
The Lab Streaming Layer –
Introduction and Overview

Christian A Kothe, CTO

Tim Mullen, CEO



The Birthplace of LSL (SCCN)



The Birthplace of LSL (SCCN)



Seed Funding from CaN CTA

Additional government funding sources



LSL Has Come a Long Way!

• Large & Growing Userbase
– 19000 lecture views on YouTube as of today

– 130 GitHub forks, 240 stars, 5000 Google results

– Workshops, Hackathons, Online Community, ...

• Broad Hardware support
– Many dozen devices across many vendors

• Used in all sorts of places (e.g., NASA)



Outline

1. Why LSL?

2. What is LSL?

3. Using LSL

4. The LSL Ecosystem

5. Q&A



1  Why LSL?



Issues Addressed by LSL Pt 1

Format mess
– Lots of file formats and importer & conversion functions
– Custom scripts needed to read/write extra files
– Missing or unreadable meta-data (e.g., channel labels)

Complex hardware time synchronization…
– A lot of custom hardware and cabling needed for 

synchronization (e.g., sync boxes, adapters, creative wiring)
– Easy to make mistakes at data collection time
– Lengthy setup and pilot testing stages

… or brittle and wacky post-hoc synchronization
– E.g., compare file times for different simultaneous recordings
– Or find and match peaks in different signals



Issues Addressed by LSL Pt 2

Error prone data collection
– chance of failure increases with # of devices, computers, 

programs and data files involved
– should be able to reconnect (or hot-swap) a device during 

experiment

No unified tools for recording, viewing, etc
– No centralized viewing / recording across devices
– Limited to no support for viewing data from custom devices

Every vendor has a different interface (or none)
– custom code for each device needed (sometimes driver-level)
– high development cost for online experiment scripts
– online time-sync challenging

Not very easy to get data out of most hardware
– often need to know a specific programming language (e.g., C++)
– often little documentation and obscure, rarely-used interfaces



2  What is LSL?



LSL Is A Unified Data Collection 
Interface

Misc Devices (e.g., 
PhaseSpace)

Stimulus
Presentation

EEG Hardware (e.g., 
BioSemi, MINDO)

Real-Time
Viewers

Recording
Program

Online
Processing

liblsl

liblsl

liblsl

liblsl

liblsl

EEG

Mocap
liblslLab

Steaming

Layer

/



LSL Can Be Easily Integrated Into 
Programs

Sample code for sending 8ch EEG (MATLAB)



LSL Can Be Easily Integrated Into 
Programs

Sample code for receiving EEG data (MATLAB)



LSL Can Scale to Complex Experiments

• Acquiring data from multi-modal and multi-
vendor brain- and bio-signals 

EEG and ExG Eye-Tracking
Full-Body Motion 

Capture

Human Interface 
Devices,  System 

State, Etc.



LSL Can Scale to Complex Experiments

STRUM: Small-Team Reconnaissance Urban Missions



LSL Can Scale to Complex Experiments

• May require online access to multiple device 
streams from one experiment script

1. Pop-up 
event

2. Perceived / or not

3. EEG Response

4. Differential Activation

5. Pattern Classification

6. Notifying In-App 
Feedback



The LSL Software Stack

• The core piece of LSL is a network protocol, a 
library, and various language interfaces for it

LSL Protocol

Library (liblsl), cross-platform (C++)

C/C++ 
Header

Python 
Wrapper

MATLAB 
Wrapper

Java  
Wrapper

Other 
Languages

…

LSL Application Programming Interface (API)



• Cross-platform C++ library (compiles out-of-the-box for 
Windows, Mac OS, Linux, Android, 32/64 bit) , IPv4/6

• Stable API (no breaking change since 1y / 1st release)
• Extensive documentation and example code
• High code quality / very few bugs
• Low-overhead implementation (memory, IO, threads, 

complexity, …), low binary footprint

• Text

The liblsl Library

Folder structure of a simple application that supports LSL



The LSL Software Distribution

• The larger distribution includes 
Documentation, User Guides, Example 
Programs, Acquisition Programs, Generic Tools

• Everything open source (mostly MIT-licensed)

LSL Protocol

Library (liblsl), cross-platform (C++)

C/C+
+ API

Python 
API

MATLAB 
API

Java 
API

Future 
Languages…

Core Components

Wiki
Documentation

Example 
Programs

Generic
Viewers, 
Recorder

Acquisition Programs (EEG, Eye 
tracking, Human Interfaces, 

Motion Capture, Multimedia)



