-
Notifications
You must be signed in to change notification settings - Fork 347
/
stacked_borrows.rs
689 lines (628 loc) · 28.5 KB
/
stacked_borrows.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
//! Implements "Stacked Borrows". See <https://github.com/rust-lang/unsafe-code-guidelines/blob/master/wip/stacked-borrows.md>
//! for further information.
use std::cell::RefCell;
use std::fmt;
use std::num::NonZeroU64;
use std::rc::Rc;
use log::trace;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_middle::mir::RetagKind;
use rustc_middle::ty;
use rustc_target::abi::{Align, LayoutOf, Size};
use rustc_hir::Mutability;
use crate::*;
pub type PtrId = NonZeroU64;
pub type CallId = NonZeroU64;
pub type AllocExtra = Stacks;
/// Tracking pointer provenance
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub enum Tag {
Tagged(PtrId),
Untagged,
}
impl fmt::Debug for Tag {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Tag::Tagged(id) => write!(f, "<{}>", id),
Tag::Untagged => write!(f, "<untagged>"),
}
}
}
/// Indicates which permission is granted (by this item to some pointers)
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Permission {
/// Grants unique mutable access.
Unique,
/// Grants shared mutable access.
SharedReadWrite,
/// Grants shared read-only access.
SharedReadOnly,
/// Grants no access, but separates two groups of SharedReadWrite so they are not
/// all considered mutually compatible.
Disabled,
}
/// An item in the per-location borrow stack.
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub struct Item {
/// The permission this item grants.
perm: Permission,
/// The pointers the permission is granted to.
tag: Tag,
/// An optional protector, ensuring the item cannot get popped until `CallId` is over.
protector: Option<CallId>,
}
impl fmt::Debug for Item {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[{:?} for {:?}", self.perm, self.tag)?;
if let Some(call) = self.protector {
write!(f, " (call {})", call)?;
}
write!(f, "]")?;
Ok(())
}
}
/// Extra per-location state.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Stack {
/// Used *mostly* as a stack; never empty.
/// Invariants:
/// * Above a `SharedReadOnly` there can only be more `SharedReadOnly`.
/// * Except for `Untagged`, no tag occurs in the stack more than once.
borrows: Vec<Item>,
}
/// Extra per-allocation state.
#[derive(Clone, Debug)]
pub struct Stacks {
// Even reading memory can have effects on the stack, so we need a `RefCell` here.
stacks: RefCell<RangeMap<Stack>>,
// Pointer to global state
global: MemoryExtra,
}
/// Extra global state, available to the memory access hooks.
#[derive(Debug)]
pub struct GlobalState {
/// Next unused pointer ID (tag).
next_ptr_id: PtrId,
/// Table storing the "base" tag for each allocation.
/// The base tag is the one used for the initial pointer.
/// We need this in a separate table to handle cyclic statics.
base_ptr_ids: FxHashMap<AllocId, Tag>,
/// Next unused call ID (for protectors).
next_call_id: CallId,
/// Those call IDs corresponding to functions that are still running.
active_calls: FxHashSet<CallId>,
/// The pointer id to trace
tracked_pointer_tag: Option<PtrId>,
/// The call id to trace
tracked_call_id: Option<CallId>,
}
/// Memory extra state gives us interior mutable access to the global state.
pub type MemoryExtra = Rc<RefCell<GlobalState>>;
/// Indicates which kind of access is being performed.
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub enum AccessKind {
Read,
Write,
}
impl fmt::Display for AccessKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
AccessKind::Read => write!(f, "read access"),
AccessKind::Write => write!(f, "write access"),
}
}
}
/// Indicates which kind of reference is being created.
/// Used by high-level `reborrow` to compute which permissions to grant to the
/// new pointer.
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub enum RefKind {
/// `&mut` and `Box`.
Unique { two_phase: bool },
/// `&` with or without interior mutability.
Shared,
/// `*mut`/`*const` (raw pointers).
