forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgltfskinning.cpp
1009 lines (909 loc) · 39.3 KB
/
gltfskinning.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Vulkan Example - glTF skinned animation
*
* Copyright (C) 2020-2021 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
/*
* Shows how to load and display an animated scene from a glTF file using vertex skinning
* See the accompanying README.md for a short tutorial on the data structures and functions required for vertex skinning
*
* For details on how glTF 2.0 works, see the official spec at https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
*
* If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/
*/
#include "gltfskinning.h"
/*
glTF model class
Contains everything required to render a skinned glTF model in Vulkan
This class is simplified compared to glTF's feature set but retains the basic glTF structure required for this sample
*/
/*
Get a node's local matrix from the current translation, rotation and scale values
These are calculated from the current animation an need to be calculated dynamically
*/
glm::mat4 VulkanglTFModel::Node::getLocalMatrix()
{
return glm::translate(glm::mat4(1.0f), translation) * glm::mat4(rotation) * glm::scale(glm::mat4(1.0f), scale) * matrix;
}
/*
Release all Vulkan resources acquired for the model
*/
VulkanglTFModel::~VulkanglTFModel()
{
vkDestroyBuffer(vulkanDevice->logicalDevice, vertices.buffer, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, vertices.memory, nullptr);
vkDestroyBuffer(vulkanDevice->logicalDevice, indices.buffer, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, indices.memory, nullptr);
for (Image image : images)
{
vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr);
vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr);
vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr);
}
for (Skin skin : skins)
{
skin.ssbo.destroy();
}
}
/*
glTF loading functions
The following functions take a glTF input model loaded via tinyglTF and converts all required data into our own structures
*/
void VulkanglTFModel::loadImages(tinygltf::Model &input)
{
// Images can be stored inside the glTF (which is the case for the sample model), so instead of directly
// loading them from disk, we fetch them from the glTF loader and upload the buffers
images.resize(input.images.size());
for (size_t i = 0; i < input.images.size(); i++)
{
tinygltf::Image &glTFImage = input.images[i];
// Get the image data from the glTF loader
unsigned char *buffer = nullptr;
VkDeviceSize bufferSize = 0;
bool deleteBuffer = false;
// We convert RGB-only images to RGBA, as most devices don't support RGB-formats in Vulkan
if (glTFImage.component == 3)
{
bufferSize = glTFImage.width * glTFImage.height * 4;
buffer = new unsigned char[bufferSize];
unsigned char *rgba = buffer;
unsigned char *rgb = &glTFImage.image[0];
for (size_t i = 0; i < glTFImage.width * glTFImage.height; ++i)
{
memcpy(rgba, rgb, sizeof(unsigned char) * 3);
rgba += 4;
rgb += 3;
}
deleteBuffer = true;
}
else
{
buffer = &glTFImage.image[0];
bufferSize = glTFImage.image.size();
}
// Load texture from image buffer
images[i].texture.fromBuffer(buffer, bufferSize, VK_FORMAT_R8G8B8A8_UNORM, glTFImage.width, glTFImage.height, vulkanDevice, copyQueue);
if (deleteBuffer)
{
delete[] buffer;
}
}
}
void VulkanglTFModel::loadTextures(tinygltf::Model &input)
{
textures.resize(input.textures.size());
for (size_t i = 0; i < input.textures.size(); i++)
{
textures[i].imageIndex = input.textures[i].source;
}
}
void VulkanglTFModel::loadMaterials(tinygltf::Model &input)
{
materials.resize(input.materials.size());
for (size_t i = 0; i < input.materials.size(); i++)
{
// We only read the most basic properties required for our sample
tinygltf::Material glTFMaterial = input.materials[i];
// Get the base color factor
if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end())
{
materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data());
}
// Get base color texture index
if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end())
{
materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex();
}
}
}
// Helper functions for locating glTF nodes
VulkanglTFModel::Node *VulkanglTFModel::findNode(Node *parent, uint32_t index)
{
Node *nodeFound = nullptr;
if (parent->index == index)
{
return parent;
}
for (auto &child : parent->children)
{
nodeFound = findNode(child, index);
if (nodeFound)
{
break;
}
}
return nodeFound;
}
VulkanglTFModel::Node *VulkanglTFModel::nodeFromIndex(uint32_t index)
{
Node *nodeFound = nullptr;
for (auto &node : nodes)
{
nodeFound = findNode(node, index);
if (nodeFound)
