-
Notifications
You must be signed in to change notification settings - Fork 119
/
eif_old.py
377 lines (334 loc) · 14.3 KB
/
eif_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
""" Extended Isolation forest functions
This is the implementation of the Extended Isolation Forest anomaly detection algorithm. This extension, improves the consistency and reliability of the anomaly score produced by standard Isolation Forest represented by Liu et al.
Our method allows for the slicing of the data to be done using hyperplanes with random slopes which results in improved score maps. The consistency and reliability of the algorithm is much improved using this extension.
"""
__author__ = 'Matias Carrasco Kind & Sahand Hariri'
import numpy as np
import random as rn
import os
import warnings
from version import __version__
def c_factor(n) :
"""
Average path length of unsuccesful search in a binary search tree given n points
Parameters
----------
n : int
Number of data points for the BST.
Returns
-------
float
Average path length of unsuccesful search in a BST
"""
return 2.0*(np.log(n-1)+0.5772156649) - (2.0*(n-1.)/(n*1.0))
class iForest(object):
"""
Creates an iForest object. This object holds the data as well as the trained trees (iTree objects).
Attributes
----------
X : list
Data used for training. It is a list of list of floats.
nobjs: int
Size of the dataset.
sample: int
Size of the sample to be used for tree creation.
Trees: list
A list of tree objects.
limit: int
Maximum depth a tree can have.
exlevel: int
Exention level to be used in the creating splitting critera.
c: float
Multiplicative factor used in computing the anomaly scores.
Methods
-------
CheckExtensionLevel()
Chaeck the validity of extension level provided by user based on the data
compute_paths(X_in)
Computes the anomaly score for data X_in
"""
def __init__(self, X, ntrees, sample_size, limit=None, ExtensionLevel=0):
"""
iForest(X, ntrees, sample_size, limit=None, ExtensionLevel=0)
Initialize a forest by passing in training data, number of trees to be used and the subsample size.
Parameters
----------
X : list of list of floats
Training data. List of [x1,x2,...,xn] coordinate points.
ntrees : int
Number of trees to be used.
sample_size : int
The size of the subsample to be used in creation of each tree. Must be smaller than |X|
limit : int
The maximum allowed tree depth. This is by default set to average length of unsucessful search in a binary tree.
ExtensionLevel : int
Specifies degree of freedom in choosing the hyperplanes for dividing up data. Must be smaller than the dimension n of the dataset.
"""
self.ntrees = ntrees
self.X = X
self.nobjs = len(X)
self.sample = sample_size
self.Trees = []
self.limit = limit
self.exlevel = ExtensionLevel
self.CheckExtensionLevel() # Extension Level check. See def for explanation.
if limit is None:
self.limit = int(np.ceil(np.log2(self.sample))) # Set limit to the default as specified by the paper (average depth of unsuccesful search through a binary tree).
self.c = c_factor(self.sample)
for i in range(self.ntrees): # This loop builds an ensemble of iTrees (the forest).
ix = rn.sample(range(self.nobjs), self.sample)
X_p = X[ix]
self.Trees.append(iTree(X_p, 0, self.limit, exlevel=self.exlevel))
def CheckExtensionLevel(self):
"""
This function makes sure the extension level provided by the user does not exceed the dimension of the data. An exception will be raised in the case of a violation.
"""
dim = self.X.shape[1]
if self.exlevel < 0:
raise Exception("Extension level has to be an integer between 0 and "+ str(dim-1)+".")
if self.exlevel > dim-1:
raise Exception("Your data has "+ str(dim) + " dimensions. Extension level can't be higher than " + str(dim-1) + ".")
def compute_paths(self, X_in = None):
"""
compute_paths(X_in = None)
Compute anomaly scores for all data points in a dataset X_in
Parameters
----------
X_in : list of list of floats
Data to be scored. iForest.Trees are used for computing the depth reached in each tree by each data point.
Returns
-------
float
Anomaly score for a given data point.
"""
if X_in is None:
X_in = self.X
S = np.zeros(len(X_in))
for i in range(len(X_in)):
h_temp = 0
for j in range(self.ntrees):
h_temp += PathFactor(X_in[i],self.Trees[j]).path*1.0 # Compute path length for each point
Eh = h_temp/self.ntrees # Average of path length travelled by the point in all trees.
S[i] = 2.0**(-Eh/self.c) # Anomaly Score
return S
class Node(object):
"""
A single node from each tree (each iTree object). Nodes containe information on hyperplanes used for data division, date to be passed to left and right nodes, whether they are external or internal nodes.
Attributes
----------
e: int
Depth of the tree to which the node belongs.
size: int
Size of the dataset present at the node.
X: list
Data at the node.
n: list
Normal vector used to build the hyperplane that splits the data in the node.
p: list
Intercept point through which the hyperplane passes.
lef: Node object
Left child node.
right: Node object
Right child node.
ntype: str
The type of the node: 'exNode', 'inNode'.
"""
def __init__(self, X, n, p, e, left, right, node_type = '' ):
"""
Node(X, n, p, e, left, right, node_type = '' )
Create a node in a given tree (iTree objectg)
Parameters
----------
X : list of list of floats
Training data available to each node. List of [x1,x2,...,xn] coordinate points.
n : list of floats
Normal vector for the hyperplane used for splitting data.
p : list of floats
Intercept point for the hyperplane used for splitting data.
left : Node object
Left child node.
right : Node object
Right child node.
node_type : str
Specifies if the node is external or internal. Takes two values: 'exNode', 'inNode'.
