-
Notifications
You must be signed in to change notification settings - Fork 12.8k
/
predicates_of.rs
1065 lines (965 loc) · 43.1 KB
/
predicates_of.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use std::assert_matches::assert_matches;
use hir::{HirId, Node};
use rustc_data_structures::fx::FxIndexSet;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::{self, Visitor};
use rustc_middle::ty::{self, GenericPredicates, ImplTraitInTraitData, Ty, TyCtxt, Upcast};
use rustc_middle::{bug, span_bug};
use rustc_span::symbol::Ident;
use rustc_span::{DUMMY_SP, Span};
use tracing::{debug, instrument, trace};
use super::item_bounds::explicit_item_bounds_with_filter;
use crate::bounds::Bounds;
use crate::collect::ItemCtxt;
use crate::constrained_generic_params as cgp;
use crate::delegation::inherit_predicates_for_delegation_item;
use crate::hir_ty_lowering::{HirTyLowerer, PredicateFilter, RegionInferReason};
/// Returns a list of all type predicates (explicit and implicit) for the definition with
/// ID `def_id`. This includes all predicates returned by `explicit_predicates_of`, plus
/// inferred constraints concerning which regions outlive other regions.
#[instrument(level = "debug", skip(tcx))]
pub(super) fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
let mut result = tcx.explicit_predicates_of(def_id);
debug!("predicates_of: explicit_predicates_of({:?}) = {:?}", def_id, result);
let inferred_outlives = tcx.inferred_outlives_of(def_id);
if !inferred_outlives.is_empty() {
debug!("predicates_of: inferred_outlives_of({:?}) = {:?}", def_id, inferred_outlives,);
let inferred_outlives_iter =
inferred_outlives.iter().map(|(clause, span)| ((*clause).upcast(tcx), *span));
if result.predicates.is_empty() {
result.predicates = tcx.arena.alloc_from_iter(inferred_outlives_iter);
} else {
result.predicates = tcx.arena.alloc_from_iter(
result.predicates.into_iter().copied().chain(inferred_outlives_iter),
);
}
}
if tcx.is_trait(def_id) {
// For traits, add `Self: Trait` predicate. This is
// not part of the predicates that a user writes, but it
// is something that one must prove in order to invoke a
// method or project an associated type.
//
// In the chalk setup, this predicate is not part of the
// "predicates" for a trait item. But it is useful in
// rustc because if you directly (e.g.) invoke a trait
// method like `Trait::method(...)`, you must naturally
// prove that the trait applies to the types that were
// used, and adding the predicate into this list ensures
// that this is done.
//
// We use a DUMMY_SP here as a way to signal trait bounds that come
// from the trait itself that *shouldn't* be shown as the source of
// an obligation and instead be skipped. Otherwise we'd use
// `tcx.def_span(def_id);`
let span = DUMMY_SP;
result.predicates = tcx.arena.alloc_from_iter(
result
.predicates
.iter()
.copied()
.chain(std::iter::once((ty::TraitRef::identity(tcx, def_id).upcast(tcx), span))),
);
}
debug!("predicates_of({:?}) = {:?}", def_id, result);
result
}
/// Returns a list of user-specified type predicates for the definition with ID `def_id`.
/// N.B., this does not include any implied/inferred constraints.
#[instrument(level = "trace", skip(tcx), ret)]
fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::GenericPredicates<'_> {
use rustc_hir::*;
match tcx.opt_rpitit_info(def_id.to_def_id()) {
Some(ImplTraitInTraitData::Trait { fn_def_id, .. }) => {
let mut predicates = Vec::new();
// RPITITs should inherit the predicates of their parent. This is
// both to ensure that the RPITITs are only instantiated when the
// parent predicates would hold, and also so that the param-env
// inherits these predicates as assumptions.
let identity_args = ty::GenericArgs::identity_for_item(tcx, def_id);
predicates
.extend(tcx.explicit_predicates_of(fn_def_id).instantiate_own(tcx, identity_args));
// We also install bidirectional outlives predicates for the RPITIT
// to keep the duplicates lifetimes from opaque lowering in sync.
