forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtexturemipmapgen.cpp
584 lines (500 loc) · 23 KB
/
texturemipmapgen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/*
* Vulkan Example - Runtime mip map generation
*
* Copyright (C) by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#include <ktx.h>
#include <ktxvulkan.h>
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
struct Texture {
VkImage image;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
} texture;
// To demonstrate mip mapping and filtering this example uses separate samplers
std::vector<std::string> samplerNames{ "No mip maps" , "Mip maps (bilinear)" , "Mip maps (anisotropic)" };
std::vector<VkSampler> samplers;
vkglTF::Model model;
vks::Buffer uniformBufferVS;
struct uboVS {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::vec4 viewPos;
float lodBias = 0.0f;
int32_t samplerIndex = 2;
} uboVS;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Runtime mip map generation";
camera.type = Camera::CameraType::firstperson;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 1024.0f);
camera.setRotation(glm::vec3(0.0f, 90.0f, 0.0f));
camera.setTranslation(glm::vec3(40.75f, 0.0f, 0.0f));
camera.movementSpeed = 2.5f;
camera.rotationSpeed = 0.5f;
timerSpeed *= 0.05f;
}
~VulkanExample()
{
destroyTextureImage(texture);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
uniformBufferVS.destroy();
for (auto sampler : samplers)
{
vkDestroySampler(device, sampler, nullptr);
}
}
virtual void getEnabledFeatures()
{
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
}
void loadTexture(std::string filename, VkFormat format, bool forceLinearTiling)
{
ktxResult result;
ktxTexture* ktxTexture;
#if defined(__ANDROID__)
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
if (!asset) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
}
size_t size = AAsset_getLength(asset);
assert(size > 0);
ktx_uint8_t *textureData = new ktx_uint8_t[size];
AAsset_read(asset, textureData, size);
AAsset_close(asset);
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
delete[] textureData;
#else
if (!vks::tools::fileExists(filename)) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
}
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
#endif
assert(result == KTX_SUCCESS);
texture.width = ktxTexture->baseWidth;
texture.height = ktxTexture->baseHeight;
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetImageSize(ktxTexture, 0);
// calculate num of mip maps
// numLevels = 1 + floor(log2(max(w, h, d)))
// Calculated as log2(max(width, height, depth))c + 1 (see specs)
texture.mipLevels = floor(log2(std::max(texture.width, texture.height))) + 1;
// Get device properties for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Mip-chain generation requires support for blit source and destination
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT);
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT);
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs = {};
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = ktxTextureSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, ktxTextureData, ktxTextureSize);
vkUnmapMemory(device, stagingMemory);
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = texture.mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 1;
// Optimal image will be used as destination for the copy, so we must transfer from our initial undefined image layout to the transfer destination layout
vks::tools::insertImageMemoryBarrier(
copyCmd,
texture.image,
0,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
subresourceRange);
// Copy the first mip of the chain, remaining mips will be generated
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = texture.width;
bufferCopyRegion.imageExtent.height = texture.height;
bufferCopyRegion.imageExtent.depth = 1;
vkCmdCopyBufferToImage(copyCmd, stagingBuffer, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &bufferCopyRegion);
// Transition first mip level to transfer source for read during blit
vks::tools::insertImageMemoryBarrier(
copyCmd,
texture.image,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
subresourceRange);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Clean up staging resources
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
ktxTexture_Destroy(ktxTexture);
// Generate the mip chain
// ---------------------------------------------------------------
// We copy down the whole mip chain doing a blit from mip-1 to mip
// An alternative way would be to always blit from the first mip level and sample that one down
VkCommandBuffer blitCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Copy down mips from n-1 to n
for (int32_t i = 1; i < texture.mipLevels; i++)
{
VkImageBlit imageBlit{};
// Source
imageBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageBlit.srcSubresource.layerCount = 1;
imageBlit.srcSubresource.mipLevel = i-1;
imageBlit.srcOffsets[1].x = int32_t(texture.width >> (i - 1));
imageBlit.srcOffsets[1].y = int32_t(texture.height >> (i - 1));
imageBlit.srcOffsets[1].z = 1;
// Destination
imageBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageBlit.dstSubresource.layerCount = 1;
imageBlit.dstSubresource.mipLevel = i;
imageBlit.dstOffsets[1].x = int32_t(texture.width >> i);
imageBlit.dstOffsets[1].y = int32_t(texture.height >> i);
imageBlit.dstOffsets[1].z = 1;
