In inference mode, the entire input pyramid is processed, to produce
an answer that is has large as the original input.
In sampling mode, the fovea is first focused on a particular
(x,y) point. To focus the fovea, simply call
fovea:focus(x,y,winSize) before doing a forward. A call to
fovea:focus(nil) makes it unfocus (go back to global mode).
Optionally, a list of criterions can be provided, to estimate
the current error with respect to some target vectors. If
criterions are provided, then target vectors can be provided as
well to the forward and backward functions.]]
function SpatialRecursiveFovea:__init(...)
parent.__init(self)
-- check args
xlua.unpack_class(
self,
{...},
'nn.SpatialRecursiveFovea',
help_desc,
{arg='nInputPlane', type='number', help='number of input planes', req=true},
{arg='nRecursivePlane', type='number', help='number of recursive planes (e.g. nb of output planes used by next input stage', req=true},
{arg='ratios', type='table', help='list of downsampling ratios, in decreasing order', req=true},
{arg='processors', type='table', help='list of processors (each processor sees a single scale)', req=true},
{arg='preProcessors', type='table', help='list of preprocessors (applied before padding)'},
{arg='postProcessors', type='table', help='list of postprocessors (applied before criterions, and on last stage)'},
{arg='criterions', type='table', help='list of criterions (applied to each intermediate output)'},
{arg='fov', type='number', help='field of view (== processors\' receptive field)', default=1},
{arg='batchSize', type='number', help='size of mini-batch used when computing gradient [default = fov/sub]'},
{arg='sub', type='number', help='global subsampling (== processors\' subsampling ratio)', default=1},
{arg='scaleTargetValues', type='boolean', help='scale the target values as well as dimension', default=false},
{arg='verbose', type='boolean', help='prints a lot of information', default=true}
)
-- batchSize ?
self.batchSize = self.batchSize or self.fov / self.sub
-- internal modules:
self.downsamplers = {}
self.padders = {}
self.processors = self.processors or {}
self.upsamplers = {}
self.upsampledPadders = {}
self.preProcessors = self.preProcessors or {}
self.postProcessors = self.postProcessors or {} -- todo
self.criterions = self.criterions or {}
-- temporary results:
self.pyramid = {}
self.preProcessed = {}
self.padded = {}
self.narrowed = {}
self.concatenated = {}
self.processed = {}
self.upsampled = {}
self.upsampledPadded = {}
self.upsampledNarrowed = {}
self.postProcessed = {}
self.predicted = {}
self.gradPostProcessed = {}
self.gradUpsampledNarrowed = {}
self.gradUpsampledPadded = {}
self.gradUpsampled = {}
self.gradProcessed = {}
self.gradConcatenated = {}
self.gradNarrowed = {}
self.gradPadded = {}
self.gradPreProcessed = {}
self.gradPyramid = {}
self.gradPredicted = {}
-- hold current targets, if criterions are in use
self.targets_scaled = {}
self.targets = {}
-- check preprocessors/processors/criterions
if #self.processors ~= #self.ratios then
xerror('the number of processors provided should == the number of ratios (scales): ' .. #self.ratios,
'nn.SpatialRecursiveFovea')
end
if self.preProcessors[1] and #self.preProcessors ~= #self.ratios then
xerror('the number of preProcessors provided should == the number of ratios (scales): ' .. #self.ratios,
'nn.SpatialRecursiveFovea')
end
if self.criterions[1] and #self.criterions ~= #self.ratios then
xerror('the number of criterions provided should == the number of ratios (scales): ' .. #self.ratios,
'nn.SpatialRecursiveFovea')
end
-- sort scales, in decreasing order
table.sort(self.ratios, function(a,b) return a>b end)
-- info
if self.verbose then
print(self)
end
end
function SpatialRecursiveFovea:configure(fov, sub, input_w, input_h)
-- don't reconfigure if params have not changed
if fov == self.fov and input_w == self.input_w and input_h == self.input_h then
