forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtexture.cpp
813 lines (692 loc) · 31.5 KB
/
texture.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
/*
* Vulkan Example - Texture loading (and display) example (including mip maps)
*
* Copyright (C) 2016-2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include <ktx.h>
#include <ktxvulkan.h>
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
float normal[3];
};
class VulkanExample : public VulkanExampleBase
{
public:
// Contains all Vulkan objects that are required to store and use a texture
// Note that this repository contains a texture class (VulkanTexture.hpp) that encapsulates texture loading functionality in a class that is used in subsequent demos
struct Texture {
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
} texture;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount;
vks::Buffer uniformBufferVS;
struct {
glm::mat4 projection;
glm::mat4 modelView;
glm::vec4 viewPos;
float lodBias = 0.0f;
} uboVS;
struct {
VkPipeline solid;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Texture loading";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f));
camera.setRotation(glm::vec3(0.0f, 15.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
destroyTextureImage(texture);
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBufferVS.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
};
}
/*
Upload texture image data to the GPU
Vulkan offers two types of image tiling (memory layout):
Linear tiled images:
These are stored as is and can be copied directly to. But due to the linear nature they're not a good match for GPUs and format and feature support is very limited.
It's not advised to use linear tiled images for anything else than copying from host to GPU if buffer copies are not an option.
Linear tiling is thus only implemented for learning purposes, one should always prefer optimal tiled image.
Optimal tiled images:
These are stored in an implementation specific layout matching the capability of the hardware. They usually support more formats and features and are much faster.
Optimal tiled images are stored on the device and not accessible by the host. So they can't be written directly to (like liner tiled images) and always require
some sort of data copy, either from a buffer or a linear tiled image.
In Short: Always use optimal tiled images for rendering.
*/
void loadTexture()
{
// We use the Khronos texture format (https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/)
std::string filename = getAssetPath() + "textures/metalplate01_rgba.ktx";
// Texture data contains 4 channels (RGBA) with unnormalized 8-bit values, this is the most commonly supported format
VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
ktxResult result;
ktxTexture* ktxTexture;
#if defined(__ANDROID__)
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
if (!asset) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
}
size_t size = AAsset_getLength(asset);
assert(size > 0);
ktx_uint8_t *textureData = new ktx_uint8_t[size];
AAsset_read(asset, textureData, size);
AAsset_close(asset);
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
delete[] textureData;
#else
if (!vks::tools::fileExists(filename)) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
}
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
#endif
assert(result == KTX_SUCCESS);
// Get properties required for using and upload texture data from the ktx texture object
texture.width = ktxTexture->baseWidth;
texture.height = ktxTexture->baseHeight;
texture.mipLevels = ktxTexture->numLevels;
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
// We prefer using staging to copy the texture data to a device local optimal image
VkBool32 useStaging = true;
// Only use linear tiling if forced
bool forceLinearTiling = false;
if (forceLinearTiling) {
// Don't use linear if format is not supported for (linear) shader sampling
// Get device properties for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
}
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs = {};
if (useStaging) {
// Copy data to an optimal tiled image
// This loads the texture data into a host local buffer that is copied to the optimal tiled image on the device
// Create a host-visible staging buffer that contains the raw image data
// This buffer will be the data source for copying texture data to the optimal tiled image on the device
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = ktxTextureSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into host local staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, ktxTextureData, ktxTextureSize);
vkUnmapMemory(device, stagingMemory);
// Setup buffer copy regions for each mip level
std::vector<VkBufferImageCopy> bufferCopyRegions;
uint32_t offset = 0;
for (uint32_t i = 0; i < texture.mipLevels; i++) {
// Calculate offset into staging buffer for the current mip level
ktx_size_t offset;
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, i, 0, 0, &offset);
assert(ret == KTX_SUCCESS);
// Setup a buffer image copy structure for the current mip level
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = i;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = ktxTexture->baseWidth >> i;
bufferCopyRegion.imageExtent.height = ktxTexture->baseHeight >> i;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
// Create optimal tiled target image on the device
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = texture.mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
// Set initial layout of the image to undefined
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Image memory barriers for the texture image
// The sub resource range describes the regions of the image that will be transitioned using the memory barriers below
VkImageSubresourceRange subresourceRange = {};
// Image only contains color data
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Start at first mip level
subresourceRange.baseMipLevel = 0;
// We will transition on all mip levels
subresourceRange.levelCount = texture.mipLevels;
// The 2D texture only has one layer
subresourceRange.layerCount = 1;
// Transition the texture image layout to transfer target, so we can safely copy our buffer data to it.