"""
self.e = e
self.size = len(X)
self.X = X # to be removed
self.n = n
self.p = p
self.left = left
self.right = right
self.ntype = node_type
class iTree(object):
"""
A single tree in the forest that is build using a unique subsample.
Attributes
----------
exlevel: int
Extension level used in the splitting criteria.
e: int
Depth of tree
X: list
Data present at the root node of this tree.
size: int
Size of the dataset.
dim: int
Dimension of the dataset.
Q: list
List of ordered integers smaller than dim.
l: int
Maxium depth a tree can reach before its creation is terminated.
n: list
Normal vector at the root of this tree, which is used in creating hyperplanes for splitting critera
p: list
Intercept point at the root of this tree through which the splitting hyperplane passes.
exnodes: int
The number of external nodes this tree has.
root: Node object
At each node create a new tree.
Methods
-------
make_tree(X, e, l)
Builds the tree recursively from a given node. Returns a Node object.
"""
def __init__(self,X,e,l, exlevel=0):
"""
iTree(X, e, l, exlevel=0)
Create a tree
Parameters
----------
X : list of list of floats
Subsample of training data. |X| = iForest.sample_size. List of [x1,x2,...,xn] coordinate points
e : int
Depth of the tree as it is being traversed down. e <= l.
l : int
The maximum depth the tree can reach before its creation is terminated.
exlevel : int
Specifies degree of freedom in choosing the hyperplanes for dividing up data. Must be smaller than the dimension n of the dataset.
"""
self.exlevel = exlevel
self.e = e
self.X = X #save data for now. Not really necessary.
self.size = len(X)
self.dim = self.X.shape[1]
self.Q = np.arange(np.shape(X)[1], dtype='int') # n dimensions
self.l = l
self.p = None # Intercept for the hyperplane for splitting data at a given node.
self.n = None # Normal vector for the hyperplane for splitting data at a given node.
self.exnodes = 0
self.root = self.make_tree(X,e,l) # At each node create a new tree, starting with root node.
def make_tree(self,X,e,l):
"""
make_tree(X,e,l)
Builds the tree recursively from a given node. Returns a Node object.
Parameters
----------
X: list of list of floats
Subsample of training data. |X| = iForest.sample_size. List of [x1,x2,...,xn] coordinate point.
e : int
Depth of the tree as it is being traversed down. Integer. e <= l.
l : int
The maximum depth the tree can reach before its creation is terminated. Integer.
Returns
-------
Node object
"""
self.e = e
if e >= l or len(X) <= 1: # A point is isolated in traning data, or the depth limit has been reached.
left = None
right = None
self.exnodes += 1
return Node(X, self.n, self.p, e, left, right, node_type = 'exNode')
else: # Building the tree continues. All these nodes are internal.
mins = X.min(axis=0)
maxs = X.max(axis=0)
idxs = np.random.choice(range(self.dim), self.dim-self.exlevel-1, replace=False) # Pick the indices for which the normal vector elements should be set to zero acccording to the extension level.
self.n = np.random.normal(0,1,self.dim) # A random normal vector picked form a uniform n-sphere. Note that in order to pick uniformly from n-sphere, we need to pick a random normal for each component of this vector.
self.n[idxs] = 0
self.p = np.random.uniform(mins,maxs) # Picking a random intercept point for the hyperplane splitting data.
w = (X-self.p).dot(self.n) < 0 # Criteria that determines if a data point should go to the left or right child node.
return Node(X, self.n, self.p, e,\
left=self.make_tree(X[w],e+1,l),\
right=self.make_tree(X[~w],e+1,l),\
node_type = 'inNode' )
class PathFactor(object):
"""
Given a single tree (iTree objext) and a data point x = [x1,x2,...,xn], compute the legth of the path traversed by the point on the tree when it reaches an external node.
Attributes
----------
path_list: list
A list of strings 'L' or 'R' which traces the path a data point travels down a tree.
x: list
A single data point, which is represented as a list of floats.
e: int
The depth of a given node in the tree.
Methods
-------
find_path(T)
Given a tree, it finds the path a single data points takes.
"""
def __init__(self,x,itree):
"""
PathFactor(x, itree)
Given a single tree (iTree objext) and a data point x = [x1,x2,...,xn], compute the legth of the path traversed by the point on the tree when it reaches an external node.
Parameters
----------
x : list of floats
A data point x = [x1, x2, ..., xn].
itree : iTree object
A single tree.
"""
self.path_list=[]
self.x = x
self.e = 0
self.path = self.find_path(itree.root)
def find_path(self,T):
"""
find_path(T)
Given a tree, find the path for a single data point based on the splitting criteria stored at each node.
Parameters
----------
T : iTree object
Returns
-------
int
The depth reached by the data point.
"""
if T.ntype == 'exNode':
if T.size <= 1: return self.e
else:
self.e = self.e + c_factor(T.size)
return self.e
else:
p = T.p # Intercept for the hyperplane for splitting data at a given node.
n = T.n # Normal vector for the hyperplane for splitting data at a given node.
self.e += 1
if (self.x-p).dot(n) < 0:
self.path_list.append('L')
return self.find_path(T.left)
else:
self.path_list.append('R')
return self.find_path(T.right)
def all_branches(node, current=[], branches = None):
"""
Utility function used in generating a graph visualization. It returns all the branches of a given tree so they can be visualized.
Parameters
----------
node: Node object
Returns
-------
list
list of branches that were reached.
"""
current = current[:node.e]
if branches is None: branches = []
if node.ntype == 'inNode':
current.append('L')
all_branches(node.left, current=current, branches=branches)
current = current[:-1]
current.append('R')
all_branches(node.right, current=current, branches=branches)
else:
branches.append(current)
return branches