VkImageSubresourceRange mipSubRange = {};
mipSubRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
mipSubRange.baseMipLevel = i;
mipSubRange.levelCount = 1;
mipSubRange.layerCount = 1;
// Prepare current mip level as image blit destination
vks::tools::insertImageMemoryBarrier(
blitCmd,
texture.image,
0,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
mipSubRange);
// Blit from previous level
vkCmdBlitImage(
blitCmd,
texture.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
texture.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&imageBlit,
VK_FILTER_LINEAR);
// Prepare current mip level as image blit source for next level
vks::tools::insertImageMemoryBarrier(
blitCmd,
texture.image,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
mipSubRange);
}
// After the loop, all mip layers are in TRANSFER_SRC layout, so transition all to SHADER_READ
subresourceRange.levelCount = texture.mipLevels;
vks::tools::insertImageMemoryBarrier(
blitCmd,
texture.image,
VK_ACCESS_TRANSFER_READ_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
subresourceRange);
vulkanDevice->flushCommandBuffer(blitCmd, queue, true);
// ---------------------------------------------------------------
// Create samplers
samplers.resize(3);
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
sampler.maxAnisotropy = 1.0;
sampler.anisotropyEnable = VK_FALSE;
// Without mip mapping
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[0]));
// With mip mapping
sampler.maxLod = (float)texture.mipLevels;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[1]));
// With mip mapping and anisotropic filtering
if (vulkanDevice->features.samplerAnisotropy)
{
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
sampler.anisotropyEnable = VK_TRUE;
}
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[2]));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.image = texture.image;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
view.subresourceRange.levelCount = texture.mipLevels;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
}
// Free all Vulkan resources used a texture object
void destroyTextureImage(Texture texture)
{
vkDestroyImageView(device, texture.view, nullptr);
vkDestroyImage(device, texture.image, nullptr);
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
model.draw(drawCmdBuffers[i]);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be submitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void loadAssets()
{
model.loadFromFile(getAssetPath() + "models/tunnel_cylinder.gltf", vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY);
loadTexture(getAssetPath() + "textures/metalplate_nomips_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, false);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), // Vertex shader UBO
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1), // Sampled image
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_SAMPLER, 3), // 3 samplers (array)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1: Sampled image
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
// Binding 2: Sampler array (3 descriptors)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2, 3),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout,1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkDescriptorImageInfo textureDescriptor = vks::initializers::descriptorImageInfo(VK_NULL_HANDLE, texture.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor),
// Binding 1: Sampled image
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1, &textureDescriptor)
};
// Binding 2: Sampler array
std::vector<VkDescriptorImageInfo> samplerDescriptors;
for (auto i = 0; i < samplers.size(); i++)
{
samplerDescriptors.push_back(vks::initializers::descriptorImageInfo(samplers[i], VK_NULL_HANDLE, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL));
}
VkWriteDescriptorSet samplerDescriptorWrite{};
samplerDescriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
samplerDescriptorWrite.dstSet = descriptorSet;
samplerDescriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
samplerDescriptorWrite.descriptorCount = static_cast<uint32_t>(samplerDescriptors.size());
samplerDescriptorWrite.pImageInfo = samplerDescriptors.data();
samplerDescriptorWrite.dstBinding = 2;
samplerDescriptorWrite.dstArrayElement = 0;
writeDescriptorSets.push_back(samplerDescriptorWrite);
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "texturemipmapgen/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texturemipmapgen/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal });
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferVS,
sizeof(uboVS),
&uboVS));
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
uboVS.model = glm::rotate(glm::mat4(1.0f), glm::radians(timer * 360.0f), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f);
VK_CHECK_RESULT(uniformBufferVS.map());
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
uniformBufferVS.unmap();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused || camera.updated)
{
updateUniformBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->sliderFloat("LOD bias", &uboVS.lodBias, 0.0f, (float)texture.mipLevels)) {
updateUniformBuffers();
}
if (overlay->comboBox("Sampler type", &uboVS.samplerIndex, samplerNames)) {
updateUniformBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()