{
break;
}
}
return nodeFound;
}
// POI: Load the skins from the glTF model
void VulkanglTFModel::loadSkins(tinygltf::Model &input)
{
skins.resize(input.skins.size());
for (size_t i = 0; i < input.skins.size(); i++)
{
tinygltf::Skin glTFSkin = input.skins[i];
skins[i].name = glTFSkin.name;
// Find the root node of the skeleton
skins[i].skeletonRoot = nodeFromIndex(glTFSkin.skeleton);
// Find joint nodes
for (int jointIndex : glTFSkin.joints)
{
Node *node = nodeFromIndex(jointIndex);
if (node)
{
skins[i].joints.push_back(node);
}
}
// Get the inverse bind matrices from the buffer associated to this skin
if (glTFSkin.inverseBindMatrices > -1)
{
const tinygltf::Accessor & accessor = input.accessors[glTFSkin.inverseBindMatrices];
const tinygltf::BufferView &bufferView = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer & buffer = input.buffers[bufferView.buffer];
skins[i].inverseBindMatrices.resize(accessor.count);
memcpy(skins[i].inverseBindMatrices.data(), &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(glm::mat4));
// Store inverse bind matrices for this skin in a shader storage buffer object
// To keep this sample simple, we create a host visible shader storage buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&skins[i].ssbo,
sizeof(glm::mat4) * skins[i].inverseBindMatrices.size(),
skins[i].inverseBindMatrices.data()));
VK_CHECK_RESULT(skins[i].ssbo.map());
}
}
}
// POI: Load the animations from the glTF model
void VulkanglTFModel::loadAnimations(tinygltf::Model &input)
{
animations.resize(input.animations.size());
for (size_t i = 0; i < input.animations.size(); i++)
{
tinygltf::Animation glTFAnimation = input.animations[i];
animations[i].name = glTFAnimation.name;
// Samplers
animations[i].samplers.resize(glTFAnimation.samplers.size());
for (size_t j = 0; j < glTFAnimation.samplers.size(); j++)
{
tinygltf::AnimationSampler glTFSampler = glTFAnimation.samplers[j];
AnimationSampler & dstSampler = animations[i].samplers[j];
dstSampler.interpolation = glTFSampler.interpolation;
// Read sampler keyframe input time values
{
const tinygltf::Accessor & accessor = input.accessors[glTFSampler.input];
const tinygltf::BufferView &bufferView = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer & buffer = input.buffers[bufferView.buffer];
const void * dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset];
const float * buf = static_cast<const float *>(dataPtr);
for (size_t index = 0; index < accessor.count; index++)
{
dstSampler.inputs.push_back(buf[index]);
}
// Adjust animation's start and end times
for (auto input : animations[i].samplers[j].inputs)
{
if (input < animations[i].start)
{
animations[i].start = input;
};
if (input > animations[i].end)
{
animations[i].end = input;
}
}
}
// Read sampler keyframe output translate/rotate/scale values
{
const tinygltf::Accessor & accessor = input.accessors[glTFSampler.output];
const tinygltf::BufferView &bufferView = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer & buffer = input.buffers[bufferView.buffer];
const void * dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset];
switch (accessor.type)
{
case TINYGLTF_TYPE_VEC3: {
const glm::vec3 *buf = static_cast<const glm::vec3 *>(dataPtr);
for (size_t index = 0; index < accessor.count; index++)
{
dstSampler.outputsVec4.push_back(glm::vec4(buf[index], 0.0f));
}
break;
}
case TINYGLTF_TYPE_VEC4: {
const glm::vec4 *buf = static_cast<const glm::vec4 *>(dataPtr);
for (size_t index = 0; index < accessor.count; index++)
{
dstSampler.outputsVec4.push_back(buf[index]);
}
break;
}
default: {
std::cout << "unknown type" << std::endl;
break;
}
}
}
}
// Channels
animations[i].channels.resize(glTFAnimation.channels.size());
for (size_t j = 0; j < glTFAnimation.channels.size(); j++)
{
tinygltf::AnimationChannel glTFChannel = glTFAnimation.channels[j];
AnimationChannel & dstChannel = animations[i].channels[j];
dstChannel.path = glTFChannel.target_path;
dstChannel.samplerIndex = glTFChannel.sampler;
dstChannel.node = nodeFromIndex(glTFChannel.target_node);
}
}
}
void VulkanglTFModel::loadNode(const tinygltf::Node &inputNode, const tinygltf::Model &input, VulkanglTFModel::Node *parent, uint32_t nodeIndex, std::vector<uint32_t> &indexBuffer, std::vector<VulkanglTFModel::Vertex> &vertexBuffer)
{
VulkanglTFModel::Node *node = new VulkanglTFModel::Node{};
node->parent = parent;
node->matrix = glm::mat4(1.0f);
node->index = nodeIndex;
node->skin = inputNode.skin;
// Get the local node matrix
// It's either made up from translation, rotation, scale or a 4x4 matrix
if (inputNode.translation.size() == 3)
{
node->translation = glm::make_vec3(inputNode.translation.data());