// We only need to compute bidirectional outlives for the duplicated
// opaque lifetimes, which explains the slicing below.
compute_bidirectional_outlives_predicates(
tcx,
&tcx.generics_of(def_id.to_def_id()).own_params
[tcx.generics_of(fn_def_id).own_params.len()..],
&mut predicates,
);
return ty::GenericPredicates {
parent: Some(tcx.parent(def_id.to_def_id())),
predicates: tcx.arena.alloc_from_iter(predicates),
};
}
Some(ImplTraitInTraitData::Impl { fn_def_id }) => {
let assoc_item = tcx.associated_item(def_id);
let trait_assoc_predicates =
tcx.explicit_predicates_of(assoc_item.trait_item_def_id.unwrap());
let impl_assoc_identity_args = ty::GenericArgs::identity_for_item(tcx, def_id);
let impl_def_id = tcx.parent(fn_def_id);
let impl_trait_ref_args =
tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity().args;
let impl_assoc_args =
impl_assoc_identity_args.rebase_onto(tcx, impl_def_id, impl_trait_ref_args);
let impl_predicates = trait_assoc_predicates.instantiate_own(tcx, impl_assoc_args);
return ty::GenericPredicates {
parent: Some(impl_def_id),
predicates: tcx.arena.alloc_from_iter(impl_predicates),
};
}
None => {}
}
let hir_id = tcx.local_def_id_to_hir_id(def_id);
let node = tcx.hir_node(hir_id);
if let Some(sig) = node.fn_sig()
&& let Some(sig_id) = sig.decl.opt_delegation_sig_id()
{
return inherit_predicates_for_delegation_item(tcx, def_id, sig_id);
}
let mut is_trait = None;
let mut is_default_impl_trait = None;
let icx = ItemCtxt::new(tcx, def_id);
const NO_GENERICS: &hir::Generics<'_> = hir::Generics::empty();
// We use an `IndexSet` to preserve order of insertion.
// Preserving the order of insertion is important here so as not to break UI tests.
let mut predicates: FxIndexSet<(ty::Clause<'_>, Span)> = FxIndexSet::default();
let hir_generics = node.generics().unwrap_or(NO_GENERICS);
if let Node::Item(item) = node {
match item.kind {
ItemKind::Impl(impl_) => {
if impl_.defaultness.is_default() {
is_default_impl_trait = tcx
.impl_trait_ref(def_id)
.map(|t| ty::Binder::dummy(t.instantiate_identity()));
}
}
ItemKind::Trait(_, _, _, self_bounds, ..) | ItemKind::TraitAlias(_, self_bounds) => {
is_trait = Some(self_bounds);
}
_ => {}
}
};
let generics = tcx.generics_of(def_id);
// Below we'll consider the bounds on the type parameters (including `Self`)
// and the explicit where-clauses, but to get the full set of predicates
// on a trait we must also consider the bounds that follow the trait's name,
// like `trait Foo: A + B + C`.
if let Some(self_bounds) = is_trait {
let mut bounds = Bounds::default();
icx.lowerer().lower_bounds(
tcx.types.self_param,
self_bounds,
&mut bounds,
ty::List::empty(),
PredicateFilter::All,
);
predicates.extend(bounds.clauses());
}
// In default impls, we can assume that the self type implements
// the trait. So in:
//
// default impl Foo for Bar { .. }
//
// we add a default where clause `Bar: Foo`. We do a similar thing for traits
// (see below). Recall that a default impl is not itself an impl, but rather a
// set of defaults that can be incorporated into another impl.
if let Some(trait_ref) = is_default_impl_trait {
predicates.insert((trait_ref.upcast(tcx), tcx.def_span(def_id)));
}
// Add implicit predicates that should be treated as if the user has written them,
// including the implicit `T: Sized` for all generic parameters, and `ConstArgHasType`
// for const params.
for param in hir_generics.params {
match param.kind {
GenericParamKind::Lifetime { .. } => (),
GenericParamKind::Type { .. } => {
let param_ty = icx.lowerer().lower_ty_param(param.hir_id);
let mut bounds = Bounds::default();
// Params are implicitly sized unless a `?Sized` bound is found
icx.lowerer().add_sized_bound(
&mut bounds,
param_ty,
&[],
Some((param.def_id, hir_generics.predicates)),
param.span,
);
trace!(?bounds);
predicates.extend(bounds.clauses());
trace!(?predicates);
}
hir::GenericParamKind::Const { .. } => {
let param_def_id = param.def_id.to_def_id();
let ct_ty = tcx
.type_of(param_def_id)
.no_bound_vars()
.expect("const parameters cannot be generic");
let ct = icx.lowerer().lower_const_param(param_def_id, param.hir_id);
predicates
.insert((ty::ClauseKind::ConstArgHasType(ct, ct_ty).upcast(tcx), param.span));
}
}
}
trace!(?predicates);
// Add inline `<T: Foo>` bounds and bounds in the where clause.
for predicate in hir_generics.predicates {
match predicate.kind {
hir::WherePredicateKind::BoundPredicate(bound_pred) => {
let ty = icx.lowerer().lower_ty_maybe_return_type_notation(bound_pred.bounded_ty);
let bound_vars = tcx.late_bound_vars(predicate.hir_id);
// Keep the type around in a dummy predicate, in case of no bounds.