Some EEG Solutions Supported by LSL

Research grade Consumer oriented

High Low
256 64 32 16 4 1128

Channel Density

LSL supports 30+ EEG systems and over 20 other device classes



Some Other Device Types on LSL

• Eye Trackers

• Motion Capture

• Game Controllers

• Mice, Keyboards

• Serial Port

• Soundcards & (some) frame grabber cards

• Wearable EMG/ECG devices



Some LSL-Compatible Stimulus 
Presentation Software

Presentation

EventIDE

PsychToolbox
PsychoPyUnity (with plugin)

Currently-unmaintained integrations: SNAP, Unreal



Design Tradeoffs

• Designed for “lab-scale” recording operations:
– Local: use VPN/broker/bridges to scale across the internet 
– Up to 20 streams per computer fine, 30-100 considered heavy 

load, likely needs high-end hardware beyond 100 streams 
(limited by # of USB ports, etc.)

– Up to 10 computers involved per recording fine, >20 considered 
excessive, likely requires high-end networking equipment 
beyond 50 computers

• Designed for “human-scale” operating range:
– Not a perfect fit for high-energy physics
– Sub-milisecond time synchronization out of the box
– Microsecond precision can only be achieved with user-supplied 

(e.g., GPS/PTP) time stamps
– Latency <1ms, throughput up to 2MHz and 100MB/s (raw video)



3  Using LSL



(Quick Demo)



A Typical Experiment Setup with LSL

• “Record data from 2 devices while running a 
custom stimulus presentation script”

• Software needed for recording

– Your experiment script (sends event markers)

– Vendor A Application (e.g., sends EEG)

– Vendor B Application (e.g., sends MoCap data)

– Recording Program (LabRecorder)



A Typical Experimenter Workflow
1. Start EEG & MoCap apps, turn on LSL streaming if needed

2. Start experiment script in ready mode

3. Open LabRecorder, confirm all LSL streams are there, and 
then click “Start”



Coding with LSL: Event Markers

import random
import time

from pylsl import StreamInfo, StreamOutlet

# declare your marker stream information
info = StreamInfo('MyMarkerStream', 'Markers', 1, 0, 'string', ‘myuniqueid2345')

# create an outlet, now the stream is visible
outlet = StreamOutlet(info)

while True:
# send an event marker
outlet.push_sample(["Some Event Marker"])
# do something else
time.sleep(random.random()*3)

Example Code for sending event markers over LSL (Python)



Coding with LSL: Sending Time Series

Example Code for sending a multi-channel time series over LSL (Python)

import time
from random import random as rand

from pylsl import StreamInfo, StreamOutlet

# create stream info
info = StreamInfo('BioSemi', 'EEG', 8, 100, 'float32', 'myuid34234')

# create an outlet
outlet = StreamOutlet(info)

while True:
# make a new random 8-channel sample and send it
mysample = [rand(), rand(), rand(), rand(), rand(), rand(), rand(), rand()]
outlet.push_sample(mysample)    
# wait for a bit until we send the next sample
time.sleep(0.01)



Coding with LSL: Receving Time Series

Example Code for receiving a multi-channel time series over LSL (Python)

from pylsl import StreamInlet, resolve_stream

# we wait until we find a stream with type EEG on the lab network... (or 
more than one)
streams = resolve_stream('type', 'EEG')

# now that we have it, we create an inlet to read from it
inlet = StreamInlet(streams[0])

while True:
# wait to get the next sample, also get its timestamp
sample, timestamp = inlet.pull_sample()
print(timestamp, sample)



• LSL doesn’t reorder samples – the data you get out on the other side is always 
in-order

• LSL doesn’t spuriously drop or lose samples (unless the network connection is 
interrupted for a long time, default 5 min.)

