
Duarte Henriques, CTO@Seedrs

Automated Testing
Challenges

(a practical approach)

THE MONOLITH
~/workspace/seedrs$ bin/rake stats | tail -n2
 Code LOC: 36604 Test LOC: 49799 Code to Test Ratio: 1:1.4

700 cucumber scenarios

5,000 rspec examples

45 minutes to run (single cpu)

PEACE OF MIND

1,000 releases over 4 years

(almost one per working day)

NO FEAR

TESTING STACK - RSPEC

It's just another testing framework...

tenderlovemaking.com/2015/01/23/my-
experience-with-minitest-and-rspec.html

TESTING STACK - CUCUMBER

Feature: Users can sign in

 Scenario: Sign in with password
 Given I am registered with "jimbo@mail.com", "the password"
 When I sign in with "jimbo@mail.com", "the password"
 Then I should be signed in

When(/^I sign in with "(\S+)", "(.*)"$/) do |email, password|
 sign_in_via_form(email, password)
end

TESTING STACK - CAPYBARA

def sign_in_via_form(email, password)
 visit(sign_in_path)
 fill_in("session_email", :with => email)
 fill_in("session_password", :with => password)
 click_button("Sign in")
end

WHITEBOX | BLACKBOX

- the subject of the test

- the 'real' context

- the stubbed context

It's a slider

developer user

DEVELOPER | USER

For any new feature developed

lots of developer-centric tests
a few user-centric tests

For any bug found in production

regression test - user-centric!

1. DESERT TESTING

Run tests locally - Internet shouldn't be needed

connection could go down, causing flakyness
you can be blocked for over-usage
it slows down tests

1. DESERT TESTING

%html
 %head
 - unless Rails.env.test?
 = javascript_include_tag("//use.typekit.com/gmd7txr.js")
 = javascript_tag("try{Typekit.load();}catch(e){}")

gems such as webmock, fakeweb, etc

2. THIRD-PARTY EVENTS

def before_customer_io
 @customer_io_events = []
 allow(CustomerIo).to receive(:track) do |user, event_name, event_attributes|
 @customer_io_events << [user, event_name, event_attributes]
 end
end

def after_customer_io
 @customer_io_events = nil
 allow(CustomerIo).to receive(:track).and_call_original
end

2. THIRD-PARTY EVENTS

Feature: Deposits expire

 @customer-io
 Scenario: User receives email when his deposit is about to expire
 Given a deposit exists with valid_till: 9 days from now
 When the daily maintenance tasks are run
 Then 1 customerio event with name: "deposit_about_to_expire" should have been sent

3. AJAX

Feature: Flaky web-app navigation
 Given I am on the homepage
 When I follow "foo"
 And I follow "bar" # flaky error!

Simple problem:

"Simple" solution:
Feature: Stable web-app navigation
 Given I am on the homepage
 When I follow "foo"
 Then I should see "bar" # waits for content
 When I follow "bar"

3. AJAX

Feature: Flaky web-app navigation
 Given I am on the homepage
 When I follow "foo"
 Then a foo should exist # flaky error!

Contrived Problem:

Solution:
Feature: Flaky web-app navigation
 Given I am on the homepage
 When I follow "foo"
 Given I wait for the ajax request to finish
 Then a foo should exist # flaky error!

3. AJAX

@javascript
Scenario: Something that triggers ajax requests that we don't care about
 Given some context
 When I do something
 Then this should happen

 # This test fires ajax requests that we don't otherwise wait for, so the
 # database is cleaned while the server tries to write to it, causing errors
 # the errors will only appear when other tests are already running.
 # This line fixes it:
 And I wait for the ajax request to finish

Another example:

3. AJAX

// adapted from: https://gist.github.com/424127
window.runningAjaxCalls = 0;

jQuery(function($) {
 var originalAjax = $.ajax;

 var countDown = function(callback) {
 return function() { // would also handle exceptions
 callback.apply(this, arguments);
 window.runningAjaxCalls -= 1;
 };
 };
 var ajaxWithCount = function(url, options) {
 window.runningAjaxCalls += 1;
 options.success = countDown(options.success);
 options.error = countDown(options.error);
 return originalAjax(url, options);
 };

 $.ajax = ajaxWithCount;
});

in javascript:

