@@ -380,7 +380,7 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
380380 f_z = v
381381 sphinx_plot(parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-1,1), frame=False, color="red"))
382382
383- A Trefoil knot https://en. wikipedia.org/wiki/ Trefoil_knot::
383+ A Trefoil knot (: wikipedia:` Trefoil_knot`) ::
384384
385385 sage: u, v = var('u,v')
386386 sage: f_x = (4*(1+0.25*sin(3*v))+cos(u))*cos(2*v)
@@ -414,7 +414,7 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
414414 f_z = cos(u) / (1 + sqrt(2))
415415 sphinx_plot(parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-pi,pi), frame=False, color="green"))
416416
417- Boy's surface http://en. wikipedia.org/wiki/ Boy's_surface and http ://mathcurve.com/surfaces/boy/boy.shtml::
417+ Boy's surface (: wikipedia:` Boy's_surface` and https ://mathcurve.com/surfaces/boy/boy.shtml) ::
418418
419419 sage: u, v = var('u,v')
420420 sage: K = cos(u) / (sqrt(2) - cos(2*u)*sin(3*v))
@@ -436,7 +436,7 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
436436 plot_points=[90,90], frame=False, color="orange") # long time -- about 30 seconds
437437 sphinx_plot(P)
438438
439- Maeder's Owl also known as Bour's minimal surface https://en. wikipedia.org/wiki/ Bour%27s_minimal_surface::
439+ Maeder's Owl also known as Bour's minimal surface (: wikipedia:` Bour%27s_minimal_surface`) ::
440440
441441 sage: u, v = var('u,v')
442442 sage: f_x = v*cos(u) - 0.5*v^2*cos(2*u)
@@ -527,8 +527,7 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
527527 f_z = sin(v)
528528 sphinx_plot(parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="green"))
529529
530- Yellow Whitney's umbrella
531- http://en.wikipedia.org/wiki/Whitney_umbrella::
530+ Yellow Whitney's umbrella (:wikipedia:`Whitney_umbrella`)::
532531
533532 sage: u, v = var('u,v')
534533 sage: f_x = u*v
@@ -545,7 +544,7 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
545544 f_z = v**2
546545 sphinx_plot(parametric_plot3d([f_x, f_y, f_z], (u,-1,1), (v,-1,1), frame=False, color="yellow"))
547546
548- Cross cap http://en. wikipedia.org/wiki/ Cross-cap::
547+ Cross cap (: wikipedia:` Cross-cap`) ::
549548
550549 sage: u, v = var('u,v')
551550 sage: f_x = (1+cos(v)) * cos(u)
@@ -597,8 +596,8 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
597596 sphinx_plot(parametric_plot3d([f_x, f_y, f_z], (u,0,4*pi), (v,0,2*pi), frame=False, color="red", opacity=0.7))
598597
599598 Steiner surface/Roman's surface (see
600- http://en. wikipedia.org/wiki/ Roman_surface and
601- http://en. wikipedia.org/wiki/ Steiner_surface)::
599+ : wikipedia:` Roman_surface` and
600+ : wikipedia:` Steiner_surface` )::
602601
603602 sage: u, v = var('u,v')
604603 sage: f_x = (sin(2*u) * cos(v) * cos(v))
@@ -615,7 +614,7 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
615614 f_z = (cos(u) * sin(2*v))
616615 sphinx_plot(parametric_plot3d([f_x, f_y, f_z], (u,-pi/2,pi/2), (v,-pi/2,pi/2), frame=False, color="red"))
617616
618- Klein bottle? (see http://en. wikipedia.org/wiki/ Klein_bottle)::
617+ Klein bottle? (see : wikipedia:` Klein_bottle` )::
619618
620619 sage: u, v = var('u,v')
621620 sage: f_x = (3*(1+sin(v)) + 2*(1-cos(v)/2)*cos(u)) * cos(v)
@@ -633,7 +632,7 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
633632 sphinx_plot(parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="green"))
634633
635634 A Figure 8 embedding of the Klein bottle (see
636- http://en. wikipedia.org/wiki/ Klein_bottle)::
635+ : wikipedia:` Klein_bottle` )::
637636
638637 sage: u, v = var('u,v')
639638 sage: f_x = (2+cos(v/2)*sin(u)-sin(v/2)*sin(2*u)) * cos(v)
@@ -651,7 +650,7 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
651650 sphinx_plot(parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="red"))
652651
653652 Enneper's surface (see
654- http://en. wikipedia.org/wiki/ Enneper_surface)::
653+ : wikipedia:` Enneper_surface` )::
655654
656655 sage: u, v = var('u,v')
657656 sage: f_x = u - u^3/3 + u*v^2
@@ -861,7 +860,7 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
861860 sphinx_plot(parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-pi,pi), plot_points=[50,50], frame=False, color="red"))
862861
863862 A Helicoid (lines through a helix,
864- http://en. wikipedia.org/wiki/ Helix)::
863+ : wikipedia:` Helix` )::
865864
866865 sage: u, v = var('u,v')
867866 sage: f_x = sinh(v) * sin(u)
@@ -932,7 +931,7 @@ def g(x,y): return x, y+sin(y), x**2 + y**2
932931 sphinx_plot(parametric_plot3d([f_x, f_y, f_z], (u,-25,25), (v,-25,25), plot_points=[50,50], frame=False, color="green"))
933932
934933 The breather surface
935- (http://en. wikipedia.org/wiki/ Breather_surface)::
934+ (: wikipedia:` Breather_surface` )::
936935
937936 sage: K = sqrt(0.84)
938937 sage: G = (0.4*((K*cosh(0.4*u))^2 + (0.4*sin(K*v))^2))
0 commit comments