// That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
// is still checked for WF.
if bound_pred.bounds.is_empty() {
if let ty::Param(_) = ty.kind() {
// This is a `where T:`, which can be in the HIR from the
// transformation that moves `?Sized` to `T`'s declaration.
// We can skip the predicate because type parameters are
// trivially WF, but also we *should*, to avoid exposing
// users who never wrote `where Type:,` themselves, to
// compiler/tooling bugs from not handling WF predicates.
} else {
let span = bound_pred.bounded_ty.span;
let predicate = ty::Binder::bind_with_vars(
ty::ClauseKind::WellFormed(ty.into()),
bound_vars,
);
predicates.insert((predicate.upcast(tcx), span));
}
}
let mut bounds = Bounds::default();
icx.lowerer().lower_bounds(
ty,
bound_pred.bounds,
&mut bounds,
bound_vars,
PredicateFilter::All,
);
predicates.extend(bounds.clauses());
}
hir::WherePredicateKind::RegionPredicate(region_pred) => {
let r1 = icx
.lowerer()
.lower_lifetime(region_pred.lifetime, RegionInferReason::RegionPredicate);
predicates.extend(region_pred.bounds.iter().map(|bound| {
let (r2, span) = match bound {
hir::GenericBound::Outlives(lt) => (
icx.lowerer().lower_lifetime(lt, RegionInferReason::RegionPredicate),
lt.ident.span,
),
bound => {
span_bug!(
bound.span(),
"lifetime param bounds must be outlives, but found {bound:?}"
)
}
};
let pred =
ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(r1, r2)).upcast(tcx);
(pred, span)
}))
}
hir::WherePredicateKind::EqPredicate(..) => {
// FIXME(#20041)
}
}
}
if tcx.features().generic_const_exprs() {
predicates.extend(const_evaluatable_predicates_of(tcx, def_id));
}
let mut predicates: Vec<_> = predicates.into_iter().collect();
// Subtle: before we store the predicates into the tcx, we
// sort them so that predicates like `T: Foo<Item=U>` come
// before uses of `U`. This avoids false ambiguity errors
// in trait checking. See `setup_constraining_predicates`
// for details.
if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
let self_ty = tcx.type_of(def_id).instantiate_identity();
let trait_ref = tcx.impl_trait_ref(def_id).map(ty::EarlyBinder::instantiate_identity);
cgp::setup_constraining_predicates(
tcx,
&mut predicates,
trait_ref,
&mut cgp::parameters_for_impl(tcx, self_ty, trait_ref),
);
}
// Opaque types duplicate some of their generic parameters.
// We create bi-directional Outlives predicates between the original
// and the duplicated parameter, to ensure that they do not get out of sync.
if let Node::OpaqueTy(..) = node {
compute_bidirectional_outlives_predicates(tcx, &generics.own_params, &mut predicates);
debug!(?predicates);
}
ty::GenericPredicates {
parent: generics.parent,
predicates: tcx.arena.alloc_from_iter(predicates),
}
}
/// Opaques have duplicated lifetimes and we need to compute bidirectional outlives predicates to
/// enforce that these lifetimes stay in sync.
