
5.3 C source code for computing bin number and overlapping bins

The following functions compute bin numbers and overlaps for a BAI-style binning scheme with 6 levels and
a minimum bin size of 214 bp. See the CSI specification for generalisations of these functions designed for
binning schemes with arbitrary depth and sizes.

/* calculate bin given an alignment covering [beg,end) (zero-based, half-closed-half-open) */
int reg2bin(int beg, int end)
{

--end;
if (beg>>14 == end>>14) return ((1<<15)-1)/7 + (beg>>14);
if (beg>>17 == end>>17) return ((1<<12)-1)/7 + (beg>>17);
if (beg>>20 == end>>20) return ((1<<9)-1)/7 + (beg>>20);
if (beg>>23 == end>>23) return ((1<<6)-1)/7 + (beg>>23);
if (beg>>26 == end>>26) return ((1<<3)-1)/7 + (beg>>26);
return 0;

}
/* calculate the list of bins that may overlap with region [beg,end) (zero-based) */
#define MAX_BIN (((1<<18)-1)/7)
int reg2bins(int beg, int end, uint16_t list[MAX_BIN])
{

int i = 0, k;
--end;
list[i++] = 0;
for (k = 1 + (beg>>26); k <= 1 + (end>>26); ++k) list[i++] = k;
for (k = 9 + (beg>>23); k <= 9 + (end>>23); ++k) list[i++] = k;
for (k = 73 + (beg>>20); k <= 73 + (end>>20); ++k) list[i++] = k;
for (k = 585 + (beg>>17); k <= 585 + (end>>17); ++k) list[i++] = k;
for (k = 4681 + (beg>>14); k <= 4681 + (end>>14); ++k) list[i++] = k;
return i;

}

5.4 Splitting BAM

A BAM file can be processed in parallel by conceptually dividing the file into splits (typically of a fixed, but
arbitrary, number of bytes) and for each split processing alignments from the first known alignment after
the split start up to the first known alignment of the next split.

A splitting BAM index is a linear index of virtual file o↵sets of alignment start positions. The index
must contain the virtual file o↵set for the first alignment, and a virtual file o↵set for the overall length of
the BAM file.26 It does not need to contain a virtual file o↵set for every alignment, merely a subset. A
granularity of n means that an o↵set is written for every n alignments.

To find the alignments for a split that covers a byte range [beg, end) use the index to find the smallest
virtual file o↵set, v1, that falls in this range, and the smallest virtual file o↵set, v2, that is greater than or
equal to end. If v1 does not exist, then the split has no alignments. Otherwise, it has alignments in the
range [v1, v2). This method will map a set of contiguous, non-overlapping file ranges that cover the whole
BAM file to a set of contiguous, non-overlapping virtual file ranges that cover the whole file.

Splitting BAM index filenames have a .sbi extension added to the BAM filename (so foo.bam.sbi is
the splitting BAM index filename for foo.bam). Index files contain a header followed by a sorted list of
virtual files o↵sets in ascending order.

Field Description Type Value
magic Magic string char[4] SBI\1
granularity Number of alignments between o↵sets, or �1 if unspecified int32 t

List of o↵sets
o↵set Virtual file o↵set of the alignment uint64 t

26In the unlikely event the BAM file has no alignment records, the index will consist of a single entry for the overall length
of the BAM file.

18


	The SAM Format Specification
	An example
	Terminologies and Concepts
	The header section
	Reference MD5 calculation

	The alignment section: mandatory fields
	The alignment section: optional fields

	Recommended Practice for the SAM Format
	Guide for Describing Assembly Sequences in SAM
	Unpadded versus padded representation
	Padded SAM

	The BAM Format Specification
	The BGZF compression format
	Random access
	End-of-file marker

	The BAM format
	BIN field calculation
	N_CIGAR_OP field
	SEQ encoding
	Auxiliary data encoding


	Indexing BAM
	Algorithm
	Basic binning index
	Reducing small chunks
	Combining with linear index
	A conceptual example

	The BAI index format for BAM files
	C source code for computing bin number and overlapping bins
	Splitting BAM

	SAM Version History

