Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Round negative signed integer towards zero in iN::midpoint #132191

Merged
merged 2 commits into from
Oct 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 0 additions & 38 deletions library/core/src/num/int_macros.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3181,44 +3181,6 @@ macro_rules! int_impl {
}
}

/// Calculates the middle point of `self` and `rhs`.
///
/// `midpoint(a, b)` is `(a + b) >> 1` as if it were performed in a
/// sufficiently-large signed integral type. This implies that the result is
/// always rounded towards negative infinity and that no overflow will ever occur.
///
/// # Examples
///
/// ```
/// #![feature(num_midpoint)]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(4), 2);")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(-1), -1);")]
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").midpoint(0), -1);")]
/// ```
#[unstable(feature = "num_midpoint", issue = "110840")]
#[rustc_const_unstable(feature = "const_num_midpoint", issue = "110840")]
#[rustc_allow_const_fn_unstable(const_num_midpoint)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn midpoint(self, rhs: Self) -> Self {
const U: $UnsignedT = <$SelfT>::MIN.unsigned_abs();

// Map an $SelfT to an $UnsignedT
// ex: i8 [-128; 127] to [0; 255]
const fn map(a: $SelfT) -> $UnsignedT {
(a as $UnsignedT) ^ U
}

// Map an $UnsignedT to an $SelfT
// ex: u8 [0; 255] to [-128; 127]
const fn demap(a: $UnsignedT) -> $SelfT {
(a ^ U) as $SelfT
}

demap(<$UnsignedT>::midpoint(map(self), map(rhs)))
}

/// Returns the logarithm of the number with respect to an arbitrary base,
/// rounded down.
///
Expand Down
65 changes: 65 additions & 0 deletions library/core/src/num/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,37 @@ macro_rules! midpoint_impl {
((self ^ rhs) >> 1) + (self & rhs)
}
};
($SelfT:ty, signed) => {
/// Calculates the middle point of `self` and `rhs`.
///
/// `midpoint(a, b)` is `(a + b) / 2` as if it were performed in a
/// sufficiently-large signed integral type. This implies that the result is
/// always rounded towards zero and that no overflow will ever occur.
///
/// # Examples
///
/// ```
/// #![feature(num_midpoint)]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(4), 2);")]
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").midpoint(2), 0);")]
#[doc = concat!("assert_eq!((-7", stringify!($SelfT), ").midpoint(0), -3);")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(-7), -3);")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(7), 3);")]
/// ```
#[unstable(feature = "num_midpoint", issue = "110840")]
#[rustc_const_unstable(feature = "const_num_midpoint", issue = "110840")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn midpoint(self, rhs: Self) -> Self {
// Use the well known branchless algorithm from Hacker's Delight to compute
// `(a + b) / 2` without overflowing: `((a ^ b) >> 1) + (a & b)`.
let t = ((self ^ rhs) >> 1) + (self & rhs);
// Except that it fails for integers whose sum is an odd negative number as
// their floor is one less than their average. So we adjust the result.
t + (if t < 0 { 1 } else { 0 } & (self ^ rhs))
}
};
($SelfT:ty, $WideT:ty, unsigned) => {
/// Calculates the middle point of `self` and `rhs`.
///
Expand All @@ -147,6 +178,32 @@ macro_rules! midpoint_impl {
((self as $WideT + rhs as $WideT) / 2) as $SelfT
}
};
($SelfT:ty, $WideT:ty, signed) => {
/// Calculates the middle point of `self` and `rhs`.
///
/// `midpoint(a, b)` is `(a + b) / 2` as if it were performed in a
/// sufficiently-large signed integral type. This implies that the result is
/// always rounded towards zero and that no overflow will ever occur.
///
/// # Examples
///
/// ```
/// #![feature(num_midpoint)]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(4), 2);")]
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").midpoint(2), 0);")]
#[doc = concat!("assert_eq!((-7", stringify!($SelfT), ").midpoint(0), -3);")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(-7), -3);")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(7), 3);")]
/// ```
#[unstable(feature = "num_midpoint", issue = "110840")]
#[rustc_const_unstable(feature = "const_num_midpoint", issue = "110840")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn midpoint(self, rhs: $SelfT) -> $SelfT {
((self as $WideT + rhs as $WideT) / 2) as $SelfT
}
};
}

macro_rules! widening_impl {
Expand Down Expand Up @@ -300,6 +357,7 @@ impl i8 {
from_xe_bytes_doc = "",
bound_condition = "",
}
midpoint_impl! { i8, i16, signed }
}

