-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·279 lines (231 loc) · 9.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import copy
import glob
import os
import time
import types
from collections import deque
import numpy as np
import torch
import algo
from arguments import get_args
from envs import make_vec_envs
from models import create_policy
from rollout_storage import RolloutStorage
from replay_storage import ReplayStorage
from visualize import visdom_plot
args = get_args()
assert args.algo in ['a2c', 'a2c-sil', 'ppo', 'ppo-sil', 'acktr']
if args.recurrent_policy:
assert args.algo in ['a2c', 'ppo'], \
'Recurrent policy is not implemented for ACKTR or SIL'
update_factor = args.num_steps * args.num_processes
num_updates = int(args.num_frames) // update_factor
lr_update_schedule = None if args.lr_schedule is None else args.lr_schedule // update_factor
if args.seed is not None:
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
try:
os.makedirs(args.log_dir)
except OSError:
files = glob.glob(os.path.join(args.log_dir, '*.monitor.csv'))
for f in files:
os.remove(f)
eval_log_dir = args.log_dir + "_eval"
try:
os.makedirs(eval_log_dir)
except OSError:
files = glob.glob(os.path.join(eval_log_dir, '*.monitor.csv'))
for f in files:
os.remove(f)
def main():
torch.set_num_threads(1)
device = torch.device("cuda:0" if args.cuda else "cpu")
if args.vis:
from visdom import Visdom
viz = Visdom(port=args.port)
win = None
train_envs = make_vec_envs(
args.env_name, args.seed, args.num_processes, args.gamma, args.no_norm, args.num_stack,
args.log_dir, args.add_timestep, device, allow_early_resets=False)
if args.eval_interval:
eval_seed = args.seed if args.seed is None else args.seed + args.num_processes
eval_envs = make_vec_envs(
args.env_name, eval_seed, args.num_processes // 4, args.gamma,
args.no_norm, args.num_stack, eval_log_dir, args.add_timestep,
device=device, allow_early_resets=True, eval=True, rank_offsest=args.num_processes)
if eval_envs.venv.__class__.__name__ == "VecNormalize":
eval_envs.venv.ob_rms = train_envs.venv.ob_rms
else:
eval_envs = None
print(train_envs.observation_space.shape)
noisy_net = True
actor_critic = create_policy(
train_envs.observation_space,
train_envs.action_space,
name='basic',
nn_kwargs={
#'batch_norm': False if args.algo == 'acktr' else True,
'recurrent': 'lstm' if args.recurrent_policy else '',
'hidden_size': 512,
},
noisy_net=noisy_net,
train=True)
if args.resume and os.path.isfile(args.resume):
print('Resuming from checkpoint (%s)' % args.resume)
state_dict, ob_rms = torch.load(args.resume, map_location='cpu')
actor_critic.load_state_dict(state_dict)
actor_critic.to(device)
if args.algo.startswith('a2c'):
agent = algo.A2C_ACKTR(
actor_critic,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
lr_schedule=lr_update_schedule,
eps=args.eps,
alpha=args.alpha,
max_grad_norm=args.max_grad_norm)
elif args.algo.startswith('ppo'):
agent = algo.PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
lr_schedule=lr_update_schedule,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'acktr':
agent = algo.A2C_ACKTR(
actor_critic,
args.value_loss_coef,
args.entropy_coef,
acktr=True)
if args.algo.endswith('sil'):
agent = algo.SIL(
agent,
update_ratio=args.sil_update_ratio,
epochs=args.sil_epochs,
batch_size=args.sil_batch_size,
value_loss_coef=args.sil_value_loss_coef or args.value_loss_coef,
entropy_coef=args.sil_entropy_coef or args.entropy_coef)
replay = ReplayStorage(
1e5,
args.num_processes,
args.gamma,
0.1,
train_envs.observation_space.shape,
train_envs.action_space,
actor_critic.recurrent_hidden_state_size,
device=device)
else:
replay = None
rollouts = RolloutStorage(
args.num_steps,
args.num_processes,
train_envs.observation_space.shape,
train_envs.action_space,
actor_critic.recurrent_hidden_state_size)
obs = train_envs.reset()
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards = deque(maxlen=10)
start = time.time()
for j in range(num_updates):
if noisy_net:
actor_critic.reset_noise()
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.obs[step],
rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
# Obser reward and next obs
obs, reward, done, infos = train_envs.step(action)
for info in infos:
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
# If done then clean the history of observations.
masks = torch.tensor([[0.0] if done_ else [1.0] for done_ in done], device=device)
rollouts.insert(obs, recurrent_hidden_states, action, action_log_prob, value, reward, masks)
if replay is not None:
replay.insert(
rollouts.obs[step],
rollouts.recurrent_hidden_states[step],
action,
reward,
done)
with torch.no_grad():
next_value = actor_critic.get_value(rollouts.obs[-1],
rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau)
value_loss, action_loss, dist_entropy, other_metrics = agent.update(rollouts, j, replay)
rollouts.after_update()
if j % args.save_interval == 0 and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
# A really ugly way to save a model to CPU
save_model = actor_critic
if args.cuda:
save_model = copy.deepcopy(actor_critic).cpu()
save_model = [
save_model.state_dict(),
hasattr(train_envs.venv, 'ob_rms') and train_envs.venv.ob_rms or None]
torch.save(save_model, os.path.join(save_path, args.env_name + ".pt"))
total_num_steps = (j + 1) * update_factor
if j % args.log_interval == 0 and len(episode_rewards) > 1:
end = time.time()
print("Updates {}, num timesteps {}, FPS {}, last {} mean/median reward {:.1f}/{:.1f}, "
"min / max reward {:.1f}/{:.1f}, value/action loss {:.5f}/{:.5f}".
format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards),
np.mean(episode_rewards),
np.median(episode_rewards),
np.min(episode_rewards),
np.max(episode_rewards), dist_entropy,
value_loss, action_loss), end=', ' if other_metrics else '\n')
if 'sil_value_loss' in other_metrics:
print("SIL value/action loss {:.1f}/{:.1f}.".format(
other_metrics['sil_value_loss'],
other_metrics['sil_action_loss']
))
if args.eval_interval and len(episode_rewards) > 1 and j > 0 and j % args.eval_interval == 0:
actor_critic.eval()
eval_episode_rewards = []
num_eval_processes = args.num_processes//4
obs = eval_envs.reset()
eval_recurrent_hidden_states = torch.zeros(
2, num_eval_processes, actor_critic.recurrent_hidden_state_size, device=device)
eval_masks = torch.zeros(num_eval_processes, 1, device=device)
while len(eval_episode_rewards) < 50:
with torch.no_grad():
_, action, _, eval_recurrent_hidden_states = actor_critic.act(
obs, eval_recurrent_hidden_states, eval_masks, deterministic=True)
# Obser reward and next obs
obs, reward, done, infos = eval_envs.step(action)
eval_masks = torch.tensor([[0.0] if done_ else [1.0] for done_ in done], device=device)
for info in infos:
if 'episode' in info.keys():
eval_episode_rewards.append(info['episode']['r'])
print(" Evaluation using {} episodes: mean reward {:.5f}\n".
format(len(eval_episode_rewards), np.mean(eval_episode_rewards)))
actor_critic.train()
if args.vis and j % args.vis_interval == 0:
try:
# Sometimes monitor doesn't properly flush the outputs
win = visdom_plot(viz, win, args.log_dir, args.env_name,
args.algo, args.num_frames)
except IOError:
pass
if __name__ == "__main__":
main()