return
end
self.fov = fov
self.sub = sub
self.input_w = input_w
self.input_h = input_h
local ratios = self.ratios
local nscales = #ratios
local focused = self.focused
-- generate lists of all sizes
local pyramid = {w={},h={}}
local padded = {w={},h={}}
local narrowed = {w={},h={}}
local processed = {w={},h={}}
-- using resampling if ratios are not integer
self.bilinear = false
for idx = 1,nscales do
if ratios[idx] < 1 then
xerror('ratios should be >= 1','nn.SpatialRecursiveFovea')
elseif ratios[idx] ~= math.floor(ratios[idx]) then
self.bilinear = true
end
end
-- compute intermediate sizes
for idx = nscales,1,-1 do
-- check order
if idx > 1 and self.ratios[idx] > self.ratios[idx-1] then
xerror('downsampling ratios should be provided in decreasing order, for proper coarse-to-fine recursion',
'nn.SpatialRecursiveFovea')
end
-- pyramid size
pyramid[idx] = {w = math.floor(input_w / ratios[idx]), h = math.floor(input_h / ratios[idx])}
if idx == nscales then
-- infer processed size
processed[idx] = {w = math.floor(input_w / ratios[idx] / sub), h = math.floor(input_h / ratios[idx] / sub)}
-- infer narrowed size
narrowed[idx] = {w = processed[idx].w*sub + fov - sub, h = processed[idx].h*sub + fov - sub}
-- and padded size
padded[idx] = narrowed[idx] --{w = pyramid[idx].w + fov - 1, h = pyramid[idx].h + fov - 1}
else
-- infer processed size from next stage in recursion
processed[idx] = {w = math.ceil(math.ceil(pyramid[idx+1].w * ratios[idx+1]/ratios[idx] / sub)),
h = math.ceil(math.ceil(pyramid[idx+1].h * ratios[idx+1]/ratios[idx] / sub))}
-- infer narrowed size
narrowed[idx] = {w = processed[idx].w*sub + fov - sub, h = processed[idx].h*sub + fov - sub}
-- and padded size
padded[idx] = narrowed[idx] --{w = pyramid[idx].w + fov - 1, h = pyramid[idx].h + fov - 1}
end
end
-- configure downsamplers, padders and upsamplers
for idx = 1,nscales do
-- downsamplers (for pyramid)
local r = ratios[idx]
if self.bilinear then
self.downsamplers[idx] = nn.SpatialReSampling(1/r, 1/r)
else
self.downsamplers[idx] = nn.SpatialSubSampling(self.nInputPlane, r, r, r, r)
self.downsamplers[idx].weight:fill(1/(r^2))
self.downsamplers[idx].bias:zero()
end
-- padders
local padw = (padded[idx].w - pyramid[idx].w)
local padh = (padded[idx].h - pyramid[idx].h)
local padl = math.floor(padw/2)
local padr = padw - padl + 1
local padt = math.floor(padh/2)
local padb = padh - padt + 1
self.padders[idx] = nn.SpatialPadding(padl, padr, padt, padb)
self.upsampledPadders[idx] = nn.SpatialPadding(padl, padr, padt, padb)
-- upsamplers
if idx < nscales then
local upw = (ratios[idx] / ratios[idx+1]) * sub
local uph = (ratios[idx] / ratios[idx+1]) * sub
if self.bilinear then
self.upsamplers[idx] = nn.SpatialReSampling(upw, uph)
else
self.upsamplers[idx] = nn.SpatialUpSampling(upw, uph)
end
end
end
-- store results
self.pyramid_size = pyramid
self.padded_size = padded
self.narrowed_size = narrowed
self.processed_size = processed
-- info
if self.debug then
print('')
xprint('reconfig complete:','nn.SpatialRecursiveFovea')
for idx = 1,nscales do
print('scale ' .. idx .. ' :')
print(' + pyramid > ' .. pyramid[idx].w .. 'x' .. pyramid[idx].h)
print(' + padded > ' .. padded[idx].w .. 'x' .. padded[idx].h)
print(' + narrowed > ' .. narrowed[idx].w .. 'x' .. narrowed[idx].h)
print(' + processed > ' .. processed[idx].w .. 'x' .. processed[idx].h)
end
print('')
end
end
function SpatialRecursiveFovea:__tostring__()
local str = 'nn.SpatialRecursiveFovea:\n'
str = str .. ' + number of recursion stages : '..(#self.ratios) .. '\n'
str = str .. ' + downsampling ratios (scales) :'
for idx = 1,#self.ratios do
str = str .. ' ' .. self.ratios[idx]
end
str = str .. '\n'
str = str .. ' + processors\' field of view : '..(self.fov)..'x'..(self.fov)..'\n'
str = str .. ' + processors\' downsampling ratio : '..(self.sub)..'x'..(self.sub)..'\n'
if self.criterions[1] then
str = str .. ' + using training criterions : ' .. torch.typename(self.criterions[1]) .. '\n'
