Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

关于小样本设置下的结果 #35

Open
bedman367 opened this issue Nov 2, 2022 · 4 comments
Open

关于小样本设置下的结果 #35

bedman367 opened this issue Nov 2, 2022 · 4 comments

Comments

@bedman367
Copy link

你好,我比较感兴趣论文中汇报的小样本设置下的准确率您是如何得到的?
1.是否按照小样本的一般范式(meta-learning)重新进行fine-tune?
2.zero-shot下可以直接计算视频特征与标签文本的相似度,但是few-shot下每个类别除了标签还有少量的样本,这些少量样本如何贡献到最终的预测得分?
希望得到您的回复!🙏

@sallymmx
Copy link
Owner

sallymmx commented Nov 2, 2022 via email

@laohuijiadezhu
Copy link

我有类似的问题,请问应该如何做小样本设置的实验,即如何进行论文中“Figure 3”的实验? @bedman367 @sallymmx @jiazheng-xing

@yanghhx
Copy link

yanghhx commented May 16, 2023

你好,我也有类似的小样本设置的问题,few-shot如何划分样本集呢?zero-shot的实验是把有标签的训练结果当做预训练模型,然后直接把这个预训练的模型拿来做zero-shot测试么?zero-shot的测试跟一般的测试有什么区别呢?它们测试用的数据集是一样的吗?

@Mia-YatingYu
Copy link

你好,我也有类似的小样本设置的问题,few-shot如何划分样本集呢?zero-shot的实验是把有标签的训练结果当做预训练模型,然后直接把这个预训练的模型拿来做zero-shot测试么?zero-shot的测试跟一般的测试有什么区别呢?它们测试用的数据集是一样的吗?

这里零样本应该是使用在k400上预训练模型直接拿来做在ucf101和hmdb51上做zero-shot测试,但是由于这些数据集当中有少数类别是重合的,这里应该也没有做特别严格的确保一定是unseen

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants