-
Notifications
You must be signed in to change notification settings - Fork 2
/
Matrix.cpp
243 lines (223 loc) · 6.1 KB
/
Matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*
* MatrixMath.cpp Library for MatrixMath Math
*
* Created by Charlie Matlack on 12/18/10.
* Modified from code by RobH45345 on Arduino Forums, taken from unknown source.
*
* Code is modified by Sam Abyeruwan to fit to Energia.
* http://playground.arduino.cc/Code/MatrixMath#.Uzs2-nWx3t7
*
* MatrixMath.cpp
*
* Created on: Apr 1, 2014
* Author: sam
*
*
*/
#include "Matrix.h"
MatrixMath Matrix; // Pre-instantiate
MatrixMath::MatrixMath()
{
}
MatrixMath::~MatrixMath()
{
}
// MatrixMath Printing Routine
// Uses tabs to separate numbers under assumption printed float width won't cause problems
void MatrixMath::print(float* A, int m, int n, MatrixString label)
{
// A = input matrix (m x n)
int i, j;
#if defined(ENERGIA)
Serial.println();
Serial.println(label);
#else
std::cout << label << " ";
#endif
for (i = 0; i < m; i++)
{
for (j = 0; j < n; j++)
{
#if defined(ENERGIA)
Serial.print(A[n * i + j]);
Serial.print("\t");
#else
std::cout << A[n * i + j] << "\t";
#endif
}
#if defined(ENERGIA)
Serial.println();
#else
std::cout << std::endl;
#endif
}
}
void MatrixMath::copy(float* A, int n, int m, float* B)
{
int i, j;
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
{
B[n * i + j] = A[n * i + j];
}
}
//MatrixMath Multiplication Routine
// C = A*B
void MatrixMath::multiply(float* A, float* B, int m, int p, int n, float* C)
{
// A = input matrix (m x p)
// B = input matrix (p x n)
// m = number of rows in A
// p = number of columns in A = number of rows in B
// n = number of columns in B
// C = output matrix = A*B (m x n)
int i, j, k;
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
{
C[n * i + j] = 0;
for (k = 0; k < p; k++)
C[n * i + j] = C[n * i + j] + A[p * i + k] * B[n * k + j];
}
}
//MatrixMath Addition Routine
void MatrixMath::add(float* A, float* B, int m, int n, float* C)
{
// A = input matrix (m x n)
// B = input matrix (m x n)
// m = number of rows in A = number of rows in B
// n = number of columns in A = number of columns in B
// C = output matrix = A+B (m x n)
int i, j;
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
C[n * i + j] = A[n * i + j] + B[n * i + j];
}
//MatrixMath Subtraction Routine
void MatrixMath::subtract(float* A, float* B, int m, int n, float* C)
{
// A = input matrix (m x n)
// B = input matrix (m x n)
// m = number of rows in A = number of rows in B
// n = number of columns in A = number of columns in B
// C = output matrix = A-B (m x n)
int i, j;
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
C[n * i + j] = A[n * i + j] - B[n * i + j];
}
//MatrixMath Transpose Routine
void MatrixMath::transpose(float* A, int m, int n, float* C)
{
// A = input matrix (m x n)
// m = number of rows in A
// n = number of columns in A
// C = output matrix = the transpose of A (n x m)
int i, j;
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
C[m * j + i] = A[n * i + j];
}
void MatrixMath::scale(float* A, int m, int n, float k)
{
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
A[n * i + j] = A[n * i + j] * k;
}
// The trace of an n-by-n square matrix A is defined to be the sum of the elements on the
// main diagonal.
float MatrixMath::trace(float* A, int m, int n)
{
if (m != n)
return 0.0f;
float tr = 0.0f;
for (int i = 0; i < m; i++)
tr += A[n * i + i];
return tr;
}
//MatrixMath Inversion Routine
// * This function inverts a matrix based on the Gauss Jordan method.
// * Specifically, it uses partial pivoting to improve numeric stability.
// * The algorithm is drawn from those presented in
// NUMERICAL RECIPES: The Art of Scientific Computing.
// * The function returns 1 on success, 0 on failure.
// * NOTE: The argument is ALSO the result matrix, meaning the input matrix is REPLACED
int MatrixMath::invert(float* A, int n)
{
// A = input matrix AND result matrix
// n = number of rows = number of columns in A (n x n)
int pivrow = 0; // keeps track of current pivot row
int k, i, j; // k: overall index along diagonal; i: row index; j: col index
int pivrows[n]; // keeps track of rows swaps to undo at end
float tmp; // used for finding max value and making column swaps
//memset(pivrows, 0, sizeof(pivrows));
for (k = 0; k < n; k++)
{
// find pivot row, the row with biggest entry in current column
tmp = 0;
for (i = k; i < n; i++)
{
if (fabs(A[i * n + k]) >= tmp) // 'Avoid using other functions inside abs()?'
{
tmp = fabs(A[i * n + k]);
pivrow = i;
}
}
// check for singular matrix
if (A[pivrow * n + k] == 0.0f)
{
#if defined(ENERGIA)
Serial.println("Inversion failed due to singular matrix");
#else
std::cout << "Inversion failed due to singular matrix" << std::endl;
#endif
return 0;
}
// Execute pivot (row swap) if needed
if (pivrow != k)
{
// swap row k with pivrow
for (j = 0; j < n; j++)
{
tmp = A[k * n + j];
A[k * n + j] = A[pivrow * n + j];
A[pivrow * n + j] = tmp;
}
}
pivrows[k] = pivrow; // record row swap (even if no swap happened)
tmp = 1.0f / A[k * n + k]; // invert pivot element
A[k * n + k] = 1.0f; // This element of input matrix becomes result matrix
// Perform row reduction (divide every element by pivot)
for (j = 0; j < n; j++)
{
A[k * n + j] = A[k * n + j] * tmp;
}
// Now eliminate all other entries in this column
for (i = 0; i < n; i++)
{
if (i != k)
{
tmp = A[i * n + k];
A[i * n + k] = 0.0f; // The other place where in matrix becomes result mat
for (j = 0; j < n; j++)
{
A[i * n + j] = A[i * n + j] - A[k * n + j] * tmp;
}
}
}
}
// Done, now need to undo pivot row swaps by doing column swaps in reverse order
for (k = n - 1; k >= 0; k--)
{
if (pivrows[k] != k)
{
for (i = 0; i < n; i++)
{
tmp = A[i * n + k];
A[i * n + k] = A[i * n + pivrows[k]];
A[i * n + pivrows[k]] = tmp;
}
}
}
return 1;
}