

INSTITUTE

RECHERCHE

LabStreamingLayer in Virtual Reality and Intracranial Neurophysiology

Chadwick Boulay, MSc, PhD

Senior Research Associate, **Ottawa Hospital Research Institute**

Outline

- My LSL Use Cases
- Streaming Motion Controllers
- Streaming Game Engine Events (in VR)
- Streaming intracranial neurophys data
- Remote control LabRecorder

My LSL Use Cases

Role	PI	Location	Field
PhD	Jon Wolpaw	Albany, NY USA	EEG-BCI; Rat reflex
Postdoc	Junichi Ushiba	Keio, Yokohama, Japan	EEG, TMS, fMRI, BCI for rehab
Sr. Research Associate	Adam Sachs	Ottawa, Ontario, Canada (pictured)	BCI for PD therapy; invasive BCI

Winter/Summer in Ottawa, Ontario, Canada

LSL Contributions

Apps

Device Name	Manufacturer	Арр
1608-FS (maybe others)	MCC	MeasurementComputing
Unreal Engine 4	Epic Games	/SachsLab/Isl-ue4
Epoc+	EMOTIV	emotiv
g.USB, g.Hlamp, g.Nautilus	g.tec	g.Tec/gNEEDaccess
Wiimote, Wii balance board	Nintendo	wiimote
Various VR systems	Valve, HTC, various	OpenVR

- Cross-platform build system (cmake)
- Devops
- Language wrappers (Python, C# Unity)
- XDF
- Support on GitHub and Slack

Brain-Computer Interface

Clinical & Research Setting 1

Alonso et al., 2018

Microelectrode Mapping

Camalier et al., Front. Neurol. 2014

Michael Leung Neuroscience MSc Student

Prototype from Justin Sutherland of the Realize Lab at OHRI/TOH

LSL Details

Motion Controllers

/labstreaminglayer/App-OpenVR

Kalman Filter Information Flow

Device SDK (OpenVR→SteamVR) maintains internal model of kinematic behaviour and current state estimate.

Predicts state at \mathbf{t} from current state at \mathbf{t}_0 .

Updates state whenever it gets new sensor data.

- IMU update ~ 500 Hz
- Optical update ~ 60 Hz

$$Pose = P_x, P_y, P_z, O_y, O_p, O_r$$

[1	0	0	Translation.x]	[1	0	0	0]		Scale.x	0	0	0]
0	1	0	Translation.y	0	$\cos(\theta)$	$-\sin(\theta)$	0		0	Scale.y	0	0
0	0	1	Translation.z	0	$\sin(\theta)$	$\cos(\theta)$	0	•••	0	0	Scale.z	0
Lo	0	0	1 J	Lo	0	0	1	2	Lο	0	0	1

Transform_XAxis.xTransform_YAxis.xTransform_ZAxis.xTranslation.xTransform_XAxis.yTransform_YAxis.yTransform_ZAxis.yTranslation.yTransform_XAxis.zTransform_YAxis.zTransform_ZAxis.zTranslation.z0001

poseChanLabels
<< "00" << "01" << "02" << "X"
<< "10" << "11" << "12" << "Y"
<< "20" << "21" << "22" << "Z";</pre>

- <u>https://github.com/labstreaminglayer/App-OpenVR</u>
- Pose represented as 12-channel (per device) stream
 - 12-channels reshape to 3x4 transformation matrix
 - Because it's easy to use,
 - Also that's what OpenVR gives us.
- Sampling rate is flexible, 1 kHz more than adequate.
- Samples are actually "predicted" poses

Game Engine Events

Each state transition generates a JSON string which is emitted over LSL.

Photodiode

- Use waitForEndOfFrame hooks to send triggers.
- LSL markers good enough for video onset.
 - But characterize total delay first!
- Audio events should be recorded (with mirror)
- Not shown: Audio latency can be made more consistent by having the engine continuously output audio.
 - But still bad.

Confidence, gaze on screen, gaze in world, pupil diameter, etc.

- <u>https://github.com/labstreaminglayer/App-SMIEyetracker</u>
- <u>https://github.com/labstreaminglayer/App-Tobii</u>
- <u>https://github.com/labstreaminglayer/App-TobiiPro</u>

SCIENTIFIC REPORTS

Received: 18 September 2017 Accepted: 4 December 2017 Published online: 18 December 2017

OPEN A new and general approach to signal denoising and eye movement classification based on segmented linear regression

Jami Pekkanen 💿 & Otto Lappi 💿

Streaming Intracranial Neurophysiology

Neural data can be high dimensional

https://github.com/ahwillia. @ItsNeuronal

Neural data can be high dimensional

Recordings from a 96/128 channel Utah Arrays in the lateral prefrontal cortex and/or primary motor cortex.

Invasive Source Considerations

- Huge amount of data
 - 256 channels * 30 kHz * 16 bits = 15.36 MB/s
 - Can your network handle it?
 - Can your data storage handle it?
- How to represent the different types of data?
 - LFP
 - Spike events
 - Waveforms

Waveform stream:

- Int16
- irregular rate \rightarrow one sample per waveform
- 50 "channels" → electrode_id, waveform_id (1-5), 48 time points

2-channel Int32 stream (~40 hrs of unique samp. inds.)

Invasive Source Summary

- Huge amount of data
 - 256 channels * 30 kHz * 16 bits = 15.36 MB/s
 - Can your network handle it?
 - Can your data storage handle it?
- Data are already accessible on the network
 - <u>https://github.com/dashesy/CereLink</u>
- <u>https://github.com/labstreaminglayer/App-BlackrockTimestamps</u>
 - Streams hardware sample number with LSL timestamps.

Remote Control LabRecorder

Postdoctoral Fellow Guillaume Doucet

Acknowledgments

- Sachs Lab
 - Adam Sachs
 - Guillaume Doucet
 - Michael Leung
 - Alireza Rouzitalab

- Support
 - Canada Foundation for Innovation
 - The Ottawa Hospital Department of Surgery
 - uOttawa Parkinson Research Consortium
 - uOttawa Brain and Mind Research Institute