3. AJAX

adapted from https://gist.github.com/424127
def wait_for_ajax_requests
 loop do
 sleep 1
 break if page.evaluate_script("window.runningAjaxCalls").to_i == 0
 end
end

in ruby:

When(/^I wait for the ajax requests? to finish$/) do
 wait_for_ajax_requests
end

in cucumber:

4. PERFORMANCE

Sometimes N+1 queries creep up

4. PERFORMANCE

it "closing a campaign is not affected by N+1 queries on investments" do
 campaign = create(:approved_campaign)
 11.times{ create(:investment, :campaign => campaign) }

 expect{ campaign.close_with_success }.not_to exceed_query_limit(10)
end

4. PERFORMANCE
RSpec::Matchers.define(:exceed_query_limit) do |expected|
 match do |block|
 query_count(&block) > expected
 end

 failure_message_for_should_not do |_actual|
 "Expected to run maximum #{expected} queries, got #{@counter.query_count}"
 end

 def query_count(&block)
 @counter = ActiveRecord::QueryCounter.new
 ActiveSupport::Notifications.subscribed(@counter.to_proc,
 "sql.active_record",
 &block)
 @counter.query_count
 end

 def supports_block_expectations?
 true
 end
end

4. PERFORMANCE
module ActiveRecord
 class QueryCounter
 attr_reader :query_count

 def initialize
 @query_count = 0
 end

 def callback(_s, _start, _finish, _message_id, values)
 unless query_to_ignore?(values)
 @query_count += 1
 puts "#{@query_count}: #{query_desc(values)}" if verbose?
 end
 end

 def to_proc
 lambda(&method(:callback))
 end

 private
 def query_to_ignore?(values) # ...
 def query_desc(values) # ...
 def verbose? # ...
 end
end

5. CONCURRENCY

fork

5. CONCURRENCY

def make_concurrent_calls(count: 2)
 ActiveRecord::Base.connection.disconnect!

 Array.new(count) do |i|
 pid = Process.fork do
 $stderr.reopen(File.new(File::NULL, "w"))
 $stdout.reopen(File.new(File::NULL, "w"))
 ActiveRecord::Base.establish_connection
 yield i
 end
 Process.wait(pid)
 end

 ActiveRecord::Base.establish_connection
end

5. CONCURRENCY

it "only creates one funds movement when confirming deposit concurrently"
 deposit = Deposit.new

 make_concurrent_calls do
 deposit.confirm!
 end

 expect(Movement.count).to eq(1)
end

5. CONCURRENCY

forkbreak: fork + breakpoints

5. CONCURRENCY

def run_with_breakpoints(*execution_blocks)
 processes = execution_blocks.map do |block|
 ForkBreak::Process.new do |breakpoints|
 $stderr.reopen(File.new(File::NULL, "w"))
 $stdout.reopen(File.new(File::NULL, "w"))
 ActiveRecord::Base.establish_connection
 block.call(breakpoints)
 end
 end

 ActiveRecord::Base.connection.disconnect!
 yield(*processes)
 ActiveRecord::Base.establish_connection
end

5. CONCURRENCY
investment = Investment.new

block1 = lambda do |breakpoints|
 add_breakpoint(breakpoints, investment, :before_cancel)
 investment.cancel
end

block2 = lambda do |breakpoints|
 add_breakpoint(breakpoints, investment, :after_process)
 investment.process
end

breakpoint_names = [:before_cancel, :after_process]

run_with_breakpoints(block1, block2) do |*execution_processes|

 execution_processes.each_with_index do |execution_process, index|
 execution_process.run_until(breakpoint_names[index]).wait
 end

 execution_processes.each do |execution_process|
 execution_process.finish.wait
 end
end

5. CONCURRENCY
add_breakpoint(breakpoints, investment, :before_cancel)

def add_breakpoint(breakpoints, object, breakpoint_name)

 flow, method_name = breakpoint_name.to_s.split(/_/, 2).map(&:to_sym)

 original_method = object.method(method_name)

 if flow == :before
 allow(object).to receive(method_name) do |*args|
 breakpoints << breakpoint_name
 original_method.call(*args)
 end

 elsif flow == :after
 allow(object).to receive(method_name) do |*args|
 value = original_method.call(*args)
 breakpoints << breakpoint_name
 value
 end
 end
end

Duarte Henriques, CTO@Seedrs

Thank you

