
Synchronization And Other LSL
Topics

Christian A Kothe, CTO

Tim Mullen, CEO

Outline

1. Time Synchronization

2. Diagnosing Connectivity Issues

3. More Notes on Metadata

1 Time Synchronization

LSL Time-Synchronization Basics

• Every sample in LSL has its own time stamp

• LSL mainly transports time stamps, but
doesn’t “tamper” with them

• LSL tracks clock drift across machines and
when recording to XDF, that info is stored

• Real-time time synchronization is also
available

The Life of A Timestamp

Event

TS

1. Stamp is
taken on PC
where event
(e.g., sample)
was observed

LSL

2. Stamp is
transported via

LSL

TS
1

TS
2

TS
n

…

3. Stamp is
recorded together

with clock-sync
information

TS

.XDF

PC Clock

LSL’s Built-In Peer-To-Peer Time
Synchronization

Program A liblsl

Program B
liblsl

Program B

liblsl

. . .

Program A
liblsl

. . .

Tim
e →

<- t0

<- t1

<- t2

<- t3

RTT = (t3-t0)-(t2-t1)
OFS = ((t1-t0)+(t2-t3))/2

LSL’s Built-In Peer-To-Peer Time
Synchronization

Program A liblsl

Program B
liblsl

Program B

liblsl

. . .

Program A
liblsl

. . .

Tim
e →

<- t0

<- t1

<- t2

<- t3

RTT = (t3-t0)-(t2-t1)
OFS = ((t1-t0)+(t2-t3))/2

Providing Your Own Timestamps

• An LSL data source can provide its own (or modified)
timestamps -- otherwise LSL will stamp it at the time
of data submission

we happen to know that our sample was actually
measured 25ms ago by our device
stamp = local_clock() - 0.025
outlet.push_sample(mysample, stamp)

Performing Online Time Sync

• As a data recipient, you can ask LSL about the current clock
offset for the received data

• Adding that number to the received raw timestamps
(measured on the remote clock) remaps them to your own PC
clock

• If you do that for all received streams, they’re all on the same
clock (yours) -- i.e., synchronized

get the next sample and its timestamp
sample, timestamp = inlet.pull_sample()
manually correct the time stamp that we just got
offset = inlet.time_correction()
timestamp += offset

Online Time Sync, Simplified

• An even simpler option is to enable automatic
time correction upon receiving the data to
have LSL do this for you
inlet.set_postprocessing(proc_clocksync)

Offline (Post-Hoc) Time Sync

• The preferred method for time-sync of
recorded data is post-hoc correction (at load
time) rather than online sync -- this way, the
original time stamps are preserved

• Clock drift over entire experiment is estimated
from collected clock-sync info in XDF file, and
subtracted

• MATLAB & Python XDF importers do this for
you (can be disabled if not desired)

Sources of Device Timing Error

• Clock Drift

• Internal Device Latency

• Time-stamp Jitter

Per-Device Latency

• Most acquisition devices (or driver) have internal
latency (0.1-100ms)

• Single-sample latency of a device can vary
significantly but average latency in a recording
tends to depend only on setup parameters
(hardware, drivers, settings)

• True latency of a device can be measured once
per device setup (e.g., per study / per lab / under
factory settings)

• Every acquisition program has a default assumed
latency (many assume 0ms)

Pure Software Techniques for
Device Latency Measurement

• Unknown latencies between devices can be
estimated using cross-correlation (xcorr in
MATLAB) if signals exhibit correlated features

• Example: photo diode vs. on/off event markers

• Can use CCA to do the same for multi-channel
signals (e.g., eye tracker vs. EEG)

• Recommendation: when doing this analysis,
always check consistency of estimated delays
over time (e.g., 5-minute stretches) and across
sessions

Pure Software Techniques for Device
Latency Measurement

• Correlation analysis should yield a clear
“spike” at the shift that yields maximum
correlation between two signals

HW-Assisted Device Synchronization

• Can use off-the-shelf hardware to test out
latencies of devices and/or emit sync data
during experiments

• Can use generic DAQ cards and custom
hardware solutions to measure latency

Time-Stamp Jitter

• Time-of-arrival of data in PC software is noisy, and so
are the raw time stamps

• But actual measurements are typically* regular

• Can “smooth” (linearize) jittery time stamps to
estimate the unobserved actual time stamps