fn compute_bidirectional_outlives_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
opaque_own_params: &[ty::GenericParamDef],
predicates: &mut Vec<(ty::Clause<'tcx>, Span)>,
) {
for param in opaque_own_params {
let orig_lifetime = tcx.map_opaque_lifetime_to_parent_lifetime(param.def_id.expect_local());
if let ty::ReEarlyParam(..) = *orig_lifetime {
let dup_lifetime = ty::Region::new_early_param(tcx, ty::EarlyParamRegion {
index: param.index,
name: param.name,
});
let span = tcx.def_span(param.def_id);
predicates.push((
ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(orig_lifetime, dup_lifetime))
.upcast(tcx),
span,
));
predicates.push((
ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(dup_lifetime, orig_lifetime))
.upcast(tcx),
span,
));
}
}
}
fn const_evaluatable_predicates_of(
tcx: TyCtxt<'_>,
def_id: LocalDefId,
) -> FxIndexSet<(ty::Clause<'_>, Span)> {
struct ConstCollector<'tcx> {
tcx: TyCtxt<'tcx>,
preds: FxIndexSet<(ty::Clause<'tcx>, Span)>,
}
impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
let ct = ty::Const::from_anon_const(self.tcx, c.def_id);
if let ty::ConstKind::Unevaluated(_) = ct.kind() {
let span = self.tcx.def_span(c.def_id);
self.preds.insert((ty::ClauseKind::ConstEvaluatable(ct).upcast(self.tcx), span));
}
}
fn visit_const_param_default(&mut self, _param: HirId, _ct: &'tcx hir::ConstArg<'tcx>) {
// Do not look into const param defaults,
// these get checked when they are actually instantiated.
//
// We do not want the following to error:
//
// struct Foo<const N: usize, const M: usize = { N + 1 }>;
// struct Bar<const N: usize>(Foo<N, 3>);
}
}
let hir_id = tcx.local_def_id_to_hir_id(def_id);
let node = tcx.hir_node(hir_id);
let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
if let hir::Node::Item(item) = node
&& let hir::ItemKind::Impl(impl_) = item.kind
{
if let Some(of_trait) = &impl_.of_trait {
debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
collector.visit_trait_ref(of_trait);
}
debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
collector.visit_ty(impl_.self_ty);
}
if let Some(generics) = node.generics() {
debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
collector.visit_generics(generics);
}
if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
collector.visit_fn_decl(fn_sig.decl);
}
debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
collector.preds
}
pub(super) fn trait_explicit_predicates_and_bounds(
tcx: TyCtxt<'_>,
def_id: LocalDefId,
) -> ty::GenericPredicates<'_> {
assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
gather_explicit_predicates_of(tcx, def_id)
}
pub(super) fn explicit_predicates_of<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
) -> ty::GenericPredicates<'tcx> {
let def_kind = tcx.def_kind(def_id);
if let DefKind::Trait = def_kind {
// Remove bounds on associated types from the predicates, they will be
// returned by `explicit_item_bounds`.
let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id);
let trait_identity_args = ty::GenericArgs::identity_for_item(tcx, def_id);
let is_assoc_item_ty = |ty: Ty<'tcx>| {
// For a predicate from a where clause to become a bound on an
// associated type:
// * It must use the identity args of the item.
// * We're in the scope of the trait, so we can't name any
// parameters of the GAT. That means that all we need to
// check are that the args of the projection are the
// identity args of the trait.
// * It must be an associated type for this trait (*not* a
// supertrait).
if let ty::Alias(ty::Projection, projection) = ty.kind() {
projection.args == trait_identity_args
// FIXME(return_type_notation): This check should be more robust
&& !tcx.is_impl_trait_in_trait(projection.def_id)
&& tcx.associated_item(projection.def_id).container_id(tcx)
== def_id.to_def_id()
} else {
false
}
};
let predicates: Vec<_> = predicates_and_bounds
.predicates
.iter()
.copied()
.filter(|(pred, _)| match pred.kind().skip_binder() {
ty::ClauseKind::Trait(tr) => !is_assoc_item_ty(tr.self_ty()),
ty::ClauseKind::Projection(proj) => {
!is_assoc_item_ty(proj.projection_term.self_ty())
}
ty::ClauseKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
_ => true,
})
.collect();
if predicates.len() == predicates_and_bounds.predicates.len() {
predicates_and_bounds
} else {
ty::GenericPredicates {
parent: predicates_and_bounds.parent,
predicates: tcx.arena.alloc_slice(&predicates),
}
}
} else {
if matches!(def_kind, DefKind::AnonConst)
&& tcx.features().generic_const_exprs()
&& let Some(defaulted_param_def_id) =
tcx.hir().opt_const_param_default_param_def_id(tcx.local_def_id_to_hir_id(def_id))
{
// In `generics_of` we set the generics' parent to be our parent's parent which means that
// we lose out on the predicates of our actual parent if we dont return those predicates here.
