-
Notifications
You must be signed in to change notification settings - Fork 61
/
test.py
159 lines (134 loc) · 6.11 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Code for "ActionCLIP: ActionCLIP: A New Paradigm for Action Recognition"
# arXiv:
# Mengmeng Wang, Jiazheng Xing, Yong Liu
import os
import clip
import torch.nn as nn
from datasets import Action_DATASETS
from torch.utils.data import DataLoader
from tqdm import tqdm
import wandb
import argparse
import shutil
from pathlib import Path
import yaml
from dotmap import DotMap
import pprint
import numpy
from modules.Visual_Prompt import visual_prompt
from utils.Augmentation import get_augmentation
import torch
from utils.Text_Prompt import *
class TextCLIP(nn.Module):
def __init__(self, model):
super(TextCLIP, self).__init__()
self.model = model
def forward(self, text):
return self.model.encode_text(text)
class ImageCLIP(nn.Module):
def __init__(self, model):
super(ImageCLIP, self).__init__()
self.model = model
def forward(self, image):
return self.model.encode_image(image)
def validate(epoch, val_loader, classes, device, model, fusion_model, config, num_text_aug):
model.eval()
fusion_model.eval()
num = 0
corr_1 = 0
corr_5 = 0
with torch.no_grad():
text_inputs = classes.to(device)
text_features = model.encode_text(text_inputs)
for iii, (image, class_id) in enumerate(tqdm(val_loader)):
image = image.view((-1, config.data.num_segments, 3) + image.size()[-2:])
b, t, c, h, w = image.size()
class_id = class_id.to(device)
image_input = image.to(device).view(-1, c, h, w)
image_features = model.encode_image(image_input).view(b, t, -1)
image_features = fusion_model(image_features)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T)
similarity = similarity.view(b, num_text_aug, -1).softmax(dim=-1)
similarity = similarity.mean(dim=1, keepdim=False)
values_1, indices_1 = similarity.topk(1, dim=-1)
values_5, indices_5 = similarity.topk(5, dim=-1)
num += b
for i in range(b):
if indices_1[i] == class_id[i]:
corr_1 += 1
if class_id[i] in indices_5[i]:
corr_5 += 1
top1 = float(corr_1) / num * 100
top5 = float(corr_5) / num * 100
wandb.log({"top1": top1})
wandb.log({"top5": top5})
print('Epoch: [{}/{}]: Top1: {}, Top5: {}'.format(epoch, config.solver.epochs, top1, top5))
return top1
def main():
global args, best_prec1
global global_step
parser = argparse.ArgumentParser()
parser.add_argument('--config', '-cfg', default='')
parser.add_argument('--log_time', default='')
args = parser.parse_args()
with open(args.config, 'r') as f:
config = yaml.load(f)
working_dir = os.path.join('./exp', config['network']['type'], config['network']['arch'], config['data']['dataset'],
args.log_time)
wandb.init(project=config['network']['type'],
name='{}_{}_{}_{}'.format(args.log_time, config['network']['type'], config['network']['arch'],
config['data']['dataset']))
print('-' * 80)
print(' ' * 20, "working dir: {}".format(working_dir))
print('-' * 80)
print('-' * 80)
print(' ' * 30, "Config")
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(config)
print('-' * 80)
config = DotMap(config)
Path(working_dir).mkdir(parents=True, exist_ok=True)
shutil.copy(args.config, working_dir)
shutil.copy('test.py', working_dir)
device = "cuda" if torch.cuda.is_available() else "cpu" # If using GPU then use mixed precision training.
model, clip_state_dict = clip.load(config.network.arch, device=device, jit=False, tsm=config.network.tsm,
T=config.data.num_segments, dropout=config.network.drop_out,
emb_dropout=config.network.emb_dropout) # Must set jit=False for training ViT-B/32
transform_val = get_augmentation(False, config)
fusion_model = visual_prompt(config.network.sim_header, clip_state_dict, config.data.num_segments)
model_text = TextCLIP(model)
model_image = ImageCLIP(model)
model_text = torch.nn.DataParallel(model_text).cuda()
model_image = torch.nn.DataParallel(model_image).cuda()
fusion_model = torch.nn.DataParallel(fusion_model).cuda()
wandb.watch(model)
wandb.watch(fusion_model)
val_data = Action_DATASETS(config.data.val_list, config.data.label_list, num_segments=config.data.num_segments,
image_tmpl=config.data.image_tmpl,
transform=transform_val, random_shift=config.random_shift)
val_loader = DataLoader(val_data, batch_size=config.data.batch_size, num_workers=config.data.workers, shuffle=False,
pin_memory=True, drop_last=True)
if device == "cpu":
model_text.float()
model_image.float()
else:
clip.model.convert_weights(
model_text) # Actually this line is unnecessary since clip by default already on float16
clip.model.convert_weights(model_image)
start_epoch = config.solver.start_epoch
if config.pretrain:
if os.path.isfile(config.pretrain):
print(("=> loading checkpoint '{}'".format(config.pretrain)))
checkpoint = torch.load(config.pretrain)
model.load_state_dict(checkpoint['model_state_dict'])
fusion_model.load_state_dict(checkpoint['fusion_model_state_dict'])
del checkpoint
else:
print(("=> no checkpoint found at '{}'".format(config.pretrain)))
classes, num_text_aug, text_dict = text_prompt(val_data)
best_prec1 = 0.0
prec1 = validate(start_epoch, val_loader, classes, device, model, fusion_model, config, num_text_aug)
if __name__ == '__main__':
main()