end
str = str .. ' + verbose : ' .. tostring(self.verbose)
return str
end
function SpatialRecursiveFovea:focus(x,y)
-- fprop and bprop sizes must be different
-- * frop must create an output which will be upsampled to batchsize+fov
-- * bprop creates a batchsize+fov sized input around center of focus
-- fov keeps track of the padding
-- batchSize keeps track of the neighboring samples which will be bproped together
-- in the simple case everything is fproped
self.x = x
self.y = y
if self.x and self.y then
self.focused = true
else
self.focused = false
return
end
local corners = {}
for idx = 1,#self.ratios do
-- compute the center of focus at each scale, taking into account the ratios/downsampling effect
local ox = math.floor(math.floor((self.x-1) / self.ratios[idx]) / self.sub) * self.sub + 1
local oy = math.floor(math.floor((self.y-1) / self.ratios[idx]) / self.sub) * self.sub + 1
-- remap these centers to become corners
ox = ox - math.ceil(self.batchSize/2) + 1
oy = oy - math.ceil(self.batchSize/2) + 1
-- append
table.insert(corners, {x=ox,y=oy})
end
self.corners = corners
end
function SpatialRecursiveFovea:forward(input,target,x,y)
-- input must be 3D
if input:nDimension() ~= 3 or input:size(1) ~= self.nInputPlane then
xerror('input must be 3d and have ' .. self.nInputPlane .. ' input planes','nn.SpatialRecursiveFovea')
end
-- focus ?
if x and y then
self:focus(x,y)
end
-- configure fovea for given input and current parameters
local nmaps = input:size(1)
local height = input:size(2)
local width = input:size(3)
local nscales = #self.ratios
local fov = self.fov
local sub = self.sub
local corners = self.corners
self:configure(fov, sub, width, height)
-- (1-2) create preprocessed pyramid
for idx = 1,nscales do
-- (1) generate pyramid
self.pyramid[idx] = self.downsamplers[idx]:forward(input)
-- (2) preprocess
if self.preProcessors[idx] then
self.preProcessed[idx] = self.preProcessors[idx]:forward(self.pyramid[idx])
else
self.preProcessed[idx] = self.pyramid[idx]
end
end
-- (3-7) walk through recursion
for idx = 1,nscales do
-- (3) pad inputs
self.padded[idx] = self.padders[idx]:forward(self.preProcessed[idx])
-- (4) is fovea focused ?
self.narrowed[idx]
= self.padded[idx]:narrow(3,1,self.narrowed_size[idx].w):narrow(2,1,self.narrowed_size[idx].h)
-- (5) concatenate current input and upsampled result from previous stage in the recursion
self.concatenated[idx] = self.concatenated[idx] or torch.Tensor()
self.concatenated[idx]:resize(self.narrowed[idx]:size(1) + self.nRecursivePlane,
self.narrowed[idx]:size(2), self.narrowed[idx]:size(3))
self.concatenated[idx]:narrow(1,1,self.narrowed[idx]:size(1)):copy(self.narrowed[idx])
if idx > 1 then
local p = self.concatenated[idx]:narrow(1,self.narrowed[idx]:size(1)+1, self.nRecursivePlane)
p:copy(self.upsampledNarrowed[idx-1])
if self.scaleTargetValues then
local r = self.ratios[idx-1]/self.ratios[idx]
p:mul(r)
end
else
self.concatenated[idx]:narrow(1,self.narrowed[idx]:size(1)+1,self.nRecursivePlane):zero()
end
-- (6) apply processors to pyramid
self.processed[idx] = self.processors[idx]:forward(self.concatenated[idx])
-- (7) upsample, pad and narrow, for next stage
if idx < nscales then
-- (7.a)
self.upsampled[idx] = self.upsamplers[idx]:forward(self.processed[idx])
-- (7.b)
self.upsampledPadded[idx] = self.upsampledPadders[idx]:forward(self.upsampled[idx])
-- (7.c)
self.upsampledNarrowed[idx]
= self.upsampledPadded[idx]:narrow(3,1,self.narrowed_size[idx+1].w):narrow(2,1,self.narrowed_size[idx+1].h)
end
end
-- (8) optional post processors
for idx = 1,nscales do
if self.postProcessors[idx] then
self.postProcessed[idx] = self.postProcessors[idx]:forward(self.processed[idx])
else
self.postProcessed[idx] = self.processed[idx]
end
end
-- DEBUG
if self.debug then
for idx = 1,nscales do
print('')
print('scale ' .. idx .. ' :')
print(' + pyramid > ' .. self.pyramid[idx]:size(3) .. 'x' .. self.pyramid[idx]:size(2))
print(' + padded > ' .. self.padded[idx]:size(3) .. 'x' .. self.padded[idx]:size(2))
print(' + narrowed > ' .. self.narrowed[idx]:size(3) .. 'x' .. self.narrowed[idx]:size(2))
print(' + processed > ' .. self.processed[idx]:size(3) .. 'x' .. self.processed[idx]:size(2))
end
end
-- (9) if criterions are provided, compute their errors
local error = 0
if self.criterions[1] and target then
for idx = 1,nscales do
-- generate the target vector for each scale
local ratio = self.ratios[idx]
local target_h = self.postProcessed[idx]:size(2)
local target_w = self.postProcessed[idx]:size(3)
self.targets_scaled[idx] = self.targets_scaled[idx] or torch.Tensor()
if target:nDimension() == 3 then
self.targets_scaled[idx]:resize(target:size(1), self.processed[idx]:size(2), self.processed[idx]:size(3))
else
self.targets_scaled[idx]:resize(self.processed[idx]:size(2), self.processed[idx]:size(3))
end
image.scale(target, self.targets_scaled[idx], 'simple')
-- in the case of flow the value of the target is absolute a
-- 20px shift at scale 1 is a 10px shift at scale 2, this
-- changes the dimension of the target. Need some sensibly
-- named tag for this
if self.scaleTargetValues then
local ts = self.targets_scaled[idx]
ts:mul(1/self.ratios[idx])
end
if self.focused then
local bs = self.batchSize
-- adjust focus point for each scale
corners[idx].x = math.min(math.max(corners[idx].x, 1), self.postProcessed[idx]:size(1)-bs+1)
corners[idx].y = math.min(math.max(corners[idx].y, 1), self.postProcessed[idx]:size(2)-bs+1)
-- then crop/extract mini batch patch on both targets and postProcessed vectors
self.predicted[idx] = self.postProcessed[idx]:narrow(3,corners[idx].x,bs):narrow(2,corners[idx].y,bs)
self.targets[idx] = self.targets_scaled[idx]:narrow(2,corners[idx].x,bs):narrow(1,corners[idx].y,bs)
else
self.predicted[idx] = self.postProcessed[idx]
self.targets[idx] = self.targets_scaled[idx]
end
-- then evaluate the criterion's error
error = error + self.criterions[idx]:forward(self.predicted[idx], self.targets[idx])
end
-- normalize error
error = error / nscales
-- DEBUG
if self.debug then
print('')
xprint('adjusted focus points','nn.SpatialRecursiveFovea')
for idx = 1,nscales do
if self.focused then
print(' + at scale ' .. idx .. ', focused on corner: ' .. corners[idx].x .. ',' .. corners[idx].y ..
' with a batch size: '..self.batchSize)
end
end
end
end
-- (10) return output (last stage in the recursion)
self.output = self.postProcessed[nscales]
return self.output, error
end
function SpatialRecursiveFovea:backward(input)
-- local params
local nscales = #self.ratios
local fov = self.fov
local sub = self.sub
local corners = self.corners
-- (9) backprop through criterions using generated targets (from prev forward call)
for idx = 1,nscales do
-- bprop through criterion
self.gradPredicted[idx] = self.criterions[idx]:backward(self.predicted[idx], self.targets[idx])
-- then remap partial grad vector
self.gradPostProcessed[idx] = self.gradPostProcessed[idx] or torch.Tensor()
self.gradPostProcessed[idx]:resizeAs(self.postProcessed[idx]):zero()
if self.focused then
local bs = self.batchSize
self.gradPostProcessed[idx]:narrow(3,corners[idx].x,bs):narrow(2,corners[idx].y,bs):copy(self.gradPredicted[idx])
else
self.gradPostProcessed[idx]:copy(self.gradPredicted[idx])
end
end
-- (8) backprop through post processors
for idx = 1,nscales do
if self.postProcessors[idx] then
self.gradProcessed[idx] = self.postProcessors[idx]:backward(self.processed[idx], self.gradPostProcessed[idx])
else
self.gradProcessed[idx] = self.gradPostProcessed[idx]
end
end
-- (7) recursive gradient: not done for now (needs to see if it's really worth it)
--
-- (6) backprop through processors
for idx = 1,nscales do
self.gradConcatenated[idx] = self.processors[idx]:backward(self.concatenated[idx], self.gradProcessed[idx])
end
-- (5) bprop through concatenators
