-
Notifications
You must be signed in to change notification settings - Fork 78
/
main.py
415 lines (323 loc) · 15.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
"""
Fine-tuning pretrained language model (GPT2) on Task-oriented Dialogue
"""
import argparse
import glob
import logging
import os
import pickle
import random
import re
# import shutil
# from typing import Dict, List, Tuple
import numpy as np
import torch
# from torch.nn.utils.rnn import pad_sequence
# from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
# from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from transformers import (
WEIGHTS_NAME,
# AdamW,
GPT2Tokenizer,
PreTrainedModel,
PreTrainedTokenizer,
# get_linear_schedule_with_warmup,
)
from transformers import GPT2Tokenizer
# comment this if you want to load gpt2 class from transformers
from models import GPT2LMHeadModel
from models import GPT2Config, GPT2SmallConfig
# uncomment this if you want to load gpt2 class from transformers
# from transformers import GP2Config, GPT2LMHeadModel
from data.dataset.language_model import *
from utils.model import *
from utils.language_model import get_optimizer_scheduler
from utils.gpt2_args_parser import ArgsParser
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
"gpt2-small": (GPT2SmallConfig, GPT2LMHeadModel, GPT2Tokenizer),
}
def get_model_tokenizer(args):
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
if args.config_name:
config = config_class.from_pretrained(args.config_name, cache_dir=args.cache_dir)
elif args.model_name_or_path:
config = config_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
else:
config = config_class()
if args.tokenizer_name:
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)
elif args.model_name_or_path:
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
else:
raise ValueError(
"You are instantiating a new {} tokenizer. This is not supported, but you can do it from another script, save it,"
"and load it from here, using --tokenizer_name".format(tokenizer_class.__name__)
)
if args.block_size <= 0:
args.block_size = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
args.block_size = min(args.block_size, tokenizer.max_len)
if args.model_name_or_path:
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir,
)
else:
logger.info("Training new model from scratch")
model = model_class(config=config)
model.to(args.device)
if args.model_name_or_path == 'openai-gpt':
tokenizer.add_special_tokens({'bos_token': '<|endoftext|>'})
tokenizer.add_special_tokens({'eos_token': '<|endoftext|>'})
elif args.model_name_or_path == 'gpt2':
pass
return model, tokenizer, model_class, args
def get_training_info(dataloader, args):
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if args.model_name_or_path and os.path.exists(args.model_name_or_path):
try:
# set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
return global_step, epochs_trained, steps_trained_in_current_epoch
def train_epoch(model, tokenizer, optimizer, scheduler, train_dataloader, tr_loss, logging_loss, global_step, steps_trained_in_current_epoch, tb_writer, args):
"""train one epoch"""
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
inputs, labels = (batch, batch)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
model.train()
outputs = model(inputs, labels=labels)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
# Log metrics
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
if (args.local_rank == -1 and args.evaluate_during_training): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
# save checkpoint
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
if args.evaluate_during_training:
save_checkpoint(model, optimizer, scheduler, tokenizer, args)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
return model, optimizer, scheduler, global_step, tr_loss, logging_loss
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter('./runs/{}'.format(args.output_dir.split('/')[-1]))
# Prepare dataloader
train_dataloader, args = get_dataloader(train_dataset, tokenizer, args)
# total iteration and batch size
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
total_batch_size = args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1)
# Prepare optimizer and schedule (linear warmup and decay)
optimizer, scheduler = get_optimizer_scheduler(args, model, t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = {}".format(len(train_dataset)))
logger.info(" Num Epochs = {}".format(args.num_train_epochs))
logger.info(" Instantaneous batch size per GPU = {}".format(args.per_gpu_train_batch_size))
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = {}".format(total_batch_size))
logger.info(" Gradient Accumulation steps = {}".format(args.gradient_accumulation_steps))
logger.info(" Total optimization steps = {}".format(t_total))
global_step, epochs_trained, steps_trained_in_current_epoch = get_training_info(train_dataloader, args)
tr_loss, logging_loss = 0.0, 0.0
model_to_resize = model.module if hasattr(model, "module") else model # Take care of distributed/parallel training
model_to_resize.resize_token_embeddings(len(tokenizer))
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
for _ in train_iterator:
model, optimizer, scheduler, global_step, tr_loss, logging_loss = train_epoch(model, tokenizer, optimizer, scheduler, train_dataloader, tr_loss, logging_loss, global_step,
steps_trained_in_current_epoch, tb_writer, args)
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
if args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir, exist_ok=True)
# Prepare dataloader
eval_dataloader, args = get_dataloader(eval_dataset, tokenizer, args, split='eval')
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = {}".format(len(eval_dataset)))
logger.info(" Batch size = {}".format(args.eval_batch_size))
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
inputs, labels = (batch, batch)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
with torch.no_grad():
outputs = model(inputs, labels=labels)
lm_loss = outputs[0]
eval_loss += lm_loss.mean().item()
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.exp(torch.tensor(eval_loss))
result = {"perplexity": perplexity}
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def main():
args = ArgsParser().parse()
if args.eval_data_file is None and args.do_eval:
raise ValueError(
"--eval_data_file should be specified when do_eval is true"
)
if args.should_continue:
sorted_checkpoints = _sorted_checkpoints(args)
if len(sorted_checkpoints) == 0:
raise ValueError("--should_continue is true, but no checkpoint found in --output_dir")
else:
args.model_name_or_path = sorted_checkpoints[-1]
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # initialize distributed training
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # if not the first process, do not load pretrained model & vocab
model, tokenizer, model_class, args = get_model_tokenizer(args)
if args.local_rank == 0:
torch.distributed.barrier() # finish barrier, when first process has loaded pretrained model & vocab
logger.info("Training/evaluation parameters {}".format(args))
# Training
if args.do_train:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # only first process will preprocess data/caching
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
if args.local_rank == 0:
torch.distributed.barrier() # end of barrier
global_step, train_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = {}, average loss = {}".format(global_step, train_loss))
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("models.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: {}".format(checkpoints))
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
main()