|
| 1 | +from pyspark.sql import SchemaRDD, ArrayType, StringType |
| 2 | +from pyspark.ml import _jvm |
| 3 | +from pyspark.ml.param import Param |
| 4 | + |
| 5 | + |
| 6 | +class Tokenizer(object): |
| 7 | + |
| 8 | + def __init__(self): |
| 9 | + self.inputCol = Param(self, "inputCol", "input column name", None) |
| 10 | + self.outputCol = Param(self, "outputCol", "output column name", None) |
| 11 | + self.paramMap = {} |
| 12 | + |
| 13 | + def setInputCol(self, value): |
| 14 | + self.paramMap[self.inputCol] = value |
| 15 | + return self |
| 16 | + |
| 17 | + def getInputCol(self): |
| 18 | + if self.inputCol in self.paramMap: |
| 19 | + return self.paramMap[self.inputCol] |
| 20 | + |
| 21 | + def setOutputCol(self, value): |
| 22 | + self.paramMap[self.outputCol] = value |
| 23 | + return self |
| 24 | + |
| 25 | + def getOutputCol(self): |
| 26 | + if self.outputCol in self.paramMap: |
| 27 | + return self.paramMap[self.outputCol] |
| 28 | + |
| 29 | + def transform(self, dataset, params={}): |
| 30 | + sqlCtx = dataset.sql_ctx |
| 31 | + if isinstance(params, dict): |
| 32 | + paramMap = self.paramMap.copy() |
| 33 | + paramMap.update(params) |
| 34 | + inputCol = paramMap[self.inputCol] |
| 35 | + outputCol = paramMap[self.outputCol] |
| 36 | + # TODO: make names unique |
| 37 | + sqlCtx.registerFunction("tokenize", lambda text: text.split(), |
| 38 | + ArrayType(StringType(), False)) |
| 39 | + dataset.registerTempTable("dataset") |
| 40 | + return sqlCtx.sql("SELECT *, tokenize(%s) AS %s FROM dataset" % (inputCol, outputCol)) |
| 41 | + elif isinstance(params, list): |
| 42 | + return [self.transform(dataset, paramMap) for paramMap in params] |
| 43 | + else: |
| 44 | + raise ValueError("The input params must be either a dict or a list.") |
| 45 | + |
| 46 | + |
| 47 | +class HashingTF(object): |
| 48 | + |
| 49 | + def __init__(self): |
| 50 | + self._java_obj = _jvm().org.apache.spark.ml.feature.HashingTF() |
| 51 | + self.numFeatures = Param(self, "numFeatures", "number of features", 1 << 18) |
| 52 | + self.inputCol = Param(self, "inputCol", "input column name") |
| 53 | + self.outputCol = Param(self, "outputCol", "output column name") |
| 54 | + |
| 55 | + def setNumFeatures(self, value): |
| 56 | + self._java_obj.setNumFeatures(value) |
| 57 | + return self |
| 58 | + |
| 59 | + def getNumFeatures(self): |
| 60 | + return self._java_obj.getNumFeatures() |
| 61 | + |
| 62 | + def setInputCol(self, value): |
| 63 | + self._java_obj.setInputCol(value) |
| 64 | + return self |
| 65 | + |
| 66 | + def getInputCol(self): |
| 67 | + return self._java_obj.getInputCol() |
| 68 | + |
| 69 | + def setOutputCol(self, value): |
| 70 | + self._java_obj.setOutputCol(value) |
| 71 | + return self |
| 72 | + |
| 73 | + def getOutputCol(self): |
| 74 | + return self._java_obj.getOutputCol() |
| 75 | + |
| 76 | + def transform(self, dataset, paramMap={}): |
| 77 | + if isinstance(paramMap, dict): |
| 78 | + javaParamMap = _jvm().org.apache.spark.ml.param.ParamMap() |
| 79 | + for k, v in paramMap.items(): |
| 80 | + param = self._java_obj.getParam(k.name) |
| 81 | + javaParamMap.put(param, v) |
| 82 | + return SchemaRDD(self._java_obj.transform(dataset._jschema_rdd, javaParamMap), |
| 83 | + dataset.sql_ctx) |
| 84 | + else: |
| 85 | + raise ValueError("paramMap must be a dict.") |
0 commit comments