Raw { mutable: bool },
}
impl fmt::Display for RefKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
RefKind::Unique { two_phase: false } => write!(f, "unique"),
RefKind::Unique { two_phase: true } => write!(f, "unique (two-phase)"),
RefKind::Shared => write!(f, "shared"),
RefKind::Raw { mutable: true } => write!(f, "raw (mutable)"),
RefKind::Raw { mutable: false } => write!(f, "raw (constant)"),
}
}
}
/// Utilities for initialization and ID generation
impl GlobalState {
pub fn new(tracked_pointer_tag: Option<PtrId>, tracked_call_id: Option<CallId>) -> Self {
GlobalState {
next_ptr_id: NonZeroU64::new(1).unwrap(),
base_ptr_ids: FxHashMap::default(),
next_call_id: NonZeroU64::new(1).unwrap(),
active_calls: FxHashSet::default(),
tracked_pointer_tag,
tracked_call_id,
}
}
fn new_ptr(&mut self) -> PtrId {
let id = self.next_ptr_id;
self.next_ptr_id = NonZeroU64::new(id.get() + 1).unwrap();
id
}
pub fn new_call(&mut self) -> CallId {
let id = self.next_call_id;
trace!("new_call: Assigning ID {}", id);
if Some(id) == self.tracked_call_id {
register_diagnostic(NonHaltingDiagnostic::CreatedCallId(id));
}
assert!(self.active_calls.insert(id));
self.next_call_id = NonZeroU64::new(id.get() + 1).unwrap();
id
}
pub fn end_call(&mut self, id: CallId) {
assert!(self.active_calls.remove(&id));
}
fn is_active(&self, id: CallId) -> bool {
self.active_calls.contains(&id)
}
pub fn global_base_ptr(&mut self, id: AllocId) -> Tag {
self.base_ptr_ids.get(&id).copied().unwrap_or_else(|| {
let tag = Tag::Tagged(self.new_ptr());
trace!("New allocation {:?} has base tag {:?}", id, tag);
self.base_ptr_ids.insert(id, tag).unwrap_none();
tag
})
}
}
/// Error reporting
fn err_sb_ub(msg: String) -> InterpError<'static> {
err_machine_stop!(TerminationInfo::ExperimentalUb {
msg,
url: format!("https://github.com/rust-lang/unsafe-code-guidelines/blob/master/wip/stacked-borrows.md"),
})
}
// # Stacked Borrows Core Begin
/// We need to make at least the following things true:
///
/// U1: After creating a `Uniq`, it is at the top.
/// U2: If the top is `Uniq`, accesses must be through that `Uniq` or remove it it.
/// U3: If an access happens with a `Uniq`, it requires the `Uniq` to be in the stack.
///
/// F1: After creating a `&`, the parts outside `UnsafeCell` have our `SharedReadOnly` on top.
/// F2: If a write access happens, it pops the `SharedReadOnly`. This has three pieces:
/// F2a: If a write happens granted by an item below our `SharedReadOnly`, the `SharedReadOnly`
/// gets popped.
/// F2b: No `SharedReadWrite` or `Unique` will ever be added on top of our `SharedReadOnly`.
/// F3: If an access happens with an `&` outside `UnsafeCell`,
/// it requires the `SharedReadOnly` to still be in the stack.
/// Core relation on `Permission` to define which accesses are allowed
impl Permission {
/// This defines for a given permission, whether it permits the given kind of access.
fn grants(self, access: AccessKind) -> bool {
// Disabled grants nothing. Otherwise, all items grant read access, and except for SharedReadOnly they grant write access.
self != Permission::Disabled
&& (access == AccessKind::Read || self != Permission::SharedReadOnly)
}
}
/// Core per-location operations: access, dealloc, reborrow.
impl<'tcx> Stack {
/// Find the item granting the given kind of access to the given tag, and return where
/// it is on the stack.
fn find_granting(&self, access: AccessKind, tag: Tag) -> Option<usize> {
self.borrows
.iter()
.enumerate() // we also need to know *where* in the stack
.rev() // search top-to-bottom
// Return permission of first item that grants access.
// We require a permission with the right tag, ensuring U3 and F3.
.find_map(
|(idx, item)| {
if tag == item.tag && item.perm.grants(access) { Some(idx) } else { None }
},
)
}
/// Find the first write-incompatible item above the given one --
/// i.e, find the height to which the stack will be truncated when writing to `granting`.
fn find_first_write_incompatible(&self, granting: usize) -> usize {
let perm = self.borrows[granting].perm;
match perm {
Permission::SharedReadOnly => bug!("Cannot use SharedReadOnly for writing"),
Permission::Disabled => bug!("Cannot use Disabled for anything"),
// On a write, everything above us is incompatible.