}
if (inputNode.rotation.size() == 4)
{
glm::quat q = glm::make_quat(inputNode.rotation.data());
node->rotation = glm::mat4(q);
}
if (inputNode.scale.size() == 3)
{
node->scale = glm::make_vec3(inputNode.scale.data());
}
if (inputNode.matrix.size() == 16)
{
node->matrix = glm::make_mat4x4(inputNode.matrix.data());
};
// Load node's children
if (inputNode.children.size() > 0)
{
for (size_t i = 0; i < inputNode.children.size(); i++)
{
loadNode(input.nodes[inputNode.children[i]], input, node, inputNode.children[i], indexBuffer, vertexBuffer);
}
}
// If the node contains mesh data, we load vertices and indices from the buffers
// In glTF this is done via accessors and buffer views
if (inputNode.mesh > -1)
{
const tinygltf::Mesh mesh = input.meshes[inputNode.mesh];
// Iterate through all primitives of this node's mesh
for (size_t i = 0; i < mesh.primitives.size(); i++)
{
const tinygltf::Primitive &glTFPrimitive = mesh.primitives[i];
uint32_t firstIndex = static_cast<uint32_t>(indexBuffer.size());
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
uint32_t indexCount = 0;
bool hasSkin = false;
// Vertices
{
const float * positionBuffer = nullptr;
const float * normalsBuffer = nullptr;
const float * texCoordsBuffer = nullptr;
const uint16_t *jointIndicesBuffer = nullptr;
const float * jointWeightsBuffer = nullptr;
size_t vertexCount = 0;
// Get buffer data for vertex normals
if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end())
{
const tinygltf::Accessor & accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second];
const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
positionBuffer = reinterpret_cast<const float *>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
vertexCount = accessor.count;
}
// Get buffer data for vertex normals
if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end())
{
const tinygltf::Accessor & accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second];
const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
normalsBuffer = reinterpret_cast<const float *>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
}
// Get buffer data for vertex texture coordinates
// glTF supports multiple sets, we only load the first one
if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end())
{
const tinygltf::Accessor & accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second];
const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
texCoordsBuffer = reinterpret_cast<const float *>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
}
// POI: Get buffer data required for vertex skinning
// Get vertex joint indices
if (glTFPrimitive.attributes.find("JOINTS_0") != glTFPrimitive.attributes.end())
{
const tinygltf::Accessor & accessor = input.accessors[glTFPrimitive.attributes.find("JOINTS_0")->second];
const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
jointIndicesBuffer = reinterpret_cast<const uint16_t *>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
}
// Get vertex joint weights
if (glTFPrimitive.attributes.find("WEIGHTS_0") != glTFPrimitive.attributes.end())
{
const tinygltf::Accessor & accessor = input.accessors[glTFPrimitive.attributes.find("WEIGHTS_0")->second];
const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
jointWeightsBuffer = reinterpret_cast<const float *>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
}
hasSkin = (jointIndicesBuffer && jointWeightsBuffer);
// Append data to model's vertex buffer
for (size_t v = 0; v < vertexCount; v++)
{
Vertex vert{};
vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
vert.color = glm::vec3(1.0f);
vert.jointIndices = hasSkin ? glm::vec4(glm::make_vec4(&jointIndicesBuffer[v * 4])) : glm::vec4(0.0f);
vert.jointWeights = hasSkin ? glm::make_vec4(&jointWeightsBuffer[v * 4]) : glm::vec4(0.0f);
vertexBuffer.push_back(vert);
}
}
// Indices
{
const tinygltf::Accessor & accessor = input.accessors[glTFPrimitive.indices];
const tinygltf::BufferView &bufferView = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer & buffer = input.buffers[bufferView.buffer];
indexCount += static_cast<uint32_t>(accessor.count);
// glTF supports different component types of indices
switch (accessor.componentType)
{
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++)
{
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++)
{
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++)
{
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
default:
std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
return;
}
}
Primitive primitive{};
primitive.firstIndex = firstIndex;
primitive.indexCount = indexCount;
