@@ -152,13 +152,13 @@ class NilpotentLieGroup(Group, DifferentiableManifold):
152152 sage: exp1_frame = G.chart_exp1().frame()
153153 sage: exp2_frame = G.chart_exp2().frame()
154154 sage: X[0].display(exp1_frame)
155- X_0 = d/dx_0 - 1/2*x_1 d/dx_2
155+ X_0 = ∂/∂x_0 - 1/2*x_1 ∂/∂x_2
156156 sage: X[0].display(exp2_frame)
157- X_0 = d/dy_0
157+ X_0 = ∂/∂y_0
158158 sage: X[1].display(exp1_frame)
159- X_1 = d/dx_1 + 1/2*x_0 d/dx_2
159+ X_1 = ∂/∂x_1 + 1/2*x_0 ∂/∂x_2
160160 sage: X[1].display(exp2_frame)
161- X_1 = d/dy_1 + x_0 d/dy_2
161+ X_1 = ∂/∂y_1 + x_0 ∂/∂y_2
162162
163163 Defining a left translation by a generic point::
164164
@@ -167,11 +167,13 @@ class NilpotentLieGroup(Group, DifferentiableManifold):
167167 sage: L_g = G.left_translation(g); L_g
168168 Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational Field
169169 sage: L_g.display()
170- G --> G
171- (x_0, x_1, x_2) |--> (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)
172- (x_0, x_1, x_2) |--> (y_0, y_1, y_2) = (a + x_0, b + x_1, 1/2*a*b + 1/2*(2*a + x_0)*x_1 + c + x_2)
173- (y_0, y_1, y_2) |--> (x_0, x_1, x_2) = (a + y_0, b + y_1, -1/2*b*y_0 + 1/2*(a - y_0)*y_1 + c + y_2)
174- (y_0, y_1, y_2) |--> (a + y_0, b + y_1, 1/2*a*b + a*y_1 + c + y_2)
170+ G → G
171+ (x_0, x_1, x_2) ↦ (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)
172+ (x_0, x_1, x_2) ↦ (y_0, y_1, y_2) = (a + x_0, b + x_1,
173+ 1/2*a*b + 1/2*(2*a + x_0)*x_1 + c + x_2)
174+ (y_0, y_1, y_2) ↦ (x_0, x_1, x_2) = (a + y_0, b + y_1,
175+ -1/2*b*y_0 + 1/2*(a - y_0)*y_1 + c + y_2)
176+ (y_0, y_1, y_2) ↦ (a + y_0, b + y_1, 1/2*a*b + a*y_1 + c + y_2)
175177
176178 Verifying the left-invariance of the left-invariant frame::
177179
@@ -189,10 +191,10 @@ class NilpotentLieGroup(Group, DifferentiableManifold):
189191 sage: X_L = G.left_invariant_extension(p + 3*q); X_L
190192 Vector field p1 + 3*q1 on the Lie group G of Heisenberg algebra of rank 1 over Rational Field
191193 sage: X_L.display(exp1_frame)
192- p1 + 3*q1 = d/dx_0 + 3 d/dx_1 + (3/2*x_0 - 1/2*x_1) d/dx_2
194+ p1 + 3*q1 = ∂/∂x_0 + 3 ∂/∂x_1 + (3/2*x_0 - 1/2*x_1) ∂/∂x_2
193195 sage: X_R = G.right_invariant_extension(p + 3*q)
194196 sage: X_R.display(exp1_frame)
