Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit eddd45d

Browse files
committed
10720: doc fixes
1 parent 3a5d992 commit eddd45d

File tree

3 files changed

+17
-3
lines changed

3 files changed

+17
-3
lines changed

src/sage/rings/laurent_series_ring_element.pyx

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1359,7 +1359,9 @@ cdef class LaurentSeries(AlgebraElement):
13591359
13601360
- ``n`` -- integer
13611361
1362-
- ``prec`` -- integer (optional) - precision of the result
1362+
- ``prec`` -- integer (optional) - precision of the result. Though, if
1363+
this series has finite precision, then the result can not have larger
1364+
precision.
13631365
13641366
EXAMPLES::
13651367

src/sage/rings/polynomial/polynomial_element.pyx

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -9673,6 +9673,16 @@ cdef class Polynomial(CommutativeAlgebraElement):
96739673
lowest degree is not invertible in the base ring. In both cases an
96749674
``ArithmeticError`` is raised.
96759675
9676+
INPUT:
9677+
9678+
- ``n`` -- positive integer; the exponent of the root
9679+
9680+
- ``prec`` -- positive integer; the precision of the result
9681+
9682+
- ``start`` -- optional; the first term of the result. This
9683+
is only considered when the valuation is zero, i.e. when the
9684+
polynomial has a nonzero constant term.
9685+
96769686
.. ALGORITHM::
96779687
96789688
Let us denote by `a` the polynomial from which we wish to extract

src/sage/rings/power_series_ring_element.pyx

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1415,7 +1415,9 @@ cdef class PowerSeries(AlgebraElement):
14151415
14161416
- ``n`` -- integer
14171417
1418-
- ``prec`` -- integer (optional) - the precision of the result
1418+
- ``prec`` -- integer (optional) - precision of the result. Though, if
1419+
this series has finite precision, then the result can not have larger
1420+
precision.
14191421
14201422
EXAMPLES::
14211423
@@ -1426,7 +1428,7 @@ cdef class PowerSeries(AlgebraElement):
14261428
sage: (1 + x + O(x^5)).nth_root(5)
14271429
1 + 1/5*x - 2/25*x^2 + 6/125*x^3 - 21/625*x^4 + O(x^5)
14281430
1429-
Check that the result are consistent with taking log and exponential::
1431+
Check that the results are consistent with taking log and exponential::
14301432
14311433
sage: R.<x> = PowerSeriesRing(QQ, default_prec=100)
14321434
sage: p = (1 + 2*x - x^4)**200

0 commit comments

Comments
 (0)