|
12 | 12 | # **************************************************************************** |
13 | 13 | from sage.misc.lazy_import import lazy_import |
14 | 14 |
|
15 | | -from .all__sagemath_categories import * |
| 15 | +from sage.rings.all__sagemath_categories import * |
16 | 16 |
|
17 | 17 | # Ring base classes |
18 | | -from .ring import (Ring, Field, CommutativeRing, IntegralDomain, |
| 18 | +from sage.rings.ring import (Ring, Field, CommutativeRing, IntegralDomain, |
19 | 19 | DedekindDomain, PrincipalIdealDomain, EuclideanDomain) |
20 | 20 |
|
21 | 21 | # Ring element base classes |
|
25 | 25 | EuclideanDomainElement, FieldElement) |
26 | 26 |
|
27 | 27 | # Ideals |
28 | | -from .ideal import Ideal |
| 28 | +from sage.rings.ideal import Ideal |
29 | 29 | ideal = Ideal |
30 | 30 |
|
31 | 31 | # Quotient |
32 | | -from .quotient_ring import QuotientRing |
| 32 | +from sage.rings.quotient_ring import QuotientRing |
33 | 33 |
|
34 | 34 | # Infinities |
35 | | -from .infinity import infinity, Infinity, InfinityRing, unsigned_infinity, UnsignedInfinityRing |
| 35 | +from sage.rings.infinity import infinity, Infinity, InfinityRing, unsigned_infinity, UnsignedInfinityRing |
36 | 36 |
|
37 | 37 | # Rational integers. |
38 | | -from .integer_ring import IntegerRing, ZZ, crt_basis |
39 | | -from .integer import Integer |
| 38 | +from sage.rings.integer_ring import IntegerRing, ZZ, crt_basis |
| 39 | +from sage.rings.integer import Integer |
40 | 40 |
|
41 | 41 | # Rational numbers |
42 | | -from .rational_field import RationalField, QQ |
43 | | -from .rational import Rational |
| 42 | +from sage.rings.rational_field import RationalField, QQ |
| 43 | +from sage.rings.rational import Rational |
44 | 44 | Rationals = RationalField |
45 | 45 |
|
46 | 46 | # Integers modulo n. |
|
49 | 49 | Integers = IntegerModRing |
50 | 50 |
|
51 | 51 | # Finite fields |
52 | | -from .finite_rings.all import * |
| 52 | +from sage.rings.finite_rings.all import * |
53 | 53 |
|
54 | 54 | # Number field |
55 | | -from .number_field.all import * |
| 55 | +from sage.rings.number_field.all import * |
56 | 56 |
|
57 | 57 | # Function field |
58 | | -from .function_field.all import * |
| 58 | +from sage.rings.function_field.all import * |
59 | 59 |
|
60 | 60 | # Finite residue fields |
61 | | -from .finite_rings.residue_field import ResidueField |
| 61 | +from sage.rings.finite_rings.residue_field import ResidueField |
62 | 62 |
|
63 | 63 | # p-adic field |
64 | | -from .padics.all import * |
65 | | -from .padics.padic_printing import _printer_defaults as padic_printing |
| 64 | +from sage.rings.padics.all import * |
| 65 | +from sage.rings.padics.padic_printing import _printer_defaults as padic_printing |
66 | 66 |
|
67 | 67 | # valuations |
68 | | -from .valuation.all import * |
| 68 | +from sage.rings.valuation.all import * |
69 | 69 |
|
70 | 70 | # Semirings |
71 | | -from .semirings.all import * |
| 71 | +from sage.rings.semirings.all import * |
72 | 72 |
|
73 | 73 | # Real numbers |
74 | | -from .real_mpfr import (RealField, RR, |
| 74 | +from sage.rings.real_mpfr import (RealField, RR, |
75 | 75 | create_RealNumber as RealNumber) # this is used by the preparser to wrap real literals -- very important. |
76 | 76 | Reals = RealField |
77 | 77 |
|
78 | | -from .real_double import RealDoubleField, RDF, RealDoubleElement |
| 78 | +from sage.rings.real_double import RealDoubleField, RDF, RealDoubleElement |
79 | 79 |
|
80 | | -from .real_lazy import RealLazyField, RLF, ComplexLazyField, CLF |
| 80 | +from sage.rings.real_lazy import RealLazyField, RLF, ComplexLazyField, CLF |
81 | 81 |
|
82 | 82 | from sage.rings.real_arb import RealBallField, RBF |
83 | 83 |
|
84 | 84 | # Polynomial Rings and Polynomial Quotient Rings |
85 | | -from .polynomial.all import * |
| 85 | +from sage.rings.polynomial.all import * |
86 | 86 |
|
87 | 87 |
|
88 | 88 | # Algebraic numbers |
89 | | -from .qqbar import (AlgebraicRealField, AA, |
| 89 | +from sage.rings.qqbar import (AlgebraicRealField, AA, |
90 | 90 | AlgebraicReal, |
91 | 91 | AlgebraicField, QQbar, |
92 | 92 | AlgebraicNumber, |
93 | 93 | number_field_elements_from_algebraics) |
94 | | -from .universal_cyclotomic_field import UniversalCyclotomicField, E |
| 94 | +from sage.rings.universal_cyclotomic_field import UniversalCyclotomicField, E |
95 | 95 |
|