// (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
//
// struct Foo<T, const N: usize = { <T as Trait>::ASSOC }>(T) where T: Trait;
// ^^^ ^^^^^^^^^^^^^^^^^^^^^^^ the def id we are calling
// ^^^ explicit_predicates_of on
// parent item we dont have set as the
// parent of generics returned by `generics_of`
//
// In the above code we want the anon const to have predicates in its param env for `T: Trait`
// and we would be calling `explicit_predicates_of(Foo)` here
let parent_def_id = tcx.local_parent(def_id);
let parent_preds = tcx.explicit_predicates_of(parent_def_id);
// If we dont filter out `ConstArgHasType` predicates then every single defaulted const parameter
// will ICE because of #106994. FIXME(generic_const_exprs): remove this when a more general solution
// to #106994 is implemented.
let filtered_predicates = parent_preds
.predicates
.into_iter()
.filter(|(pred, _)| {
if let ty::ClauseKind::ConstArgHasType(ct, _) = pred.kind().skip_binder() {
match ct.kind() {
ty::ConstKind::Param(param_const) => {
let defaulted_param_idx = tcx
.generics_of(parent_def_id)
.param_def_id_to_index[&defaulted_param_def_id.to_def_id()];
param_const.index < defaulted_param_idx
}
_ => bug!(
"`ConstArgHasType` in `predicates_of`\
that isn't a `Param` const"
),
}
} else {
true
}
})
.cloned();
return GenericPredicates {
parent: parent_preds.parent,
predicates: { tcx.arena.alloc_from_iter(filtered_predicates) },
};
}
gather_explicit_predicates_of(tcx, def_id)
}
}
/// Ensures that the super-predicates of the trait with a `DefId`
/// of `trait_def_id` are lowered and stored. This also ensures that
/// the transitive super-predicates are lowered.
pub(super) fn explicit_super_predicates_of<'tcx>(
tcx: TyCtxt<'tcx>,
trait_def_id: LocalDefId,
) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
implied_predicates_with_filter(tcx, trait_def_id.to_def_id(), PredicateFilter::SelfOnly)
}
pub(super) fn explicit_supertraits_containing_assoc_item<'tcx>(
tcx: TyCtxt<'tcx>,
(trait_def_id, assoc_name): (DefId, Ident),
) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
implied_predicates_with_filter(
tcx,
trait_def_id,
PredicateFilter::SelfTraitThatDefines(assoc_name),
)
}
pub(super) fn explicit_implied_predicates_of<'tcx>(
tcx: TyCtxt<'tcx>,
trait_def_id: LocalDefId,
) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
implied_predicates_with_filter(
tcx,
trait_def_id.to_def_id(),
if tcx.is_trait_alias(trait_def_id.to_def_id()) {
PredicateFilter::All
} else {
PredicateFilter::SelfAndAssociatedTypeBounds
},
)
}
/// Ensures that the super-predicates of the trait with a `DefId`
/// of `trait_def_id` are lowered and stored. This also ensures that
/// the transitive super-predicates are lowered.
pub(super) fn implied_predicates_with_filter<'tcx>(
tcx: TyCtxt<'tcx>,
trait_def_id: DefId,
filter: PredicateFilter,
) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
let Some(trait_def_id) = trait_def_id.as_local() else {
// if `assoc_name` is None, then the query should've been redirected to an
// external provider
assert_matches!(filter, PredicateFilter::SelfTraitThatDefines(_));
return tcx.explicit_super_predicates_of(trait_def_id);
};
let Node::Item(item) = tcx.hir_node_by_def_id(trait_def_id) else {
bug!("trait_def_id {trait_def_id:?} is not an item");
};
let (generics, superbounds) = match item.kind {
hir::ItemKind::Trait(.., generics, supertraits, _) => (generics, supertraits),
hir::ItemKind::TraitAlias(generics, supertraits) => (generics, supertraits),
_ => span_bug!(item.span, "super_predicates invoked on non-trait"),
};
let icx = ItemCtxt::new(tcx, trait_def_id);
let self_param_ty = tcx.types.self_param;
let mut bounds = Bounds::default();
icx.lowerer().lower_bounds(self_param_ty, superbounds, &mut bounds, ty::List::empty(), filter);
let where_bounds_that_match =
icx.probe_ty_param_bounds_in_generics(generics, item.owner_id.def_id, filter);
// Combine the two lists to form the complete set of superbounds:
let implied_bounds =
&*tcx.arena.alloc_from_iter(bounds.clauses().chain(where_bounds_that_match));
debug!(?implied_bounds);
// Now require that immediate supertraits are lowered, which will, in
// turn, reach indirect supertraits, so we detect cycles now instead of
// overflowing during elaboration. Same for implied predicates, which
// make sure we walk into associated type bounds.