impl i16 {
Expand All @@ -323,6 +381,7 @@ impl i16 {
from_xe_bytes_doc = "",
bound_condition = "",
}
midpoint_impl! { i16, i32, signed }
}

impl i32 {
Expand All @@ -346,6 +405,7 @@ impl i32 {
from_xe_bytes_doc = "",
bound_condition = "",
}
midpoint_impl! { i32, i64, signed }
}

impl i64 {
Expand All @@ -369,6 +429,7 @@ impl i64 {
from_xe_bytes_doc = "",
bound_condition = "",
}
midpoint_impl! { i64, i128, signed }
}

impl i128 {
Expand All @@ -394,6 +455,7 @@ impl i128 {
from_xe_bytes_doc = "",
bound_condition = "",
}
midpoint_impl! { i128, signed }
}

#[cfg(target_pointer_width = "16")]
Expand All @@ -418,6 +480,7 @@ impl isize {
from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(),
bound_condition = " on 16-bit targets",
}
midpoint_impl! { isize, i32, signed }
}

#[cfg(target_pointer_width = "32")]
Expand All @@ -442,6 +505,7 @@ impl isize {
from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(),
bound_condition = " on 32-bit targets",
}
midpoint_impl! { isize, i64, signed }
}

#[cfg(target_pointer_width = "64")]
Expand All @@ -466,6 +530,7 @@ impl isize {
from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(),
bound_condition = " on 64-bit targets",
}
midpoint_impl! { isize, i128, signed }
}

/// If the 6th bit is set ascii is lower case.
Expand Down
4 changes: 2 additions & 2 deletions library/core/tests/num/int_macros.rs
Original file line number Diff line number Diff line change
Expand Up @@ -369,8 +369,8 @@ macro_rules! int_module {
assert_eq_const_safe!(<$T>::midpoint(3, 4), 3);
assert_eq_const_safe!(<$T>::midpoint(4, 3), 3);

assert_eq_const_safe!(<$T>::midpoint(<$T>::MIN, <$T>::MAX), -1);
assert_eq_const_safe!(<$T>::midpoint(<$T>::MAX, <$T>::MIN), -1);
assert_eq_const_safe!(<$T>::midpoint(<$T>::MIN, <$T>::MAX), 0);
assert_eq_const_safe!(<$T>::midpoint(<$T>::MAX, <$T>::MIN), 0);
assert_eq_const_safe!(<$T>::midpoint(<$T>::MIN, <$T>::MIN), <$T>::MIN);
assert_eq_const_safe!(<$T>::midpoint(<$T>::MAX, <$T>::MAX), <$T>::MAX);

Expand Down
54 changes: 54 additions & 0 deletions library/core/tests/num/midpoint.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
//! Test the following expectations:
//! - midpoint(a, b) == (a + b) / 2
//! - midpoint(a, b) == midpoint(b, a)
//! - midpoint(-a, -b) == -midpoint(a, b)

#[test]
#[cfg(not(miri))]
Urgau marked this conversation as resolved.
Show resolved Hide resolved
fn midpoint_obvious_impl_i8() {
for a in i8::MIN..=i8::MAX {
for b in i8::MIN..=i8::MAX {
assert_eq!(i8::midpoint(a, b), ((a as i16 + b as i16) / 2) as i8);
}
}
}

#[test]
#[cfg(not(miri))]
fn midpoint_obvious_impl_u8() {
for a in u8::MIN..=u8::MAX {
for b in u8::MIN..=u8::MAX {
assert_eq!(u8::midpoint(a, b), ((a as u16 + b as u16) / 2) as u8);
}
}
}

#[test]
#[cfg(not(miri))]
fn midpoint_order_expectation_i8() {
for a in i8::MIN..=i8::MAX {
for b in i8::MIN..=i8::MAX {
assert_eq!(i8::midpoint(a, b), i8::midpoint(b, a));
}
}
}

#[test]
#[cfg(not(miri))]
fn midpoint_order_expectation_u8() {
for a in u8::MIN..=u8::MAX {
for b in u8::MIN..=u8::MAX {
assert_eq!(u8::midpoint(a, b), u8::midpoint(b, a));
}
}
}

#[test]
#[cfg(not(miri))]
fn midpoint_negative_expectation() {
for a in 0..=i8::MAX {
for b in 0..=i8::MAX {
assert_eq!(i8::midpoint(-a, -b), -i8::midpoint(a, b));
}
}
}
1 change: 1 addition & 0 deletions library/core/tests/num/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ mod dec2flt;
mod flt2dec;
mod int_log;
mod int_sqrt;
mod midpoint;
mod ops;
mod wrapping;

Expand Down
Loading