96 | 96 | # Intervals |
97 | | -from .real_mpfi import (RealIntervalField, |
| 97 | +from sage.rings.real_mpfi import (RealIntervalField, |
98 | 98 | RIF, |
99 | 99 | RealInterval) |
100 | 100 |
|
101 | 101 | # Complex numbers |
102 | | -from .complex_mpfr import ComplexField |
103 | | -from .complex_mpfr import create_ComplexNumber as ComplexNumber |
| 102 | +from sage.rings.complex_mpfr import ComplexField |
| 103 | +from sage.rings.complex_mpfr import create_ComplexNumber as ComplexNumber |
104 | 104 | Complexes = ComplexField |
105 | | -from .complex_interval_field import ComplexIntervalField |
106 | | -from .complex_interval import (create_ComplexIntervalFieldElement as ComplexIntervalFieldElement) |
| 105 | +from sage.rings.complex_interval_field import ComplexIntervalField |
| 106 | +from sage.rings.complex_interval import (create_ComplexIntervalFieldElement as ComplexIntervalFieldElement) |
107 | 107 |
|
108 | | -from .complex_double import ComplexDoubleField, ComplexDoubleElement, CDF |
| 108 | +from sage.rings.complex_double import ComplexDoubleField, ComplexDoubleElement, CDF |
109 | 109 |
|
110 | | -from .complex_mpc import MPComplexField |
| 110 | +from sage.rings.complex_mpc import MPComplexField |
111 | 111 |
|
112 | 112 | from sage.rings.complex_arb import ComplexBallField, CBF |
113 | 113 |
|
114 | 114 | lazy_import("sage.rings.imaginary_unit", "I") |
115 | 115 |
|
116 | 116 | # Power series rings |
117 | | -from .power_series_ring import PowerSeriesRing |
| 117 | +from sage.rings.power_series_ring import PowerSeriesRing |
118 | 118 |
|
119 | 119 | # Laurent series ring in one variable |
120 | | -from .laurent_series_ring import LaurentSeriesRing |
| 120 | +from sage.rings.laurent_series_ring import LaurentSeriesRing |
121 | 121 |
|
122 | 122 | # Lazy Laurent series ring |
123 | 123 | lazy_import('sage.rings.lazy_series_ring', ['LazyLaurentSeriesRing', 'LazyPowerSeriesRing', |
124 | 124 | 'LazySymmetricFunctions', 'LazyDirichletSeriesRing']) |
125 | 125 |
|
126 | 126 | # Tate algebras |
127 | | -from .tate_algebra import TateAlgebra |
| 127 | +from sage.rings.tate_algebra import TateAlgebra |
128 | 128 |
|
129 | 129 | # Puiseux series ring |
130 | | -from .puiseux_series_ring import PuiseuxSeriesRing |
| 130 | +from sage.rings.puiseux_series_ring import PuiseuxSeriesRing |
131 | 131 |
|
132 | 132 | # Pseudo-ring of PARI objects. |
133 | | -from .pari_ring import PariRing, Pari |
| 133 | +from sage.rings.pari_ring import PariRing, Pari |
134 | 134 |
|
135 | 135 | # Big-oh notation |
136 | | -from .big_oh import O |
| 136 | +from sage.rings.big_oh import O |
137 | 137 |
|
138 | 138 | # Fraction field |
139 | | -from .fraction_field import FractionField |
| 139 | +from sage.rings.fraction_field import FractionField |
140 | 140 | Frac = FractionField |
141 | 141 |
|
142 | 142 | # Localization |
143 | | -from .localization import Localization |
| 143 | +from sage.rings.localization import Localization |
144 | 144 |
|
145 | 145 | # c-finite sequences |
146 | | -from .cfinite_sequence import CFiniteSequence, CFiniteSequences |
| 146 | +from sage.rings.cfinite_sequence import CFiniteSequence, CFiniteSequences |
147 | 147 |
|
148 | | -from .bernoulli_mod_p import bernoulli_mod_p, bernoulli_mod_p_single |
| 148 | +from sage.rings.bernoulli_mod_p import bernoulli_mod_p, bernoulli_mod_p_single |
149 | 149 |
|
150 | | -from .monomials import monomials |
| 150 | +from sage.rings.monomials import monomials |
151 | 151 |
|
152 | | -from .cc import CC |
153 | | -from .cif import CIF |
| 152 | +from sage.rings.cc import CC |
| 153 | +from sage.rings.cif import CIF |
154 | 154 |
|
155 | 155 | # invariant theory |
156 | | -from .invariants.all import * |
| 156 | +from sage.rings.invariants.all import * |
157 | 157 |
|
158 | | -from .fast_arith import prime_range |
| 158 | +from sage.rings.fast_arith import prime_range |
159 | 159 |
|
160 | 160 | # continued fractions |
161 | 161 | from sage.rings.continued_fraction import (continued_fraction, |
162 | 162 | continued_fraction_list) |
163 | 163 |
|
164 | 164 | # asymptotic ring |
165 | | -from .asymptotic.all import * |
| 165 | +from sage.rings.asymptotic.all import * |
166 | 166 |
|
167 | 167 | # Register classes in numbers abc |
168 | | -from . import numbers_abc |
| 168 | +from sage.rings import numbers_abc |
0 commit comments