VkImageMemoryBarrier imageMemoryBarrier = vks::initializers::imageMemoryBarrier();;
imageMemoryBarrier.image = texture.image;
imageMemoryBarrier.subresourceRange = subresourceRange;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
// Insert a memory dependency at the proper pipeline stages that will execute the image layout transition
// Source pipeline stage is host write/read execution (VK_PIPELINE_STAGE_HOST_BIT)
// Destination pipeline stage is copy command execution (VK_PIPELINE_STAGE_TRANSFER_BIT)
vkCmdPipelineBarrier(
copyCmd,
VK_PIPELINE_STAGE_HOST_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
// Copy mip levels from staging buffer
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
texture.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data());
// Once the data has been uploaded we transfer to the texture image to the shader read layout, so it can be sampled from
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Insert a memory dependency at the proper pipeline stages that will execute the image layout transition
// Source pipeline stage is copy command execution (VK_PIPELINE_STAGE_TRANSFER_BIT)
// Destination pipeline stage fragment shader access (VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT)
vkCmdPipelineBarrier(
copyCmd,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
// Store current layout for later reuse
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Clean up staging resources
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
} else {
// Copy data to a linear tiled image
VkImage mappableImage;
VkDeviceMemory mappableMemory;
// Load mip map level 0 to linear tiling image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage));
// Get memory requirements for this image like size and alignment
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, mappableImage, mappableMemory, 0));
// Map image memory
void *data;
VK_CHECK_RESULT(vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data));
// Copy image data of the first mip level into memory
memcpy(data, ktxTextureData, memReqs.size);
vkUnmapMemory(device, mappableMemory);
// Linear tiled images don't need to be staged and can be directly used as textures
texture.image = mappableImage;
texture.deviceMemory = mappableMemory;
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Setup image memory barrier transfer image to shader read layout
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// The sub resource range describes the regions of the image we will be transition
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 1;
// Transition the texture image layout to shader read, so it can be sampled from
VkImageMemoryBarrier imageMemoryBarrier = vks::initializers::imageMemoryBarrier();;
imageMemoryBarrier.image = texture.image;
imageMemoryBarrier.subresourceRange = subresourceRange;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Insert a memory dependency at the proper pipeline stages that will execute the image layout transition
// Source pipeline stage is host write/read execution (VK_PIPELINE_STAGE_HOST_BIT)
// Destination pipeline stage fragment shader access (VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT)
vkCmdPipelineBarrier(
copyCmd,
VK_PIPELINE_STAGE_HOST_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
}
ktxTexture_Destroy(ktxTexture);
// Create a texture sampler
// In Vulkan textures are accessed by samplers
// This separates all the sampling information from the texture data. This means you could have multiple sampler objects for the same texture with different settings
// Note: Similar to the samplers available with OpenGL 3.3
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
// Set max level-of-detail to mip level count of the texture
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
// Enable anisotropic filtering
// This feature is optional, so we must check if it's supported on the device
if (vulkanDevice->features.samplerAnisotropy) {
// Use max. level of anisotropy for this example
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
sampler.anisotropyEnable = VK_TRUE;
} else {
// The device does not support anisotropic filtering
sampler.maxAnisotropy = 1.0;
sampler.anisotropyEnable = VK_FALSE;
}
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
// Create image view
// Textures are not directly accessed by the shaders and
// are abstracted by image views containing additional
// information and sub resource ranges
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
// The subresource range describes the set of mip levels (and array layers) that can be accessed through this image view
// It's possible to create multiple image views for a single image referring to different (and/or overlapping) ranges of the image
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
// Linear tiling usually won't support mip maps
// Only set mip map count if optimal tiling is used
view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1;
// The view will be based on the texture's image
view.image = texture.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
}
// Free all Vulkan resources used by a texture object
void destroyTextureImage(Texture texture)
{
vkDestroyImageView(device, texture.view, nullptr);
vkDestroyImage(device, texture.image, nullptr);
vkDestroySampler(device, texture.sampler, nullptr);
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be submitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void generateQuad()
{
// Setup vertices for a single uv-mapped quad made from two triangles
std::vector<Vertex> vertices =
{
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } },
{ { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
};
// Setup indices
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers
// For the sake of simplicity we won't stage the vertex data to the gpu memory
// Vertex buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
offsetof(Vertex, pos));
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
offsetof(Vertex, uv));
// Location 1 : Vertex normal
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
offsetof(Vertex, normal));
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
// Setup a descriptor image info for the current texture to be used as a combined image sampler
VkDescriptorImageInfo textureDescriptor;
textureDescriptor.imageView = texture.view; // The image's view (images are never directly accessed by the shader, but rather through views defining subresources)
textureDescriptor.sampler = texture.sampler; // The sampler (Telling the pipeline how to sample the texture, including repeat, border, etc.)
textureDescriptor.imageLayout = texture.imageLayout; // The current layout of the image (Note: Should always fit the actual use, e.g. shader read)
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBufferVS.descriptor),
// Binding 1 : Fragment shader texture sampler
// Fragment shader: layout (binding = 1) uniform sampler2D samplerColor;
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // The descriptor set will use a combined image sampler (sampler and image could be split)
1, // Shader binding point 1
&textureDescriptor) // Pointer to the descriptor image for our texture
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Load shaders
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferVS,
sizeof(uboVS),
&uboVS));
VK_CHECK_RESULT(uniformBufferVS.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.modelView = camera.matrices.view;
uboVS.viewPos = camera.viewPos;
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
}
void prepare()
{
VulkanExampleBase::prepare();
loadTexture();
generateQuad();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->sliderFloat("LOD bias", &uboVS.lodBias, 0.0f, (float)texture.mipLevels)) {
updateUniformBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()