Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit d085587

Browse files
committed
24497: doctest fixes
1 parent 907aff6 commit d085587

File tree

3 files changed

+5
-5
lines changed

3 files changed

+5
-5
lines changed

src/sage/functions/transcendental.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ def __init__(self):
8686
8787
sage: s = SR('s')
8888
sage: zeta(s).series(s==1, 2)
89-
1*(s - 1)^(-1) + (euler_gamma) + (-stieltjes(1))*(s - 1) + Order((s - 1)^2)
89+
1*(s - 1)^(-1) + euler_gamma + (-stieltjes(1))*(s - 1) + Order((s - 1)^2)
9090
9191
Generally, the Stieltjes constants occur in the Laurent
9292
expansion of `\zeta`-type singularities::

src/sage/modular/modform_hecketriangle/graded_ring_element.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1944,8 +1944,8 @@ def evaluate(self, tau, prec = None, num_prec = None, check=False):
19441944
2.525...e-10 - 3.884...e-6*I
19451945
sage: f_i(i)
19461946
0
1947-
sage: f_i(i + 1e-1000)
1948-
-6.084...e-14 - 4.101...e-1000*I
1947+
sage: f_i(i + 1e-1000) # rel tol 5e-2
1948+
-6.08402217494586e-14 - 4.10147008296517e-1000*I
19491949
sage: f_inf(infinity)
19501950
0
19511951

src/sage/symbolic/series.pyx

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -88,7 +88,7 @@ TESTS:
8888
Check that :trac:`20088` is fixed::
8989
9090
sage: ((1+x).series(x)^pi).series(x,3)
91-
1 + (pi)*x + (-1/2*pi + 1/2*pi^2)*x^2 + Order(x^3)
91+
1 + pi*x + (-1/2*pi + 1/2*pi^2)*x^2 + Order(x^3)
9292
9393
Check that :trac:`14878` is fixed, this should take only microseconds::
9494
@@ -281,7 +281,7 @@ cdef class SymbolicSeries(Expression):
281281
EXAMPLES::
282282
283283
sage: ex=(gamma(1-x)).series(x,3); ex
284-
1 + (euler_gamma)*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + Order(x^3)
284+
1 + euler_gamma*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + Order(x^3)
285285
sage: g=ex.power_series(SR); g
286286
1 + euler_gamma*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + O(x^3)
287287
sage: g.parent()

0 commit comments

Comments
 (0)