primitive.materialIndex = glTFPrimitive.material;
node->mesh.primitives.push_back(primitive);
}
}
if (parent)
{
parent->children.push_back(node);
}
else
{
nodes.push_back(node);
}
}
/*
glTF vertex skinning functions
*/
// POI: Traverse the node hierarchy to the top-most parent to get the local matrix of the given node
glm::mat4 VulkanglTFModel::getNodeMatrix(VulkanglTFModel::Node *node)
{
glm::mat4 nodeMatrix = node->getLocalMatrix();
VulkanglTFModel::Node *currentParent = node->parent;
while (currentParent)
{
nodeMatrix = currentParent->getLocalMatrix() * nodeMatrix;
currentParent = currentParent->parent;
}
return nodeMatrix;
}
// POI: Update the joint matrices from the current animation frame and pass them to the GPU
void VulkanglTFModel::updateJoints(VulkanglTFModel::Node *node)
{
if (node->skin > -1)
{
// Update the joint matrices
glm::mat4 inverseTransform = glm::inverse(getNodeMatrix(node));
Skin skin = skins[node->skin];
size_t numJoints = (uint32_t) skin.joints.size();
std::vector<glm::mat4> jointMatrices(numJoints);
for (size_t i = 0; i < numJoints; i++)
{
jointMatrices[i] = getNodeMatrix(skin.joints[i]) * skin.inverseBindMatrices[i];
jointMatrices[i] = inverseTransform * jointMatrices[i];
}
// Update ssbo
skin.ssbo.copyTo(jointMatrices.data(), jointMatrices.size() * sizeof(glm::mat4));
}
for (auto &child : node->children)
{
updateJoints(child);
}
}
// POI: Update the current animation
void VulkanglTFModel::updateAnimation(float deltaTime)
{
if (activeAnimation > static_cast<uint32_t>(animations.size()) - 1)
{
std::cout << "No animation with index " << activeAnimation << std::endl;
return;
}
Animation &animation = animations[activeAnimation];
animation.currentTime += deltaTime;
if (animation.currentTime > animation.end)
{
animation.currentTime -= animation.end;
}
for (auto &channel : animation.channels)
{
AnimationSampler &sampler = animation.samplers[channel.samplerIndex];
for (size_t i = 0; i < sampler.inputs.size() - 1; i++)
{
if (sampler.interpolation != "LINEAR")
{
std::cout << "This sample only supports linear interpolations\n";
continue;
}
// Get the input keyframe values for the current time stamp
if ((animation.currentTime >= sampler.inputs[i]) && (animation.currentTime <= sampler.inputs[i + 1]))
{
float a = (animation.currentTime - sampler.inputs[i]) / (sampler.inputs[i + 1] - sampler.inputs[i]);
if (channel.path == "translation")
{
channel.node->translation = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], a);
}
if (channel.path == "rotation")
{
glm::quat q1;
q1.x = sampler.outputsVec4[i].x;
q1.y = sampler.outputsVec4[i].y;
q1.z = sampler.outputsVec4[i].z;
q1.w = sampler.outputsVec4[i].w;
glm::quat q2;
q2.x = sampler.outputsVec4[i + 1].x;
q2.y = sampler.outputsVec4[i + 1].y;
q2.z = sampler.outputsVec4[i + 1].z;
q2.w = sampler.outputsVec4[i + 1].w;
channel.node->rotation = glm::normalize(glm::slerp(q1, q2, a));
}
if (channel.path == "scale")
{
channel.node->scale = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], a);
}
}
}
}
for (auto &node : nodes)
{
updateJoints(node);
}
}
/*
glTF rendering functions
*/
// Draw a single node including child nodes (if present)
void VulkanglTFModel::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node node)
{
if (node.mesh.primitives.size() > 0)
{
// Pass the node's matrix via push constants
// Traverse the node hierarchy to the top-most parent to get the final matrix of the current node
glm::mat4 nodeMatrix = node.matrix;
VulkanglTFModel::Node *currentParent = node.parent;
while (currentParent)
{
nodeMatrix = currentParent->matrix * nodeMatrix;
currentParent = currentParent->parent;
}
// Pass the final matrix to the vertex shader using push constants
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &nodeMatrix);
// Bind SSBO with skin data for this node to set 1
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &skins[node.skin].descriptorSet, 0, nullptr);
for (VulkanglTFModel::Primitive &primitive : node.mesh.primitives)
{
if (primitive.indexCount > 0)
{
// Get the texture index for this primitive
VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex];
// Bind the descriptor for the current primitive's texture to set 2
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 2, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr);
vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0);
}
}
}
for (auto &child : node.children)
{
drawNode(commandBuffer, pipelineLayout, *child);
}
}
// Draw the glTF scene starting at the top-level-nodes
void VulkanglTFModel::draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout)
{
// All vertices and indices are stored in single buffers, so we only need to bind once
