@@ -168,9 +168,9 @@ def __init__(self, semigroup, module, on_basis, side="left", **kwargs):
168168 sage: G = CyclicPermutationGroup(3)
169169 sage: M = algebras.Exterior(QQ, 'x', 3)
170170 sage: from sage.modules.with_basis.representation import Representation
171- sage: on_basis = lambda g,m: M.prod([M.monomial(tuple([ g(j+1)-1] )) for j in m]) #cyclically permute generators
171+ sage: on_basis = lambda g,m: M.prod([M.monomial(( g(j+1)-1, )) for j in m]) #cyclically permute generators
172172 sage: from sage.categories.algebras import Algebras
173- sage: R = Representation(G, M, on_basis, category = Algebras(QQ).WithBasis().FiniteDimensional())
173+ sage: R = Representation(G, M, on_basis, category= Algebras(QQ).WithBasis().FiniteDimensional())
174174 sage: r = R.an_element(); r
175175 1 + 2*x0 + x0*x1 + 3*x1
176176 sage: r*r
@@ -193,7 +193,7 @@ def __init__(self, semigroup, module, on_basis, side="left", **kwargs):
193193 sage: from sage.modules.with_basis.representation import Representation
194194 sage: action = lambda g,x: A.monomial(g*x)
195195 sage: category = Algebras(QQ).WithBasis().FiniteDimensional()
196- sage: R = Representation(G, A, action, 'left', category = category)
196+ sage: R = Representation(G, A, action, 'left', category= category)
197197 sage: r = R.an_element(); r
198198 () + (2,3,4) + 2*(1,3)(2,4) + 3*(1,4)(2,3)
199199 sage: r^2
@@ -349,7 +349,7 @@ def product_by_coercion(self, left, right):
349349
350350 sage: from sage.categories.algebras import Algebras
351351 sage: category = Algebras(QQ).FiniteDimensional().WithBasis()
352- sage: T = Representation(G, E, on_basis, category = category)
352+ sage: T = Representation(G, E, on_basis, category= category)
353353 sage: t = T.an_element(); t
354354 1 + 2*e0 + 3*e1 + e1*e2
355355 sage: g*t == t
0 commit comments