• XDF Importers will do this for you post-hoc by default
(can be disabled and done manually or skipped)

• LSL can also do it in real time:
inlet.set_postprocessing(proc_dejitter)

*: see David Medine’s Lecture

The Good News

• Time-stamp errors can be decomposed into
The error components (latency + jitter + clock
drift) can be separately measured and
corrected for

• Odd cases (e.g., non-constant latency,
irregular sampling rates, non-linear drift) can
occur, and can usually be fixed (if detected)*

• Recommendation: perform pilot run and
Actually Look At™ pilot data

*: Also see David Medine’s Talk

Synchronization In Practice

• Approach 1:
– Measure device latencies at least once (using trigger cables or a

custom timing test experiment) and confirm that variability is
acceptable

– Re-measure after every significant setup change (e.g., driver
update, OS/hardware change)

• Approach 2:
– Rely on LSL time synchronization
– Also record trigger channels as backup (possibly correct device

latencies post-hoc)

• Approach 3:
– Rely on trigger cables in every experiment and perform

synchronization based on trigger information
– Use LSL time-stamps as “safety net” when trigger sync fails

(measure device latencies post-hoc)

2 Diagnosing Connectivity Issues

Something Doesn’t Connect,
What Now?

• Possible reason: Firewall

• Most likely reason is the OS firewall on either
the sending or receiving machine

• Try to disable firewall and see if that resolves
the issue – if yes, can try to re-enable more
fine-grained application rules

• See also wiki article on “Network
Connectivity”

Something Doesn’t Connect,
What Now?

• Possible reason: Additional Network Cards

• Current version of LSL only transmits over the
primary network card

• Some software installs additionl “virtual”
network hardware (e.g., Docker, Microsoft
Hyper-V, Oracle VirtualBox) which can
interfere with LSL – try temporarily disabling
additional network adapters

Something Doesn’t Connect,
What Now?

• Possible reason: WiFi router blocks p2p packets
• Some WiFi routers in public spaces (e.g., campus/hotel

networks) are configured to explicitly disallow packets
commonly used for peer-to-peer service discovery
(broadcast/multicast packets)

• To troubleshoot, try same applications on different (e.g.,
wired or home router) network – if they work, the network
policy is likely the issue

• Note: some bad routers may seemingly randomly let some
applications through and not others

• On these networks, machines do not see each other – only
workaround is to set KnownPeers variable in config file
(explicit list of IP addresses or hostnames)

Something Doesn’t Connect,
What Now?

• Possible reason: Using wrong stream
name/type/etc.

• Make sure that the stream that you’re
transmitting really has the name and/or type
that you expect, including capitalization (e.g.,
check in LabRecorder)

Something Doesn’t Connect,
What Now?

• Possible reason: Non-default session id used

• Every LSL application looks for a config file

• If present, that config file can override settings,
including the “session id”

• Only LSL applications that have the same session id can
see each other – by default it is “default”, and unless
you change it, any LSL application can see any stream

• Purpose is to allow for multiple recording activities that
are sandboxed from each other

• However, easy to set a config file and later forget…

Troubleshooting Tools

• LSL comes with simple command-line applications that
send and/or receive simple streams (e.g.,
SendStringMarkers/ReceiveStringMarkers,
SendData/ReceiveData)

• If unsure whether the bug is in your application, can
check if these tools can or cannot transmit – on a
properly configured machine, these tools should
always be able to transmit

• Another useful tool resolves all streams visible on the
network and shows their exact metadata
(GetAllStreams)

3 More Notes on Metadata

Why Set Metadata On Your Streams?

• LSL can handle any amount of per-stream
metadata

• If added to a stream, metadata will be
recorded to XDF files

• Available for later analysis

• Impossible to lose (compared to separate
notes/files/etc)

How to Set Metadata?

• When declaring a stream (stream info object),
metadata can be added using the .desc() field

What To Set?

• Stimulus presentation program

– Configuration settings of the session/run (can also
write as event marker), random seed, sizes of
stimuli, etc.

– For time series (e.g., on-screen trajectories):
channel names, channel unit (e.g.,
pixels/normalized/…)

• Device/sensor application

– Channel labels etc., information about device
(model, manufacturer, serial no., etc)

Thanks! ☺

Q&A until 5pm