VkDeviceSize offsets[1] = {0};
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets);
vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32);
// Render all nodes at top-level
for (auto &node : nodes)
{
drawNode(commandBuffer, pipelineLayout, *node);
}
}
/*
Vulkan Example class
*/
VulkanExample::VulkanExample() :
VulkanExampleBase(ENABLE_VALIDATION)
{
title = "glTF vertex skinning";
camera.type = Camera::CameraType::lookat;
camera.flipY = true;
camera.setPosition(glm::vec3(0.0f, 0.75f, -2.0f));
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setPerspective(60.0f, (float) width / (float) height, 0.1f, 256.0f);
}
VulkanExample::~VulkanExample()
{
vkDestroyPipeline(device, pipelines.solid, nullptr);
if (pipelines.wireframe != VK_NULL_HANDLE)
{
vkDestroyPipeline(device, pipelines.wireframe, nullptr);
}
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.jointMatrices, nullptr);
shaderData.buffer.destroy();
}
void VulkanExample::getEnabledFeatures()
{
// Fill mode non solid is required for wireframe display
if (deviceFeatures.fillModeNonSolid)
{
enabledFeatures.fillModeNonSolid = VK_TRUE;
};
}
void VulkanExample::buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = {{0.25f, 0.25f, 0.25f, 1.0f}};
;
clearValues[1].depthStencil = {1.0f, 0};
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
const VkViewport viewport = vks::initializers::viewport((float) width, (float) height, 0.0f, 1.0f);
const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Bind scene matrices descriptor to set 0
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid);
glTFModel.draw(drawCmdBuffers[i], pipelineLayout);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void VulkanExample::loadglTFFile(std::string filename)
{
tinygltf::Model glTFInput;
tinygltf::TinyGLTF gltfContext;
std::string error, warning;
this->device = device;
#if defined(__ANDROID__)
// On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager
// We let tinygltf handle this, by passing the asset manager of our app
tinygltf::asset_manager = androidApp->activity->assetManager;
#endif
bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename);
// Pass some Vulkan resources required for setup and rendering to the glTF model loading class
glTFModel.vulkanDevice = vulkanDevice;
glTFModel.copyQueue = queue;
std::vector<uint32_t> indexBuffer;
std::vector<VulkanglTFModel::Vertex> vertexBuffer;
if (fileLoaded)
{
glTFModel.loadImages(glTFInput);
glTFModel.loadMaterials(glTFInput);
glTFModel.loadTextures(glTFInput);
const tinygltf::Scene &scene = glTFInput.scenes[0];
for (size_t i = 0; i < scene.nodes.size(); i++)
{
const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]];
glTFModel.loadNode(node, glTFInput, nullptr, scene.nodes[i], indexBuffer, vertexBuffer);
}
glTFModel.loadSkins(glTFInput);
glTFModel.loadAnimations(glTFInput);
// Calculate initial pose
for (auto node : glTFModel.nodes)
{
glTFModel.updateJoints(node);
}
}
else
{
vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
return;
}
// Create and upload vertex and index buffer
size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFModel::Vertex);
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
glTFModel.indices.count = static_cast<uint32_t>(indexBuffer.size());
struct StagingBuffer
{
VkBuffer buffer;
VkDeviceMemory memory;
} vertexStaging, indexStaging;
// Create host visible staging buffers (source)
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
vertexBufferSize,
&vertexStaging.buffer,
&vertexStaging.memory,
vertexBuffer.data()));
// Index data
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
indexBufferSize,
&indexStaging.buffer,
&indexStaging.memory,
indexBuffer.data()));
// Create device local buffers (target)
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
vertexBufferSize,
&glTFModel.vertices.buffer,
&glTFModel.vertices.memory));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
indexBufferSize,
&glTFModel.indices.buffer,
&glTFModel.indices.memory));
// Copy data from staging buffers (host) do device local buffer (gpu)
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, glTFModel.vertices.buffer, 1, ©Region);
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(copyCmd, indexStaging.buffer, glTFModel.indices.buffer, 1, ©Region);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Free staging resources
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
vkFreeMemory(device, vertexStaging.memory, nullptr);
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
vkFreeMemory(device, indexStaging.memory, nullptr);
}
void VulkanExample::setupDescriptors()
