forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoit.cpp
659 lines (545 loc) · 24.5 KB
/
oit.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/*
* Vulkan Example - Order Independent Transparency rendering
*
* Note: Requires the separate asset pack (see data/README.md)
*
* Copyright by Sascha Willems - www.saschawillems.de
* Copyright by Daemyung Jang - [email protected]
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
#define NODE_COUNT 20
class VulkanExample : public VulkanExampleBase
{
public:
struct {
vkglTF::Model sphere;
vkglTF::Model cube;
} models;
struct {
vks::Buffer renderPass;
} uniformBuffers;
struct Node {
glm::vec4 color;
float depth;
uint32_t next;
};
struct {
uint32_t count;
uint32_t maxNodeCount;
} geometrySBO;
struct GeometryPass {
VkRenderPass renderPass;
VkFramebuffer framebuffer;
vks::Buffer geometry;
vks::Texture headIndex;
vks::Buffer linkedList;
} geometryPass;
struct {
glm::mat4 projection;
glm::mat4 view;
} renderPassUBO;
struct ObjectData {
glm::mat4 model;
glm::vec4 color;
};
struct {
VkDescriptorSetLayout geometry;
VkDescriptorSetLayout color;
} descriptorSetLayouts;
struct {
VkPipelineLayout geometry;
VkPipelineLayout color;
} pipelineLayouts;
struct {
VkPipeline geometry;
VkPipeline color;
} pipelines;
struct {
VkDescriptorSet geometry;
VkDescriptorSet color;
} descriptorSets;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Order independent transparency rendering";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -6.0f));
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setPerspective(60.0f, (float) width / (float) height, 0.1f, 256.0f);
}
~VulkanExample()
{
vkDestroyPipeline(device, pipelines.geometry, nullptr);
vkDestroyPipeline(device, pipelines.color, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.geometry, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.color, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.geometry, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.color, nullptr);
destroyGeometryPass();
uniformBuffers.renderPass.destroy();
}
void getEnabledFeatures() override
{
if (deviceFeatures.fragmentStoresAndAtomics) {
enabledFeatures.fragmentStoresAndAtomics = VK_TRUE;
} else {
vks::tools::exitFatal("Selected GPU does not support stores and atomic operations in the fragment stage", VK_ERROR_FEATURE_NOT_PRESENT);
}
};
void prepare() override
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
prepareGeometryPass();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
updateUniformBuffers();
prepared = true;
}
void render() override
{
if (!prepared)
return;
draw();
}
void windowResized() override
{
destroyGeometryPass();
prepareGeometryPass();
vkResetDescriptorPool(device, descriptorPool, 0);
setupDescriptorSets();
resized = false;
buildCommandBuffers();
}
void viewChanged() override
{
updateUniformBuffers();
}
private:
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY;
models.sphere.loadFromFile(getAssetPath() + "models/sphere.gltf", vulkanDevice, queue, glTFLoadingFlags);
models.cube.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void prepareUniformBuffers()
{
// Create an uniform buffer for a render pass.
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.renderPass,
sizeof(renderPassUBO)));
VK_CHECK_RESULT(uniformBuffers.renderPass.map());
}
void prepareGeometryPass()
{
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
// Geometry render pass doesn't need any output attachment.
VkRenderPassCreateInfo renderPassInfo = vks::initializers::renderPassCreateInfo();
renderPassInfo.attachmentCount = 0;
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpassDescription;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &geometryPass.renderPass));
// Geometry frame buffer doesn't need any output attachment.
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = geometryPass.renderPass;
fbufCreateInfo.attachmentCount = 0;
fbufCreateInfo.width = width;
fbufCreateInfo.height = height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &geometryPass.framebuffer));
// Create a buffer for GeometrySBO
vks::Buffer stagingBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
sizeof(geometrySBO)));
VK_CHECK_RESULT(stagingBuffer.map());
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&geometryPass.geometry,
sizeof(geometrySBO)));
// Set up GeometrySBO data.
geometrySBO.count = 0;
geometrySBO.maxNodeCount = NODE_COUNT * width * height;
memcpy(stagingBuffer.mapped, &geometrySBO, sizeof(geometrySBO));
// Copy data to device
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = sizeof(geometrySBO);
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, geometryPass.geometry.buffer, 1, ©Region);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
// Create a texture for HeadIndex.