match filter {
PredicateFilter::SelfOnly => {
for &(pred, span) in implied_bounds {
debug!("superbound: {:?}", pred);
if let ty::ClauseKind::Trait(bound) = pred.kind().skip_binder()
&& bound.polarity == ty::PredicatePolarity::Positive
{
tcx.at(span).explicit_super_predicates_of(bound.def_id());
}
}
}
PredicateFilter::SelfAndAssociatedTypeBounds => {
for &(pred, span) in implied_bounds {
debug!("superbound: {:?}", pred);
if let ty::ClauseKind::Trait(bound) = pred.kind().skip_binder()
&& bound.polarity == ty::PredicatePolarity::Positive
{
tcx.at(span).explicit_implied_predicates_of(bound.def_id());
}
}
}
_ => {}
}
assert_only_contains_predicates_from(filter, implied_bounds, tcx.types.self_param);
ty::EarlyBinder::bind(implied_bounds)
}
// Make sure when elaborating supertraits, probing for associated types, etc.,
// we really truly are elaborating clauses that have `ty` as their self type.
// This is very important since downstream code relies on this being correct.
pub(super) fn assert_only_contains_predicates_from<'tcx>(
filter: PredicateFilter,
bounds: &'tcx [(ty::Clause<'tcx>, Span)],
ty: Ty<'tcx>,
) {
if !cfg!(debug_assertions) {
return;
}
match filter {
PredicateFilter::SelfOnly => {
for (clause, _) in bounds {
match clause.kind().skip_binder() {
ty::ClauseKind::Trait(trait_predicate) => {
assert_eq!(
trait_predicate.self_ty(),
ty,
"expected `Self` predicate when computing \
`{filter:?}` implied bounds: {clause:?}"
);
}
ty::ClauseKind::Projection(projection_predicate) => {
assert_eq!(
projection_predicate.self_ty(),
ty,
"expected `Self` predicate when computing \
`{filter:?}` implied bounds: {clause:?}"
);
}
ty::ClauseKind::TypeOutlives(outlives_predicate) => {
assert_eq!(
outlives_predicate.0, ty,
"expected `Self` predicate when computing \
`{filter:?}` implied bounds: {clause:?}"
);
}
ty::ClauseKind::RegionOutlives(_)
| ty::ClauseKind::ConstArgHasType(_, _)
| ty::ClauseKind::WellFormed(_)
| ty::ClauseKind::ConstEvaluatable(_)
| ty::ClauseKind::HostEffect(..) => {
bug!(
"unexpected non-`Self` predicate when computing \
`{filter:?}` implied bounds: {clause:?}"
);
}
}
}
}
PredicateFilter::SelfTraitThatDefines(_) => {
for (clause, _) in bounds {
match clause.kind().skip_binder() {
ty::ClauseKind::Trait(trait_predicate) => {
assert_eq!(
trait_predicate.self_ty(),
ty,
"expected `Self` predicate when computing \
`{filter:?}` implied bounds: {clause:?}"
);
}
ty::ClauseKind::Projection(_)
| ty::ClauseKind::TypeOutlives(_)
| ty::ClauseKind::RegionOutlives(_)
| ty::ClauseKind::ConstArgHasType(_, _)
| ty::ClauseKind::WellFormed(_)
| ty::ClauseKind::ConstEvaluatable(_)
| ty::ClauseKind::HostEffect(..) => {
bug!(
"unexpected non-`Self` predicate when computing \
`{filter:?}` implied bounds: {clause:?}"
);
}
}
}
}
PredicateFilter::ConstIfConst => {
for (clause, _) in bounds {
match clause.kind().skip_binder() {
ty::ClauseKind::HostEffect(ty::HostEffectPredicate {
trait_ref: _,
constness: ty::BoundConstness::Maybe,
}) => {}
_ => {
bug!(
"unexpected non-`HostEffect` predicate when computing \
`{filter:?}` implied bounds: {clause:?}"
);
}
}
}
}
PredicateFilter::SelfConstIfConst => {
for (clause, _) in bounds {
match clause.kind().skip_binder() {
ty::ClauseKind::HostEffect(pred) => {
assert_eq!(
pred.constness,
ty::BoundConstness::Maybe,
"expected `~const` predicate when computing `{filter:?}` \
implied bounds: {clause:?}",
);
assert_eq!(
pred.trait_ref.self_ty(),
ty,
"expected `Self` predicate when computing `{filter:?}` \
implied bounds: {clause:?}"
);
}
_ => {
bug!(
"unexpected non-`HostEffect` predicate when computing \
`{filter:?}` implied bounds: {clause:?}"
);
}
}
}
}
PredicateFilter::All | PredicateFilter::SelfAndAssociatedTypeBounds => {}
}
}
/// Returns the predicates defined on `item_def_id` of the form
/// `X: Foo` where `X` is the type parameter `def_id`.
