@@ -48,7 +48,7 @@ Functions
4848"""
4949
5050from sage.misc.cachefunc import cached_function
51- from .orthogonal_arrays import orthogonal_array
51+ from sage.combinat.designs .orthogonal_arrays import orthogonal_array
5252from sage.rings.integer cimport smallInteger
5353from sage.arith.misc import prime_powers
5454
@@ -152,7 +152,7 @@ cpdef find_product_decomposition(int k,int n):
152152 # faster to use that rather than calling the divisors function
153153 continue
154154 if is_available(k, n1) and is_available(k, n2):
155- from .orthogonal_arrays import wilson_construction
155+ from sage.combinat.designs .orthogonal_arrays import wilson_construction
156156 return wilson_construction, (None ,k,n1,n2,(),False )
157157 return False
158158
@@ -202,7 +202,7 @@ cpdef find_wilson_decomposition_with_one_truncated_group(int k,int n):
202202 is_available(k ,m+ 1 ) and
203203 is_available(k+ 1 ,r ) and
204204 is_available(k ,u )):
205- from .orthogonal_arrays import wilson_construction
205+ from sage.combinat.designs .orthogonal_arrays import wilson_construction
206206 return wilson_construction, (None ,k,r,m,(u,),False )
207207
208208 return False
@@ -265,7 +265,7 @@ cpdef find_wilson_decomposition_with_two_truncated_groups(int k,int n):
265265 r2 = r1_p_r2- r1
266266 if is_available(k,r2):
267267 assert n == r* m+ r1+ r2
268- from .orthogonal_arrays import wilson_construction
268+ from sage.combinat.designs .orthogonal_arrays import wilson_construction
269269 return wilson_construction, (None ,k,r,m,(r1,r2),False )
270270 return False
271271
@@ -305,7 +305,7 @@ cpdef find_construction_3_3(int k,int n):
305305
306306 if (is_available(k+ i, nn ) and
307307 is_available(k , mm+ i)):
308- from .orthogonal_arrays_build_recursive import construction_3_3
308+ from sage.combinat.designs .orthogonal_arrays_build_recursive import construction_3_3
309309 return construction_3_3, (k,nn,mm,i)
310310
311311cpdef find_construction_3_4(int k,int n):
@@ -348,7 +348,7 @@ cpdef find_construction_3_4(int k,int n):
348348 if (is_available(k+ r+ 1 ,nn) and
349349 is_available(k , s) and
350350 (is_available(k,mm+ r) or is_available(k,mm+ r+ 1 ))):
351- from .orthogonal_arrays_build_recursive import construction_3_4
351+ from sage.combinat.designs .orthogonal_arrays_build_recursive import construction_3_4
352352 return construction_3_4, (k,nn,mm,r,s)
353353
354354cpdef find_construction_3_5(int k,int n):
@@ -398,7 +398,7 @@ cpdef find_construction_3_5(int k,int n):
398398 (r== 0 or is_available(k,r)) and
399399 (s== 0 or is_available(k,s)) and
400400 (t== 0 or is_available(k,t))):
401- from .orthogonal_arrays_build_recursive import construction_3_5
401+ from sage.combinat.designs .orthogonal_arrays_build_recursive import construction_3_5
402402 return construction_3_5, (k,nn,mm,r,s,t)
403403
404404cpdef find_construction_3_6(int k,int n):
@@ -439,7 +439,7 @@ cpdef find_construction_3_6(int k,int n):
439439
440440 if (is_available(k+ i,nn) and
441441 smallInteger(nn).is_prime_power()):
442- from .orthogonal_arrays_build_recursive import construction_3_6
442+ from sage.combinat.designs .orthogonal_arrays_build_recursive import construction_3_6
443443 return construction_3_6, (k,nn,mm,i)
444444
445445cpdef find_q_x(int k,int n):
@@ -491,7 +491,7 @@ cpdef find_q_x(int k,int n):
491491 # is_available(k+1,q) and
492492 is_available(k, x+ 2 ) and
493493 smallInteger(q).is_prime_power()):
494- from .orthogonal_arrays_build_recursive import construction_q_x
494+ from sage.combinat.designs .orthogonal_arrays_build_recursive import construction_q_x
495495 return construction_q_x, (k,q,x)
496496 return False
497497
@@ -545,7 +545,7 @@ cpdef find_thwart_lemma_3_5(int k,int N):
545545 sage: for k,n in kn: # not tested -- too long
546546 .... : assert designs. orthogonal_array( k,n,existence=True) is True
547547 """
548- from .orthogonal_arrays_build_recursive import thwart_lemma_3_5
548+ from sage.combinat.designs .orthogonal_arrays_build_recursive import thwart_lemma_3_5
549549 cdef int n,m,a,b,c,d,NN,na,nb,nc
550550
551551 for n in prime_powers(k+ 2 ,N- 2 ): # There must exist a OA(k+3,n) thus n>=k+2
@@ -660,7 +660,7 @@ cpdef find_thwart_lemma_4_1(int k,int n):
660660 not is_available(k,mm+ 4 )):
661661 continue
662662
663- from .orthogonal_arrays_build_recursive import thwart_lemma_4_1
663+ from sage.combinat.designs .orthogonal_arrays_build_recursive import thwart_lemma_4_1
664664 return thwart_lemma_4_1,(k,nn,mm)
665665
666666 return False
@@ -705,7 +705,7 @@ cpdef find_three_factor_product(int k,int n):
705705 not is_available(k,n2) or
706706 not is_available(k,n3)):
707707 continue
708- from .orthogonal_arrays_build_recursive import three_factor_product
708+ from sage.combinat.designs .orthogonal_arrays_build_recursive import three_factor_product
709709 return three_factor_product,(k- 1 ,n1,n2,n3)
710710
711711 return False
@@ -730,7 +730,7 @@ cpdef find_brouwer_separable_design(int k,int n):
730730 sage: find_brouwer_separable_design( 5,14)
731731 False
732732 """
733- from .orthogonal_arrays_build_recursive import brouwer_separable_design
733+ from sage.combinat.designs .orthogonal_arrays_build_recursive import brouwer_separable_design
734734 cdef int q,x,baer_subplane_size, max_t, min_t, t,e1,e2,e3,e4
735735
736736 for q in prime_powers(2 ,n):
@@ -943,7 +943,7 @@ cpdef find_brouwer_van_rees_with_one_truncated_column(int k,int n):
943943
944944 values = int_as_sum(remainder, available_multipliers, r)
945945 if values is not None :
946- from .orthogonal_arrays import wilson_construction
946+ from sage.combinat.designs .orthogonal_arrays import wilson_construction
947947 return (wilson_construction,
948948 (None ,k,r,m,[[(x,1 ) for x in values]]))
949949
0 commit comments