#Rough concept Waterproof box, half decent motors, some extrusion
- $190 i7 industrial 8Gb or $420 Open(ish) mainboard
- $180 Bldc x2 inc 3200PPR internal encoder
- ~$40? Twisted fields Open hardware Driver board
- $50 18650 battery pack& Charger XT60 280x 68 x 40mm-
- $50 Waterproof lectronics case SO41 External: 345x268x120mm Internal: 311x210x105mm
- $10 36v > 12v
- $30 ESP32 Feather
- $25 base plate x2 this joins the extrusion and the Peli clone sits on it
- $12 2x 30mm
- $14 2x 40mm
- $12 caster for 2wd
- $199 OAK-D
- Ardusimple RTK
- Tyre
- Additional motors for 4x4 inc 3200PPR internal encoder
- Additional driver for 4x4
- Bigger wheels
- Robaka ROS1, 2WD SerdaAbdali fork
- Morph ROS1 became Ovo (evaluating Linorobot2 for ROS2 work)
- AgileX scout mini IP22, expensive
- Rover robotics no BLDC
- LeoRover ROS1/2 no BLDC.
- Ubiquity ROS1
- 75cm wide deep compost mulch beds. (as common in Agroecological production)
- Weeding needed in babyleaf lettuce and brassica.
- Bed layout: <10cm wheel> <22.5 bed area> <10cm wheel> <22.5 bed area> <10cm wheel>
- 1x row of crop in centre of each 22.5cm bed area.
- Nvidia team
- Tensorflow model to follow crop rows - Outputs Cmd_vel
The core of this navigation strategy is the VisualServoing
- Linear actuator openbuilds
- IP67 rated Nema23
- Laser from Neje 20w
- Todo: CV to control robot speed. When green is detected between the crop row; slow/stop, move laser to detected position, burn weed. Then continue.
- A Survey of Deep Learning Techniques for Weed Detection from Images 2021
- Artificial intelligence for weed detection
- CV datasets
Arrangement of 75cm bed, showing two rows of crops, rover & paths for rover.
Ready for GUI programming Or AI computer vision
- Service robots
- Lawn mowers
- R&D
To do
- I2C commander supported by Linorobot
- RTK
- Flexbe
- TOF sensors
- Foxglove studio
- Dual camera
- £233 Cubepilot RTK
- £300 H-RTK
- £80 PX2.4.8
- Via MavROS
sudo apt update sudo apt install python3-opencv libopencv-dev libeigen3-dev ros-$ROS_DISTRO-vision-opencv && sudo apt install ros-$ROS_DISTRO-message-filters ninja-build catch2
mkdir pangolin cd pangolin git clone --recursive https://github.com/stevenlovegrove/Pangolin.git cd Pangolin
./scripts/install_prerequisites.sh cmake -B build -GNinja cmake --build build
ctest
Then git clone https://github.com/zang09/ORB-SLAM3-STEREO-FIXED.git ORB_SLAM3 cd ORB_SLAM3 chmod +x build.sh ./build.sh
cd ~/colcon_ws/src git clone https://github.com/zang09/ORB_SLAM3_ROS2.git orbslam3_ros2
Ref https://github.com/zang09/ORB_SLAM3_ROS2#how-to-build
- Pi 20.04
- Jetson 20.04
- Then install ROS2me It would be nice if the ROS2ME script supported 22.04/ Humble.
- Radxa CM3
- [Gumstix carrier] (https://github.com/gumstix/PKG900000001400)
- Compute https://www.sifive.com/cores/performance-p650 https://github.com/siemens/isar-riscv/blob/main/doc/ROS2.md
- GPU https://www.think-silicon.com/neox-graphics
- MCU (Zephyr FreeRTOS) https://github.com/stnolting/neorv32 on Orangecrab https://www.tindie.com/products/greeeg/orange-crab/
- NPU 2.5 tops https://www.aliexpress.com/item/1005004332478616.html
- P920 256 TOPS https://riscv.org/blog/2021/07/neuralscale-industry-leading-general-purpose-programmable-npu-architecture-based-on-risc-v/