-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatagenerator.py
96 lines (78 loc) · 3.4 KB
/
datagenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import keras
import tensorflow as tf
import config
class DataGenerator(keras.utils.Sequence):
def preprocess(self, img, imgSize, preserve_aspect_ratio) -> np.ndarray:
if img is None:
img = np.zeros([imgSize[0], imgSize[1]], dtype=np.uint8)
print("Image broken, zeroing")
img = tf.io.read_file(img)
img = tf.image.decode_jpeg(img)
img = tf.image.random_brightness(img, 0.05)
img = tf.image.random_hue(img, 0.08)
img = tf.image.random_saturation(img, 0.6, 1.6)
img = tf.image.random_contrast(img, 0.7, 1.3)
# img = tf.keras.preprocessing.image.random_rotation(img,10)
# img = tfio.experimental.image.decode_tiff(img)
img = tf.image.rgb_to_grayscale(img)
# img = tf.image.convert_image_dtype(img, tf.float32)
# img = img / 255.0
# img = 1 - img
# img = tf.image.resize_with_pad(img, imgSize[0], imgSize[1]) # rescale to have matching height with target image
img = tf.image.resize(img, (imgSize[0], imgSize[1]), preserve_aspect_ratio=preserve_aspect_ratio) # rescale to have matching height with target image
return img
'Generates data for Keras'
def __init__(self, list_IDs, labels, batch_size=32, height=227, width=227, channels=1,
n_classes=10, shuffle=True, preserve_aspect_ratio=False):
self.height = height
self.width = width
self.batch_size = batch_size
self.labels = labels
self.list_IDs = list_IDs
self.n_channels = channels
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()
self.preserve_aspect_ratio = preserve_aspect_ratio
self.class_indices = {}
counter = 0
for label in labels:
if self.class_indices.keys().__contains__(label):
continue
self.class_indices[label] = counter
counter += 1
self.classes = []
for label in labels:
self.classes.append(self.class_indices[label])
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(indexes)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, * (self.height, self.width), self.n_channels))
y = np.empty((self.batch_size), dtype=int)
# Generate data
for i, ID in enumerate(list_IDs_temp):
# Store sample
# X[i,] = np.load('data/' + ID + '.npy')
X[i, ] = self.preprocess(self.list_IDs[ID], config.SHAPE, self.preserve_aspect_ratio)
# Store class
print(ID)
y[i] = self.classes[ID]
return X, y