{
/*
This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures)
*/
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
// One combined image sampler per material image/texture
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(glTFModel.images.size())),
// One ssbo per skin
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, static_cast<uint32_t>(glTFModel.skins.size())),
};
// Number of descriptor sets = One for the scene ubo + one per image + one per skin
const uint32_t maxSetCount = static_cast<uint32_t>(glTFModel.images.size()) + static_cast<uint32_t>(glTFModel.skins.size()) + 1;
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor set layouts
VkDescriptorSetLayoutBinding setLayoutBinding{};
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1);
// Descriptor set layout for passing matrices
setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices));
// Descriptor set layout for passing material textures
setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures));
// Descriptor set layout for passing skin joint matrices
setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.jointMatrices));
// The pipeline layout uses three sets:
// Set 0 = Scene matrices (VS)
// Set 1 = Joint matrices (VS)
// Set 2 = Material texture (FS)
std::array<VkDescriptorSetLayout, 3> setLayouts = {
descriptorSetLayouts.matrices,
descriptorSetLayouts.jointMatrices,
descriptorSetLayouts.textures};
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
// We will use push constants to push the local matrices of a primitive to the vertex shader
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0);
// Push constant ranges are part of the pipeline layout
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
// Descriptor set for scene matrices
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
// Descriptor set for glTF model skin joint matrices
for (auto &skin : glTFModel.skins)
{
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.jointMatrices, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &skin.descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(skin.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &skin.ssbo.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
// Descriptor sets for glTF model materials
for (auto &image : glTFModel.images)
{
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &image.descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
}
void VulkanExample::preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
const std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
// Vertex input bindings and attributes
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
{0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)},
{1, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)},
{2, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)},
{3, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)},
// POI: Per-Vertex Joint indices and weights are passed to the vertex shader
{4, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(VulkanglTFModel::Vertex, jointIndices)},
{5, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(VulkanglTFModel::Vertex, jointWeights)},
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getShadersPath() + "gltfskinning/skinnedmodel.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getShadersPath() + "gltfskinning/skinnedmodel.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)};
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Solid rendering pipeline
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid));
// Wire frame rendering pipeline
if (deviceFeatures.fillModeNonSolid)
{
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE;
rasterizationStateCI.lineWidth = 1.0f;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe));
}
}
void VulkanExample::prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &shaderData.buffer, sizeof(shaderData.values)));
VK_CHECK_RESULT(shaderData.buffer.map());
updateUniformBuffers();
}
void VulkanExample::updateUniformBuffers()
{
shaderData.values.projection = camera.matrices.perspective;
shaderData.values.model = camera.matrices.view;
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
}
void VulkanExample::loadAssets()
{
loadglTFFile(getAssetPath() + "models/CesiumMan/glTF/CesiumMan.gltf");
}
void VulkanExample::prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void VulkanExample::render()
{
renderFrame();
if (camera.updated)
{
updateUniformBuffers();
}
// POI: Advance animation
if (!paused)
{
glTFModel.updateAnimation(frameTimer);
}
}
void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings"))