
5.3 C source code for computing bin number and overlapping bins

The following functions compute bin numbers and overlaps for a BAI-style binning scheme with 6 levels and
a minimum bin size of 214 bp. See the CSI specification for generalisations of these functions designed for
binning schemes with arbitrary depth and sizes.

/* calculate bin given an alignment covering [beg,end) (zero-based, half-closed-half-open) */
int reg2bin(int beg, int end)
{

--end;
if (beg>>14 == end>>14) return ((1<<15)-1)/7 + (beg>>14);
if (beg>>17 == end>>17) return ((1<<12)-1)/7 + (beg>>17);
if (beg>>20 == end>>20) return ((1<<9)-1)/7 + (beg>>20);
if (beg>>23 == end>>23) return ((1<<6)-1)/7 + (beg>>23);
if (beg>>26 == end>>26) return ((1<<3)-1)/7 + (beg>>26);
return 0;

}
/* calculate the list of bins that may overlap with region [beg,end) (zero-based) */
#define MAX_BIN (((1<<18)-1)/7)
int reg2bins(int beg, int end, uint16_t list[MAX_BIN])
{

int i = 0, k;
--end;
list[i++] = 0;
for (k = 1 + (beg>>26); k <= 1 + (end>>26); ++k) list[i++] = k;
for (k = 9 + (beg>>23); k <= 9 + (end>>23); ++k) list[i++] = k;
for (k = 73 + (beg>>20); k <= 73 + (end>>20); ++k) list[i++] = k;
for (k = 585 + (beg>>17); k <= 585 + (end>>17); ++k) list[i++] = k;
for (k = 4681 + (beg>>14); k <= 4681 + (end>>14); ++k) list[i++] = k;
return i;

}

5.4 Splitting BAM

A BAM file can be processed in parallel by conceptually dividing the file into splits (typically of a fixed, but
arbitrary, number of bytes) and for each split processing alignments from the first known alignment after
the split start up to the first known alignment of the next split.

A splitting BAM index is a linear index of virtual file o↵sets of alignment start positions. The index
must contain the virtual file o↵set for the first alignment, and a virtual file o↵set for the overall length of
the BAM file.26 It does not need to contain a virtual file o↵set for every alignment, merely a subset. A
granularity of n means that an o↵set is written for every n alignments.

To find the alignments for a split that covers a byte range [beg, end) use the index to find the smallest
virtual file o↵set, v1, that falls in this range, and the smallest virtual file o↵set, v2, that is greater than or
equal to end. If v1 does not exist, then the split has no alignments. Otherwise, it has alignments in the
range [v1, v2). This method will map a set of contiguous, non-overlapping file ranges that cover the whole
BAM file to a set of contiguous, non-overlapping virtual file ranges that cover the whole file.

Splitting BAM index filenames have a .sbi extension added to the BAM filename (so foo.bam.sbi is
the splitting BAM index filename for foo.bam). Index files contain a header followed by a sorted list of
virtual files o↵sets in ascending order.

Field Description Type Value
magic Magic string char[4] SBI\1
granularity Number of alignments between o↵sets, or �1 if unspecified int32 t

List of o↵sets
o↵set Virtual file o↵set of the alignment uint64 t

26In the unlikely event the BAM file has no alignment records, the index will consist of a single entry for the overall length
of the BAM file.
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