#[instrument(level = "trace", skip(tcx))]
pub(super) fn type_param_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
(item_def_id, def_id, assoc_name): (LocalDefId, LocalDefId, Ident),
) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
match tcx.opt_rpitit_info(item_def_id.to_def_id()) {
Some(ty::ImplTraitInTraitData::Trait { opaque_def_id, .. }) => {
return tcx.type_param_predicates((opaque_def_id.expect_local(), def_id, assoc_name));
}
Some(ty::ImplTraitInTraitData::Impl { .. }) => {
unreachable!("should not be lowering bounds on RPITIT in impl")
}
None => {}
}
// In the HIR, bounds can derive from two places. Either
// written inline like `<T: Foo>` or in a where-clause like
// `where T: Foo`.
let param_id = tcx.local_def_id_to_hir_id(def_id);
let param_owner = tcx.hir().ty_param_owner(def_id);
// Don't look for bounds where the type parameter isn't in scope.
let parent = if item_def_id == param_owner {
// FIXME: Shouldn't this be unreachable?
None
} else {
tcx.generics_of(item_def_id).parent.map(|def_id| def_id.expect_local())
};
let result = if let Some(parent) = parent {
let icx = ItemCtxt::new(tcx, parent);
icx.probe_ty_param_bounds(DUMMY_SP, def_id, assoc_name)
} else {
ty::EarlyBinder::bind(&[] as &[_])
};
let mut extend = None;
let item_hir_id = tcx.local_def_id_to_hir_id(item_def_id);
let hir_node = tcx.hir_node(item_hir_id);
let Some(hir_generics) = hir_node.generics() else {
return result;
};
if let Node::Item(item) = hir_node
&& let hir::ItemKind::Trait(..) = item.kind
// Implied `Self: Trait` and supertrait bounds.
&& param_id == item_hir_id
{
let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id.to_def_id());
extend = Some((identity_trait_ref.upcast(tcx), item.span));
}
let icx = ItemCtxt::new(tcx, item_def_id);
let extra_predicates = extend.into_iter().chain(icx.probe_ty_param_bounds_in_generics(
hir_generics,
def_id,
PredicateFilter::SelfTraitThatDefines(assoc_name),
));
let bounds =
&*tcx.arena.alloc_from_iter(result.skip_binder().iter().copied().chain(extra_predicates));
// Double check that the bounds *only* contain `SelfTy: Trait` preds.
let self_ty = match tcx.def_kind(def_id) {
DefKind::TyParam => Ty::new_param(
tcx,
tcx.generics_of(item_def_id)
.param_def_id_to_index(tcx, def_id.to_def_id())
.expect("expected generic param to be owned by item"),
tcx.item_name(def_id.to_def_id()),
),
DefKind::Trait | DefKind::TraitAlias => tcx.types.self_param,
_ => unreachable!(),
};
assert_only_contains_predicates_from(
PredicateFilter::SelfTraitThatDefines(assoc_name),
bounds,
self_ty,
);
ty::EarlyBinder::bind(bounds)
}
impl<'tcx> ItemCtxt<'tcx> {
/// Finds bounds from `hir::Generics`.
///
/// This requires scanning through the HIR.
/// We do this to avoid having to lower *all* the bounds, which would create artificial cycles.
/// Instead, we can only lower the bounds for a type parameter `X` if `X::Foo` is used.