for idx = 1,nscales do
self.gradNarrowed[idx] = self.gradConcatenated[idx]:narrow(1, 1, self.narrowed[idx]:size(1))
end
-- (4) bprop through narrow
for idx = 1,nscales do
self.gradPadded[idx] = self.gradPadded[idx] or torch.Tensor()
self.gradPadded[idx]:resizeAs(self.padded[idx]):zero()
self.gradPadded[idx]:narrow(3,1,self.narrowed_size[idx].w):narrow(2,1,self.narrowed_size[idx].h):copy(self.gradNarrowed[idx])
end
-- (3) bprop through padders
for idx = 1,nscales do
self.gradPreProcessed[idx] = self.padders[idx]:backward(self.preProcessed[idx], self.gradPadded[idx])
end
-- (2) bprop through preProcessors
for idx = 1,nscales do
if self.preProcessors[idx] then
self.gradPyramid[idx] = self.preProcessors[idx]:backward(self.pyramid[idx], self.gradPreProcessed[idx])
else
self.gradPyramid[idx] = self.gradPreProcessed[idx]
end
end
-- (1) bprop through pyramid
self.gradInput:resizeAs(input):zero()
for idx = 1,nscales do
local partialGrad = self.downsamplers[idx]:backward(input, self.gradPyramid[idx])
self.gradInput:add(partialGrad)
end
return self.gradInput
end
function SpatialRecursiveFovea:reset(stdv)
for idx = 1,#self.processors do
self.processors[idx]:reset(stdv)
end
end
function SpatialRecursiveFovea:zeroGradParameters(momentum)
for idx = 1,#self.processors do
self.processors[idx]:zeroGradParameters(momentum)
end
end
function SpatialRecursiveFovea:updateParameters(learningRate)
for idx = 1,#self.processors do
self.processors[idx]:updateParameters(learningRate)
end
end
function SpatialRecursiveFovea:decayParameters(decay)
for idx = 1,#self.processors do
if self.processors[idx].decayParameters then
self.processors[idx]:decayParameters(decay)
end
end
end
function SpatialRecursiveFovea:write(file)
parent.write(self, file)
-- params
file:writeInt(self.nInputPlane)
file:writeInt(self.nRecursivePlane)
file:writeInt(self.fov)
file:writeInt(self.sub)
file:writeObject(self.ratios)
-- modules
file:writeObject(self.downsamplers)
file:writeObject(self.padders)
file:writeObject(self.upsamplers)
file:writeObject(self.upsampledPadders)
file:writeObject(self.processors)
file:writeObject(self.preProcessors)
file:writeObject(self.postProcessors)
file:writeObject(self.criterions)
-- states
file:writeObject(self.pyramid)
file:writeObject(self.preProcessed)
file:writeObject(self.padded)
file:writeObject(self.narrowed)
file:writeObject(self.concatenated)
file:writeObject(self.processed)
file:writeObject(self.upsampled)
file:writeObject(self.upsampledPadded)
file:writeObject(self.upsampledNarrowed)
file:writeObject(self.postProcessed)
file:writeObject(self.predicted)
end
function SpatialRecursiveFovea:read(file)
parent.read(self, file)
-- params
self.nInputPlane = file:readInt()
self.nRecursivePlane = file:readInt()
self.fov = file:readInt()
self.sub = file:readInt()
self.ratios = file:readObject()
self.batchSize = self.fov
-- modules
self.downsamplers = file:readObject()
self.padders = file:readObject()
self.upsamplers = file:readObject()
self.upsampledPadders = file:readObject()
self.processors = file:readObject()
self.preProcessors = file:readObject()
self.postProcessors = file:readObject()
self.criterions = file:readObject()
-- states
self.pyramid = file:readObject()
self.preProcessed = file:readObject()
self.padded = file:readObject()
self.narrowed = file:readObject()
self.concatenated = file:readObject()
self.processed = file:readObject()
self.upsampled = file:readObject()
self.upsampledPadded = file:readObject()
self.upsampledNarrowed = file:readObject()
self.postProcessed = file:readObject()
self.predicted = file:readObject()
-- grad states
self.gradPostProcessed = {}
self.gradUpsampledNarrowed = {}
self.gradUpsampledPadded = {}
self.gradUpsampled = {}
self.gradProcessed = {}
self.gradConcatenated = {}
self.gradNarrowed = {}
self.gradPadded = {}
self.gradPreProcessed = {}
self.gradPyramid = {}
self.gradPredicted = {}
self.targets_scaled = {}
self.targets = {}
end