195- p1 + 3*q1 = d/dx_0 + 3 d/dx_1 + (-3/2*x_0 + 1/2*x_1) d/dx_2
197+ p1 + 3*q1 = ∂/∂x_0 + 3 ∂/∂x_1 + (-3/2*x_0 + 1/2*x_1) ∂/∂x_2
196198
197199 The nilpotency step of the Lie group is the nilpotency step of its algebra.
198200 Nilpotency for Lie groups means that group commutators that are longer than
@@ -503,16 +505,16 @@ def left_translation(self, g):
503505 sage: L_g = G.left_translation(g); L_g
504506 Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational Field
505507 sage: L_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
506- G --> G
507- (x_0, x_1, x_2) |--> (x_0 + 1, x_1, 1/2*x_1 + x_2)
508+ G → G
509+ (x_0, x_1, x_2) ↦ (x_0 + 1, x_1, 1/2*x_1 + x_2)
508510
509511 Left translation by a generic element::
510512
511513 sage: h = G.point([var('a'), var('b'), var('c')])
512514 sage: L_h = G.left_translation(h)
513515 sage: L_h.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
514- G --> G
515- (x_0, x_1, x_2) |--> (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)
516+ G → G
517+ (x_0, x_1, x_2) ↦ (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)
516518 """
517519 chart = self .default_chart ()
518520 x = self .point (chart [:])
@@ -537,11 +539,11 @@ def left_invariant_frame(self, **kwds):
537539 Vector frame (G, (X_1,X_2,X_12))
538540 sage: coord_frame = G.chart_exp1().frame()
539541 sage: livf[0].display(coord_frame)
540- X_1 = d/dx_1 - 1/2*x_2 d/dx_12
542+ X_1 = ∂/∂x_1 - 1/2*x_2 ∂/∂x_12
541543 sage: livf[1].display(coord_frame)
542- X_2 = d/dx_2 + 1/2*x_1 d/dx_12
544+ X_2 = ∂/∂x_2 + 1/2*x_1 ∂/∂x_12
543545 sage: livf[2].display(coord_frame)
544- X_12 = d/dx_12
546+ X_12 = ∂/∂x_12
545547
546548 Examples of custom labeling for the frame::
547549
@@ -583,7 +585,7 @@ def left_invariant_extension(self, X, name=None):
583585 sage: X = H.left_invariant_extension(p); X
584586 Vector field p1 on the Lie group H of Heisenberg algebra of rank 1 over Rational Field
585587 sage: X.display(H.chart_exp1().frame())
586- p1 = d/dx_0 - 1/2*x_1 d/dx_2
588+ p1 = ∂/∂x_0 - 1/2*x_1 ∂/∂x_2
587589
588590 Default vs. custom naming for the invariant vector field::
589591
@@ -625,16 +627,16 @@ def right_translation(self, g):
625627 sage: R_g = G.right_translation(g); R_g
626628 Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational Field
627629 sage: R_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
628- G --> G
629- (x_0, x_1, x_2) |--> (x_0 + 1, x_1, -1/2*x_1 + x_2)
630+ G → G
631+ (x_0, x_1, x_2) ↦ (x_0 + 1, x_1, -1/2*x_1 + x_2)
630632
631633 Right translation by a generic element::
632634
633635 sage: h = G.point([var('a'), var('b'), var('c')])
634636 sage: R_h = G.right_translation(h)
635637 sage: R_h.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
636- G --> G
637- (x_0, x_1, x_2) |--> (a + x_0, b + x_1, 1/2*b*x_0 - 1/2*a*x_1 + c + x_2)
638+ G → G
639+ (x_0, x_1, x_2) ↦ (a + x_0, b + x_1, 1/2*b*x_0 - 1/2*a*x_1 + c + x_2)
638640 """
639641 chart = self .default_chart ()
640642 x = self .point (chart [:])
@@ -659,11 +661,11 @@ def right_invariant_frame(self, **kwds):
659661 Vector frame (G, (XR_1,XR_2,XR_12))
660662 sage: coord_frame = G.chart_exp1().frame()
661663 sage: rivf[0].display(coord_frame)
662- XR_1 = d/dx_1 + 1/2*x_2 d/dx_12
664+ XR_1 = ∂/∂x_1 + 1/2*x_2 ∂/∂x_12
663665 sage: rivf[1].display(coord_frame)
664- XR_2 = d/dx_2 - 1/2*x_1 d/dx_12
666+ XR_2 = ∂/∂x_2 - 1/2*x_1 ∂/∂x_12
665667 sage: rivf[2].display(coord_frame)
666- XR_12 = d/dx_12
668+ XR_12 = ∂/∂x_12
667669
668670 Examples of custom labeling for the frame::
669671
@@ -705,7 +707,7 @@ def right_invariant_extension(self, X, name=None):
705707 sage: X = H.right_invariant_extension(p); X
706708 Vector field p1 on the Lie group H of Heisenberg algebra of rank 1 over Rational Field
707709 sage: X.display(H.chart_exp1().frame())
708- p1 = d/dx_0 + 1/2*x_1 d/dx_2
710+ p1 = ∂/∂x_0 + 1/2*x_1 ∂/∂x_2
709711
710712 Default vs. custom naming for the invariant vector field::
711713
@@ -747,8 +749,8 @@ def conjugation(self, g):
747749 sage: C_g = G.conjugation(g); C_g
748750 Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational Field
749751 sage: C_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
750- G --> G
751- (x_0, x_1, x_2) |--> (x_0, x_1, -b*x_0 + a*x_1 + x_2)
752+ G → G
753+ (x_0, x_1, x_2) ↦ (x_0, x_1, -b*x_0 + a*x_1 + x_2)
752754 """
753755 chart = self .default_chart ()
754756 x = self .point (chart [:])
0 commit comments