Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit ba866ef

Browse files
committed
Merge branch 'public/ticket/11726' into raise-plus
Conflicts: src/sage/rings/polynomial/laurent_polynomial_ring.py resolve merge conflicts with #11726
2 parents 16a0f91 + e27a420 commit ba866ef

File tree

11 files changed

+1611
-181
lines changed

11 files changed

+1611
-181
lines changed

src/doc/en/thematic_tutorials/lie/kazhdan_lusztig_polynomials.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -15,9 +15,9 @@ Kazhdan-Lusztig polynomials as follows::
1515
sage: P.<q> = LaurentPolynomialRing(QQ)
1616
sage: KL = KazhdanLusztigPolynomial(W,q)
1717
sage: KL.R(s2, s2*s1*s3*s2)
18-
q^3 - 3*q^2 + 3*q - 1
18+
-1 + 3*q - 3*q^2 + q^3
1919
sage: KL.P(s2, s2*s1*s3*s2)
20-
q + 1
20+
1 + q
2121

2222
Thus we have the Kazhdan-Lusztig R and P polynomials.
2323

src/sage/algebras/hall_algebra.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -194,11 +194,11 @@ class HallAlgebra(CombinatorialFreeModule):
194194
sage: H = HallAlgebra(R, q)
195195
sage: I = H.monomial_basis()
196196
sage: hi = H(I[2,1]); hi
197-
H[2, 1] + (q^2+q+1)*H[1, 1, 1]
197+
H[2, 1] + (1+q+q^2)*H[1, 1, 1]
198198
sage: hi.parent() is H
199199
True
200200
sage: h22 = H[2]*H[2]; h22
201-
H[4] + (q-1)*H[3, 1] + (q^2+q)*H[2, 2]
201+
H[4] - (1-q)*H[3, 1] + (q+q^2)*H[2, 2]
202202
sage: h22.parent() is H
203203
True
204204
sage: e = SymmetricFunctions(R).e()
@@ -339,10 +339,10 @@ def coproduct_on_basis(self, la):
339339
sage: R.<q> = LaurentPolynomialRing(ZZ)
340340
sage: H = HallAlgebra(R, q)
341341
sage: H.coproduct_on_basis(Partition([2]))
342-
H[] # H[2] + (1-q^-1)*H[1] # H[1] + H[2] # H[]
342+
H[] # H[2] - (q^-1-1)*H[1] # H[1] + H[2] # H[]
343343
sage: H.coproduct_on_basis(Partition([2,1]))
344-
H[] # H[2, 1] + (1-q^-2)*H[1] # H[1, 1] + (q^-1)*H[1] # H[2]
345-
+ (1-q^-2)*H[1, 1] # H[1] + (q^-1)*H[2] # H[1] + H[2, 1] # H[]
344+
H[] # H[2, 1] - (q^-2-1)*H[1] # H[1, 1] + (q^-1)*H[1] # H[2]
345+
- (q^-2-1)*H[1, 1] # H[1] + (q^-1)*H[2] # H[1] + H[2, 1] # H[]
346346
"""
347347
S = self.tensor_square()
348348
if all(x == 1 for x in la):
@@ -373,7 +373,7 @@ def antipode_on_basis(self, la):
373373
sage: H.antipode_on_basis(Partition([1,1]))
374374
(q^-1)*H[2] + (q^-1)*H[1, 1]
375375
sage: H.antipode_on_basis(Partition([2]))
376-
(-q^-1)*H[2] + (q-q^-1)*H[1, 1]
376+
-(q^-1)*H[2] - (q^-1-q)*H[1, 1]
377377
"""
378378
if all(x == 1 for x in la):
379379
r = len(la)
@@ -541,9 +541,9 @@ class HallAlgebraMonomials(CombinatorialFreeModule):
541541
(q^-8)*e[4, 2, 2, 1]
542542
sage: HLP = Sym.hall_littlewood(q).P()
543543
sage: H(I[2,1])
544-
H[2, 1] + (q^2+q+1)*H[1, 1, 1]
544+
H[2, 1] + (1+q+q^2)*H[1, 1, 1]
545545
sage: HLP(e[2,1])
546-
(q^2+q+1)*HLP[1, 1, 1] + HLP[2, 1]
546+
(1+q+q^2)*HLP[1, 1, 1] + HLP[2, 1]
547547
sage: all( e(H[lam]) == q**-sum([i * x for i, x in enumerate(lam)])
548548
....: * e(HLP[lam]).map_coefficients(lambda p: p(q**(-1)))
549549
....: for lam in Partitions(4) )
@@ -706,7 +706,7 @@ def antipode_on_basis(self, a):
706706
sage: R.<q> = LaurentPolynomialRing(ZZ)
707707
sage: I = HallAlgebra(R, q).monomial_basis()
708708
sage: I.antipode_on_basis(Partition([2,1]))
709-
(-q^-1)*I[1, 1, 1] + I[2, 1]
709+
-(q^-1)*I[1, 1, 1] + I[2, 1]
710710
"""
711711
H = HallAlgebra(self.base_ring(), self._q)
712712
cur = self.one()

0 commit comments

Comments
 (0)