// This image will track the head index of each fragment.
geometryPass.headIndex.device = vulkanDevice;
VkImageCreateInfo imageInfo = vks::initializers::imageCreateInfo();
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.format = VK_FORMAT_R32_UINT;
imageInfo.extent.width = width;
imageInfo.extent.height = height;
imageInfo.extent.depth = 1;
imageInfo.mipLevels = 1;
imageInfo.arrayLayers = 1;
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageInfo, nullptr, &geometryPass.headIndex.image));
geometryPass.headIndex.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, geometryPass.headIndex.image, &memReqs);
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &geometryPass.headIndex.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, geometryPass.headIndex.image, geometryPass.headIndex.deviceMemory, 0));
VkImageViewCreateInfo imageViewInfo = vks::initializers::imageViewCreateInfo();
imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageViewInfo.format = VK_FORMAT_R32_UINT;
imageViewInfo.flags = 0;
imageViewInfo.image = geometryPass.headIndex.image;
imageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageViewInfo.subresourceRange.baseMipLevel = 0;
imageViewInfo.subresourceRange.levelCount = 1;
imageViewInfo.subresourceRange.baseArrayLayer = 0;
imageViewInfo.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImageView(device, &imageViewInfo, nullptr, &geometryPass.headIndex.view));
geometryPass.headIndex.width = width;
geometryPass.headIndex.height = height;
geometryPass.headIndex.mipLevels = 1;
geometryPass.headIndex.layerCount = 1;
geometryPass.headIndex.descriptor.imageView = geometryPass.headIndex.view;
geometryPass.headIndex.descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
geometryPass.headIndex.sampler = VK_NULL_HANDLE;
// Create a buffer for LinkedListSBO
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&geometryPass.linkedList,
sizeof(Node) * geometrySBO.maxNodeCount));
// Change HeadIndex image's layout from UNDEFINED to GENERAL
VkCommandBufferAllocateInfo cmdBufAllocInfo = vks::initializers::commandBufferAllocateInfo(cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1);
VkCommandBuffer cmdBuf;
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocInfo, &cmdBuf));
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuf, &cmdBufInfo));
VkImageMemoryBarrier barrier = vks::initializers::imageMemoryBarrier();
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
barrier.image = geometryPass.headIndex.image;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.levelCount = 1;
barrier.subresourceRange.layerCount = 1;
vkCmdPipelineBarrier(cmdBuf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier);
VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuf));
VkSubmitInfo submitInfo = vks::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuf;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VK_CHECK_RESULT(vkQueueWaitIdle(queue));
}
void setupDescriptorSetLayout()
{
// Create a geometry descriptor set layout.
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// RenderPassUBO
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
0),
// AtomicSBO
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// headIndexImage
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
// LinkedListSBO
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
3),
};
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayouts.geometry));
// Create a geometry pipeline layout.
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.geometry, 1);
// Static object data passed using push constants
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(ObjectData), 0);
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayouts.geometry));
// Create a color descriptor set layout.
setLayoutBindings = {
// headIndexImage
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_SHADER_STAGE_FRAGMENT_BIT,
0),
// LinkedListSBO
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
};
descriptorLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayouts.color));
// Create a color pipeline layout.
pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.color, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayouts.color));
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(0, nullptr);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
// Create a geometry pipeline.
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.geometry, geometryPass.renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position });
shaderStages[0] = loadShader(getShadersPath() + "oit/geometry.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "oit/geometry.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.geometry));
// Create a color pipeline.
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.color, renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = &vertexInputInfo;
shaderStages[0] = loadShader(getShadersPath() + "oit/color.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "oit/color.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
rasterizationState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.color));
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSets()
{
// Update a geometry descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayouts.geometry,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.geometry));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0: RenderPassUBO
vks::initializers::writeDescriptorSet(
descriptorSets.geometry,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.renderPass.descriptor),
// Binding 2: GeometrySBO
vks::initializers::writeDescriptorSet(
descriptorSets.geometry,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1,
&geometryPass.geometry.descriptor),
// Binding 3: headIndexImage
vks::initializers::writeDescriptorSet(
descriptorSets.geometry,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
2,
&geometryPass.headIndex.descriptor),
// Binding 4: LinkedListSBO
vks::initializers::writeDescriptorSet(
descriptorSets.geometry,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
3,
&geometryPass.linkedList.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Update a color descriptor set.
allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayouts.color,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.color));
writeDescriptorSets = {
// Binding 0: headIndexImage
vks::initializers::writeDescriptorSet(
descriptorSets.color,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
0,
&geometryPass.headIndex.descriptor),
// Binding 1: LinkedListSBO
vks::initializers::writeDescriptorSet(
descriptorSets.color,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1,
&geometryPass.linkedList.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void buildCommandBuffers()
{
if (resized)
return;
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Update dynamic viewport state
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
// Update dynamic scissor state
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkClearColorValue clearColor;
clearColor.uint32[0] = 0xffffffff;
VkImageSubresourceRange subresRange = {};
subresRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresRange.levelCount = 1;
subresRange.layerCount = 1;
vkCmdClearColorImage(drawCmdBuffers[i], geometryPass.headIndex.image, VK_IMAGE_LAYOUT_GENERAL, &clearColor, 1, &subresRange);
// Clear previous geometry pass data
vkCmdFillBuffer(drawCmdBuffers[i], geometryPass.geometry.buffer, 0, sizeof(uint32_t), 0);
// We need a barrier to make sure all writes are finished before starting to write again
VkMemoryBarrier memoryBarrier = vks::initializers::memoryBarrier();
memoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
memoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT;
vkCmdPipelineBarrier(drawCmdBuffers[i], VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 1, &memoryBarrier, 0, nullptr, 0, nullptr);
// Begin the geometry render pass
renderPassBeginInfo.renderPass = geometryPass.renderPass;
renderPassBeginInfo.framebuffer = geometryPass.framebuffer;
renderPassBeginInfo.clearValueCount = 0;
renderPassBeginInfo.pClearValues = nullptr;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.geometry);
uint32_t dynamicOffset = 0;
models.sphere.bindBuffers(drawCmdBuffers[i]);
// Render the scene
ObjectData objectData;
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.geometry, 0, 1, &descriptorSets.geometry, 0, nullptr);
objectData.color = glm::vec4(1.0f, 0.0f, 0.0f, 0.5f);
for (int32_t x = 0; x < 5; x++)
{
for (int32_t y = 0; y < 5; y++)
{
for (int32_t z = 0; z < 5; z++)
{
glm::mat4 T = glm::translate(glm::mat4(1.0f), glm::vec3(x - 2, y - 2, z - 2));
glm::mat4 S = glm::scale(glm::mat4(1.0f), glm::vec3(0.3f));
objectData.model = T * S;
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayouts.geometry, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(ObjectData), &objectData);
models.sphere.draw(drawCmdBuffers[i]);
}
}
}
models.cube.bindBuffers(drawCmdBuffers[i]);
objectData.color = glm::vec4(0.0f, 0.0f, 1.0f, 0.5f);
for (uint32_t x = 0; x < 2; x++)
{
glm::mat4 T = glm::translate(glm::mat4(1.0f), glm::vec3(3.0f * x - 1.5f, 0.0f, 0.0f));
glm::mat4 S = glm::scale(glm::mat4(1.0f), glm::vec3(0.2f));
objectData.model = T * S;
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayouts.geometry, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(ObjectData), &objectData);
models.cube.draw(drawCmdBuffers[i]);
}
vkCmdEndRenderPass(drawCmdBuffers[i]);
// Make a pipeline barrier to guarantee the geometry pass is done
vkCmdPipelineBarrier(drawCmdBuffers[i], VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr, 0, nullptr, 0, nullptr);
// We need a barrier to make sure all writes are finished before starting to write again
memoryBarrier = vks::initializers::memoryBarrier();
memoryBarrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT;
memoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT;
vkCmdPipelineBarrier(drawCmdBuffers[i], VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 1, &memoryBarrier, 0, nullptr, 0, nullptr);
// Begin the color render pass
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.color);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.color, 0, 1, &descriptorSets.color, 0, nullptr);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void updateUniformBuffers()
{
renderPassUBO.projection = camera.matrices.perspective;
renderPassUBO.view = camera.matrices.view;
memcpy(uniformBuffers.renderPass.mapped, &renderPassUBO, sizeof(renderPassUBO));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void destroyGeometryPass()
{
vkDestroyRenderPass(device, geometryPass.renderPass, nullptr);
vkDestroyFramebuffer(device, geometryPass.framebuffer, nullptr);
geometryPass.geometry.destroy();
geometryPass.headIndex.destroy();
geometryPass.linkedList.destroy();
}
private:
VkDeviceSize objectUniformBufferSize;
};
VULKAN_EXAMPLE_MAIN()