@@ -47,7 +47,7 @@ Functions
4747"""
4848
4949from sage.misc.cachefunc import cached_function
50- from .orthogonal_arrays import orthogonal_array
50+ from sage.combinat.designs .orthogonal_arrays import orthogonal_array
5151from sage.rings.integer cimport smallInteger
5252from sage.arith.misc import prime_powers
5353
@@ -153,7 +153,7 @@ cpdef find_product_decomposition(int k,int n) noexcept:
153153 # faster to use that rather than calling the divisors function
154154 continue
155155 if is_available(k, n1) and is_available(k, n2):
156- from .orthogonal_arrays import wilson_construction
156+ from sage.combinat.designs .orthogonal_arrays import wilson_construction
157157 return wilson_construction, (None ,k,n1,n2,(),False )
158158 return False
159159
@@ -203,7 +203,7 @@ cpdef find_wilson_decomposition_with_one_truncated_group(int k,int n) noexcept:
203203 is_available(k ,m+ 1 ) and
204204 is_available(k+ 1 ,r ) and
205205 is_available(k ,u )):
206- from .orthogonal_arrays import wilson_construction
206+ from sage.combinat.designs .orthogonal_arrays import wilson_construction
207207 return wilson_construction, (None ,k,r,m,(u,),False )
208208
209209 return False
@@ -266,7 +266,7 @@ cpdef find_wilson_decomposition_with_two_truncated_groups(int k,int n) noexcept:
266266 r2 = r1_p_r2- r1
267267 if is_available(k,r2):
268268 assert n == r* m+ r1+ r2
269- from .orthogonal_arrays import wilson_construction
269+ from sage.combinat.designs .orthogonal_arrays import wilson_construction
270270 return wilson_construction, (None ,k,r,m,(r1,r2),False )
271271 return False
272272
@@ -306,7 +306,7 @@ cpdef find_construction_3_3(int k,int n) noexcept:
306306
307307 if (is_available(k+ i, nn ) and
308308 is_available(k , mm+ i)):
309- from .orthogonal_arrays_build_recursive import construction_3_3
309+ from sage.combinat.designs .orthogonal_arrays_build_recursive import construction_3_3
310310 return construction_3_3, (k,nn,mm,i)
311311
312312cpdef find_construction_3_4(int k,int n) noexcept:
@@ -349,7 +349,7 @@ cpdef find_construction_3_4(int k,int n) noexcept:
349349 if (is_available(k+ r+ 1 ,nn) and
350350 is_available(k , s) and
351351 (is_available(k,mm+ r) or is_available(k,mm+ r+ 1 ))):
352- from .orthogonal_arrays_build_recursive import construction_3_4
352+ from sage.combinat.designs .orthogonal_arrays_build_recursive import construction_3_4
353353 return construction_3_4, (k,nn,mm,r,s)
354354
355355cpdef find_construction_3_5(int k,int n) noexcept:
@@ -399,7 +399,7 @@ cpdef find_construction_3_5(int k,int n) noexcept:
399399 (r== 0 or is_available(k,r)) and
400400 (s== 0 or is_available(k,s)) and
401401 (t== 0 or is_available(k,t))):
402- from .orthogonal_arrays_build_recursive import construction_3_5
402+ from sage.combinat.designs .orthogonal_arrays_build_recursive import construction_3_5
403403 return construction_3_5, (k,nn,mm,r,s,t)
404404
405405cpdef find_construction_3_6(int k,int n) noexcept:
@@ -440,7 +440,7 @@ cpdef find_construction_3_6(int k,int n) noexcept:
440440
441441 if (is_available(k+ i,nn) and
442442 smallInteger(nn).is_prime_power()):
443- from .orthogonal_arrays_build_recursive import construction_3_6
443+ from sage.combinat.designs .orthogonal_arrays_build_recursive import construction_3_6
444444 return construction_3_6, (k,nn,mm,i)
445445
446446cpdef find_q_x(int k,int n) noexcept:
@@ -492,7 +492,7 @@ cpdef find_q_x(int k,int n) noexcept:
492492 # is_available(k+1,q) and
493493 is_available(k, x+ 2 ) and
494494 smallInteger(q).is_prime_power()):
495- from .orthogonal_arrays_build_recursive import construction_q_x
495+ from sage.combinat.designs .orthogonal_arrays_build_recursive import construction_q_x
496496 return construction_q_x, (k,q,x)
497497 return False
498498
@@ -546,7 +546,7 @@ cpdef find_thwart_lemma_3_5(int k,int N) noexcept:
546546 sage: for k,n in kn: # not tested -- too long
547547 .... : assert designs. orthogonal_array( k,n,existence=True) is True
548548 """
549- from .orthogonal_arrays_build_recursive import thwart_lemma_3_5
549+ from sage.combinat.designs .orthogonal_arrays_build_recursive import thwart_lemma_3_5
550550 cdef int n,m,a,b,c,d,NN,na,nb,nc
551551
552552 for n in prime_powers(k+ 2 ,N- 2 ): # There must exist a OA(k+3,n) thus n>=k+2
@@ -661,7 +661,7 @@ cpdef find_thwart_lemma_4_1(int k,int n) noexcept:
661661 not is_available(k,mm+ 4 )):
662662 continue
663663
664- from .orthogonal_arrays_build_recursive import thwart_lemma_4_1
664+ from sage.combinat.designs .orthogonal_arrays_build_recursive import thwart_lemma_4_1
665665 return thwart_lemma_4_1,(k,nn,mm)
666666
667667 return False
@@ -706,7 +706,7 @@ cpdef find_three_factor_product(int k,int n) noexcept:
706706 not is_available(k,n2) or
707707 not is_available(k,n3)):
708708 continue
709- from .orthogonal_arrays_build_recursive import three_factor_product
709+ from sage.combinat.designs .orthogonal_arrays_build_recursive import three_factor_product
710710 return three_factor_product,(k- 1 ,n1,n2,n3)
711711
712712 return False
@@ -731,7 +731,7 @@ cpdef find_brouwer_separable_design(int k,int n) noexcept:
731731 sage: find_brouwer_separable_design( 5,14)
732732 False
733733 """
734- from .orthogonal_arrays_build_recursive import brouwer_separable_design
734+ from sage.combinat.designs .orthogonal_arrays_build_recursive import brouwer_separable_design
735735 cdef int q,x,baer_subplane_size, max_t, min_t, t,e1,e2,e3,e4
736736
737737 for q in prime_powers(2 ,n):
@@ -945,7 +945,7 @@ cpdef find_brouwer_van_rees_with_one_truncated_column(int k,int n) noexcept:
945945
946946 values = int_as_sum(remainder, available_multipliers, r)
947947 if values is not None :
948- from .orthogonal_arrays import wilson_construction
948+ from sage.combinat.designs .orthogonal_arrays import wilson_construction
949949 return (wilson_construction,
950950 (None ,k,r,m,[[(x,1 ) for x in values]]))
951951
0 commit comments