@@ -194,11 +194,11 @@ class HallAlgebra(CombinatorialFreeModule):
194194 sage: H = HallAlgebra(R, q)
195195 sage: I = H.monomial_basis()
196196 sage: hi = H(I[2,1]); hi
197- H[2, 1] + (q^2 +q+1 )*H[1, 1, 1]
197+ H[2, 1] + (1 +q+q^2 )*H[1, 1, 1]
198198 sage: hi.parent() is H
199199 True
200200 sage: h22 = H[2]*H[2]; h22
201- H[4] + (q-1 )*H[3, 1] + (q^2+q )*H[2, 2]
201+ H[4] - (1-q )*H[3, 1] + (q+q^2 )*H[2, 2]
202202 sage: h22.parent() is H
203203 True
204204 sage: e = SymmetricFunctions(R).e()
@@ -339,10 +339,10 @@ def coproduct_on_basis(self, la):
339339 sage: R.<q> = LaurentPolynomialRing(ZZ)
340340 sage: H = HallAlgebra(R, q)
341341 sage: H.coproduct_on_basis(Partition([2]))
342- H[] # H[2] + (1-q^ -1)*H[1] # H[1] + H[2] # H[]
342+ H[] # H[2] - (q^-1 -1)*H[1] # H[1] + H[2] # H[]
343343 sage: H.coproduct_on_basis(Partition([2,1]))
344- H[] # H[2, 1] + (1- q^-2)*H[1] # H[1, 1] + (q^-1)*H[1] # H[2]
345- + (1- q^-2)*H[1, 1] # H[1] + (q^-1)*H[2] # H[1] + H[2, 1] # H[]
344+ H[] # H[2, 1] - ( q^-2-1 )*H[1] # H[1, 1] + (q^-1)*H[1] # H[2]
345+ - ( q^-2-1 )*H[1, 1] # H[1] + (q^-1)*H[2] # H[1] + H[2, 1] # H[]
346346 """
347347 S = self .tensor_square ()
348348 if all (x == 1 for x in la ):
@@ -373,7 +373,7 @@ def antipode_on_basis(self, la):
373373 sage: H.antipode_on_basis(Partition([1,1]))
374374 (q^-1)*H[2] + (q^-1)*H[1, 1]
375375 sage: H.antipode_on_basis(Partition([2]))
376- (- q^-1)*H[2] + (q-q ^-1)*H[1, 1]
376+ -( q^-1)*H[2] - (q^-1-q )*H[1, 1]
377377 """
378378 if all (x == 1 for x in la ):
379379 r = len (la )
@@ -541,9 +541,9 @@ class HallAlgebraMonomials(CombinatorialFreeModule):
541541 (q^-8)*e[4, 2, 2, 1]
542542 sage: HLP = Sym.hall_littlewood(q).P()
543543 sage: H(I[2,1])
544- H[2, 1] + (q^2 +q+1 )*H[1, 1, 1]
544+ H[2, 1] + (1 +q+q^2 )*H[1, 1, 1]
545545 sage: HLP(e[2,1])
546- (q^2 +q+1 )*HLP[1, 1, 1] + HLP[2, 1]
546+ (1 +q+q^2 )*HLP[1, 1, 1] + HLP[2, 1]
547547 sage: all( e(H[lam]) == q**-sum([i * x for i, x in enumerate(lam)])
548548 ....: * e(HLP[lam]).map_coefficients(lambda p: p(q**(-1)))
549549 ....: for lam in Partitions(4) )
@@ -706,7 +706,7 @@ def antipode_on_basis(self, a):
706706 sage: R.<q> = LaurentPolynomialRing(ZZ)
707707 sage: I = HallAlgebra(R, q).monomial_basis()
708708 sage: I.antipode_on_basis(Partition([2,1]))
709- (- q^-1)*I[1, 1, 1] + I[2, 1]
709+ -( q^-1)*I[1, 1, 1] + I[2, 1]
710710 """
711711 H = HallAlgebra (self .base_ring (), self ._q )
712712 cur = self .one ()
0 commit comments