• For LSL, it’s all just samples: one program can send whole chunks at a time, 
and the other side can read it sample-by-sample, or vice versa

• When a program first starts reading from a stream, it will begin reading from 
the stream’s next submitted sample onward (e.g., from sample #10053 on)

• \

Some Facts Worth Knowing

Metadata
Samples 1…k

v1

v2

vn

…

ts

v1

v2

vn

…

ts

v1

v2

vn

…

ts

…
v1

v2

vn

…

ts

+



Some Facts Worth Knowing

• You can add any amount of meta-data to a stream, and for posterity’s 
sake, you should:

• For best compatibility, LSL apps should adhere to the meta-data 
conventions set forth by the XDF (Extensible Data Format) project, 
which can be found at: https://github.com/sccn/xdf/wiki/Meta-Data

info = StreamInfo('BioSemi', 'EEG', 8, 100, 'float32', 'myuid2424')

# add some meta-data (follow the spec at https://github.com/sccn/xdf/wiki/Meta-Data)
info.desc().append_child("reference").append_child_value("label", "Nasion")

# add some more meta-data
channels = info.desc().append_child("channels")
for c in ["C3", "C4", "Cz", "FPz", "POz", "CPz", "O1", "O2"]:

chan = channels.append_child("channel")
chan.append_child_value("name", c)
chan.append_child_value("unit", "microvolts")
chan.append_child_value("type", "EEG")

https://github.com/sccn/xdf/wiki/Meta-Data


Fault Tolerance with Capital “F”

• Can turn off/on individual devices while recording 
continues; real-time processing can wait, ignore & warn, or 
throw error if desired

• Can unplug (and replace) network equipment while 
recording continues (data is buffered up to several minutes)

• Can restart computers with multiple devices while 
recording continues

• Can hot-swap computers (and devices under some 
circumstances) while recording continues

• Can have second backup recording machine
• Caveat: Need unique device/source IDs to handle duplicate 

streams (e.g., serial numbers or custom-assigned numbers)
info = StreamInfo('BioSemi', 'EEG', 8, 100, 'float32', 'myuid34234')

Ideally unique to your device/data source



Useful Tools: LabRecorder

The LabRecorder can record any number of LSL 
streams simultaneously into a single file (XDF)



Useful Tools: Viewers

MATLAB Viewer (included)

SigViewer (offline)

MuseLSL Viewer

?
Your Viewer Here?



Useful Tools: Real-Time Processing

NeuroPype Academic Edition



Useful Tools: Real-Time Processing

OpenViBE



Useful Tools: Command-Line Utils

• LSL comes with small utilities out of the box

• Can quickly diagnose network issues etc.

• E.g., FindAllStreams, ReceiveData, 
SendData, ReceiveStringMarkers, 

SendStringMarkers

• Generally available for all platforms



5  The XDF File Format



XDF File Format

• Developed with Clemens Brunner (Graz Univ.)

• Independent of LSL, but supports full feature 
set (and comes with importers for MATLAB, 
EEGLAB, BCILAB, MoBILAB, Python)

• Very simple (ca. 100 LoC parser) modern 
container file format supporting:

– Any number of streams, time-synched

– Extensible meta-data per stream with core subset 
specified online (https://github.com/sccn/xdf)

https://github.com/sccn/xdf


XDF Extensible Meta-Data

• A portion of the MoCap meta-data specs:



The “X” in XDF

• No single lab can specify meta-data across full range of 
relevant data modalities (EEG, fMRI, MoCap, Gaze, 
Video, …)

• No time to wait for a working group to form and come 
up with a major consensus on a specification

• Extensible part of the XDF specification is hosted on 
the web, is grown incrementally by reviewed/invited 
contributions with very low friction (wiki)

• Private/vendor-specific extensions are permitted in 
parallel (given some care with naming)

• Can still be summarized into revisions of a more 
traditional paper standard



Attuned Container Format

• ANSI standard based on XDF 1.0, aimed at 
industry use (ANSI/CTA-2060-2017)

Co-developed in 2017 by Intheon, Wearable 
Sensing, InteraXon, ARL, and others



4 The LSL Ecosystem



Places to Go
(to Learn More, Get Help, …)



GitHub Home Page of LSL

https://github.com/sccn/labstreaminglayer
https://github.com/labstreaminglayer

https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer


LSL Wiki (also on GitHub)



LSL Mailing List & Slack Channel



GitHub Issues (Bug Tracker)



LSL Support from Industry

*Incomplete List



Places to Meet (Hack Devices, 
Socialize, etc)



IEEE SMC

IEEE SMC Hackathons San Diego 2016, Budapest 2016, Banff 2017, Miyazaki 2018

IEEE SMC Budapest Hackathon 2016



Workshops in San Diego

Nov 8th, 2018 at UCSD



Workshops in Germany



Enjoy the workshop! ☺

Next: Q&A until 3pm