#[instrument(level = "trace", skip(self, hir_generics))]
fn probe_ty_param_bounds_in_generics(
&self,
hir_generics: &'tcx hir::Generics<'tcx>,
param_def_id: LocalDefId,
filter: PredicateFilter,
) -> Vec<(ty::Clause<'tcx>, Span)> {
let mut bounds = Bounds::default();
for predicate in hir_generics.predicates {
let hir_id = predicate.hir_id;
let hir::WherePredicateKind::BoundPredicate(predicate) = predicate.kind else {
continue;
};
match filter {
_ if predicate.is_param_bound(param_def_id.to_def_id()) => {
// Ok
}
PredicateFilter::All => {
// Ok
}
PredicateFilter::SelfOnly
| PredicateFilter::SelfTraitThatDefines(_)
| PredicateFilter::SelfConstIfConst
| PredicateFilter::SelfAndAssociatedTypeBounds => continue,
PredicateFilter::ConstIfConst => unreachable!(),
}
let bound_ty = self.lowerer().lower_ty_maybe_return_type_notation(predicate.bounded_ty);
let bound_vars = self.tcx.late_bound_vars(hir_id);
self.lowerer().lower_bounds(
bound_ty,
predicate.bounds,
&mut bounds,
bound_vars,
filter,
);
}
bounds.clauses().collect()
}
}
/// Compute the conditions that need to hold for a conditionally-const item to be const.
/// That is, compute the set of `~const` where clauses for a given item.
///
/// This query also computes the `~const` where clauses for associated types, which are
/// not "const", but which have item bounds which may be `~const`. These must hold for
/// the `~const` item bound to hold.
pub(super) fn const_conditions<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
) -> ty::ConstConditions<'tcx> {
if !tcx.is_conditionally_const(def_id) {
bug!("const_conditions invoked for item that is not conditionally const: {def_id:?}");
}
let (generics, trait_def_id_and_supertraits, has_parent) = match tcx.hir_node_by_def_id(def_id)
{
Node::Item(item) => match item.kind {
hir::ItemKind::Impl(impl_) => (impl_.generics, None, false),
hir::ItemKind::Fn(_, generics, _) => (generics, None, false),
hir::ItemKind::Trait(_, _, generics, supertraits, _) => {
(generics, Some((item.owner_id.def_id, supertraits)), false)
}
_ => bug!("const_conditions called on wrong item: {def_id:?}"),
},
// While associated types are not really const, we do allow them to have `~const`
// bounds and where clauses. `const_conditions` is responsible for gathering
// these up so we can check them in `compare_type_predicate_entailment`, and
// in `HostEffect` goal computation.
Node::TraitItem(item) => match item.kind {
hir::TraitItemKind::Fn(_, _) | hir::TraitItemKind::Type(_, _) => {
(item.generics, None, true)
}
_ => bug!("const_conditions called on wrong item: {def_id:?}"),
},
Node::ImplItem(item) => match item.kind {
hir::ImplItemKind::Fn(_, _) | hir::ImplItemKind::Type(_) => {
(item.generics, None, tcx.is_conditionally_const(tcx.local_parent(def_id)))
}
_ => bug!("const_conditions called on wrong item: {def_id:?}"),
},
Node::ForeignItem(item) => match item.kind {
hir::ForeignItemKind::Fn(_, _, generics) => (generics, None, false),
_ => bug!("const_conditions called on wrong item: {def_id:?}"),
},
Node::OpaqueTy(opaque) => match opaque.origin {
hir::OpaqueTyOrigin::FnReturn { parent, .. } => return tcx.const_conditions(parent),
hir::OpaqueTyOrigin::AsyncFn { .. } | hir::OpaqueTyOrigin::TyAlias { .. } => {
unreachable!()
}
},
// N.B. Tuple ctors are unconditionally constant.
Node::Ctor(hir::VariantData::Tuple { .. }) => return Default::default(),
_ => bug!("const_conditions called on wrong item: {def_id:?}"),
};
let icx = ItemCtxt::new(tcx, def_id);
let mut bounds = Bounds::default();
for pred in generics.predicates {
match pred.kind {
hir::WherePredicateKind::BoundPredicate(bound_pred) => {
let ty = icx.lowerer().lower_ty_maybe_return_type_notation(bound_pred.bounded_ty);
let bound_vars = tcx.late_bound_vars(pred.hir_id);
icx.lowerer().lower_bounds(
ty,
bound_pred.bounds.iter(),
&mut bounds,
bound_vars,
PredicateFilter::ConstIfConst,
);
}
_ => {}
}
}
if let Some((def_id, supertraits)) = trait_def_id_and_supertraits {
bounds.push_const_bound(
tcx,
ty::Binder::dummy(ty::TraitRef::identity(tcx, def_id.to_def_id())),
ty::BoundConstness::Maybe,
DUMMY_SP,
);