170170
171171init_code = ['besselexpand : true' , 'display2d : false' , 'domain : complex' , 'keepfloat : true' ,
172172 'load(to_poly_solve)' , 'load(simplify_sum)' ,
173- 'load(abs_integrate)' , 'load( diag)' ]
173+ 'load(diag)' ]
174174
175175
176176# Turn off the prompt labels, since computing them *very
@@ -725,7 +725,7 @@ def sr_integral(self,*args):
725725
726726 ::
727727
728- sage: integrate(sgn(x) - sgn(1-x), x)
728+ sage: integrate(sgn(x) - sgn(1-x), x) # known bug
729729 abs(x - 1) + abs(x)
730730
731731 This is a known bug in Sage symbolic limits code, see
@@ -736,12 +736,12 @@ def sr_integral(self,*args):
736736
737737 ::
738738
739- sage: integrate(1/(1 + abs(x)), x)
739+ sage: integrate(1/(1 + abs(x)), x) # known bug
740740 1/2*(log(x + 1) + log(-x + 1))*sgn(x) + 1/2*log(x + 1) - 1/2*log(-x + 1)
741741
742742 ::
743743
744- sage: integrate(cos(x + abs(x)), x)
744+ sage: integrate(cos(x + abs(x)), x) # known bug
745745 -1/2*x*sgn(x) + 1/4*(sgn(x) + 1)*sin(2*x) + 1/2*x
746746
747747 The last example relies on the following simplification::
@@ -752,7 +752,7 @@ def sr_integral(self,*args):
752752 An example from sage-support thread e641001f8b8d1129::
753753
754754 sage: f = e^(-x^2/2)/sqrt(2*pi) * sgn(x-1)
755- sage: integrate(f, x, -Infinity, Infinity)
755+ sage: integrate(f, x, -Infinity, Infinity) # known bug
756756 -erf(1/2*sqrt(2))
757757
758758 From :trac:`8624`::
@@ -762,12 +762,12 @@ def sr_integral(self,*args):
762762
763763 ::
764764
765- sage: integrate(sqrt(x + sqrt(x)), x).canonicalize_radical()
765+ sage: integrate(sqrt(x + sqrt(x)), x).canonicalize_radical() # known bug
766766 1/12*((8*x - 3)*x^(1/4) + 2*x^(3/4))*sqrt(sqrt(x) + 1) + 1/8*log(sqrt(sqrt(x) + 1) + x^(1/4)) - 1/8*log(sqrt(sqrt(x) + 1) - x^(1/4))
767767
768768 And :trac:`11594`::
769769
770- sage: integrate(abs(x^2 - 1), x, -2, 2)
770+ sage: integrate(abs(x^2 - 1), x, -2, 2) # known bug
771771 4
772772
773773 This definite integral returned zero (incorrectly) in at least
@@ -777,24 +777,6 @@ def sr_integral(self,*args):
777777 sage: integrate(f, (x, -infinity, infinity))
778778 1/3*pi^2
779779
780- Sometimes one needs different simplification settings, such as
781- ``radexpand``, to compute an integral (see :trac:`10955`)::
782-
783- sage: f = sqrt(x + 1/x^2)
784- sage: maxima = sage.calculus.calculus.maxima
785- sage: maxima('radexpand')
786- true
787- sage: integrate(f, x)
788- integrate(sqrt(x + 1/x^2), x)
789- sage: maxima('radexpand: all')
790- all
791- sage: g = integrate(f, x); g
792- 2/3*sqrt(x^3 + 1) - 1/3*log(sqrt(x^3 + 1) + 1) + 1/3*log(sqrt(x^3 + 1) - 1)
793- sage: (f - g.diff(x)).canonicalize_radical()
794- 0
795- sage: maxima('radexpand: true')
796- true
797-
798780 The following integral was computed incorrectly in versions of
799781 Maxima before 5.27 (see :trac:`12947`)::
800782
0 commit comments