Permission::Unique => granting + 1,
Permission::SharedReadWrite => {
// The SharedReadWrite *just* above us are compatible, to skip those.
let mut idx = granting + 1;
while let Some(item) = self.borrows.get(idx) {
if item.perm == Permission::SharedReadWrite {
// Go on.
idx += 1;
} else {
// Found first incompatible!
break;
}
}
idx
}
}
}
/// Check if the given item is protected.
fn check_protector(item: &Item, tag: Option<Tag>, global: &GlobalState) -> InterpResult<'tcx> {
if let Tag::Tagged(id) = item.tag {
if Some(id) == global.tracked_pointer_tag {
register_diagnostic(NonHaltingDiagnostic::PoppedPointerTag(item.clone()));
}
}
if let Some(call) = item.protector {
if global.is_active(call) {
if let Some(tag) = tag {
Err(err_sb_ub(format!(
"not granting access to tag {:?} because incompatible item is protected: {:?}",
tag, item
)))?
} else {
Err(err_sb_ub(format!(
"deallocating while item is protected: {:?}",
item
)))?
}
}
}
Ok(())
}
/// Test if a memory `access` using pointer tagged `tag` is granted.
/// If yes, return the index of the item that granted it.
fn access(&mut self, access: AccessKind, tag: Tag, global: &GlobalState) -> InterpResult<'tcx> {
// Two main steps: Find granting item, remove incompatible items above.
// Step 1: Find granting item.
let granting_idx = self.find_granting(access, tag).ok_or_else(|| {
err_sb_ub(format!(
"no item granting {} to tag {:?} found in borrow stack.",
access, tag
))
})?;
// Step 2: Remove incompatible items above them. Make sure we do not remove protected
// items. Behavior differs for reads and writes.
if access == AccessKind::Write {
// Remove everything above the write-compatible items, like a proper stack. This makes sure read-only and unique
// pointers become invalid on write accesses (ensures F2a, and ensures U2 for write accesses).
let first_incompatible_idx = self.find_first_write_incompatible(granting_idx);
for item in self.borrows.drain(first_incompatible_idx..).rev() {
trace!("access: popping item {:?}", item);
Stack::check_protector(&item, Some(tag), global)?;
}
} else {
// On a read, *disable* all `Unique` above the granting item. This ensures U2 for read accesses.
// The reason this is not following the stack discipline (by removing the first Unique and
// everything on top of it) is that in `let raw = &mut *x as *mut _; let _val = *x;`, the second statement
// would pop the `Unique` from the reborrow of the first statement, and subsequently also pop the
// `SharedReadWrite` for `raw`.
// This pattern occurs a lot in the standard library: create a raw pointer, then also create a shared
// reference and use that.
// We *disable* instead of removing `Unique` to avoid "connecting" two neighbouring blocks of SRWs.
for idx in ((granting_idx + 1)..self.borrows.len()).rev() {
let item = &mut self.borrows[idx];
if item.perm == Permission::Unique {
trace!("access: disabling item {:?}", item);
Stack::check_protector(item, Some(tag), global)?;
item.perm = Permission::Disabled;
}
}
}
// Done.
Ok(())
}
/// Deallocate a location: Like a write access, but also there must be no
/// active protectors at all because we will remove all items.
fn dealloc(&mut self, tag: Tag, global: &GlobalState) -> InterpResult<'tcx> {
// Step 1: Find granting item.
self.find_granting(AccessKind::Write, tag).ok_or_else(|| {
err_sb_ub(format!(
"no item granting write access for deallocation to tag {:?} found in borrow stack",
tag,
))
})?;
// Step 2: Remove all items. Also checks for protectors.
for item in self.borrows.drain(..).rev() {
Stack::check_protector(&item, None, global)?;
}
Ok(())
}
/// Derived a new pointer from one with the given tag.
/// `weak` controls whether this operation is weak or strong: weak granting does not act as
/// an access, and they add the new item directly on top of the one it is derived
/// from instead of all the way at the top of the stack.
fn grant(&mut self, derived_from: Tag, new: Item, global: &GlobalState) -> InterpResult<'tcx> {
// Figure out which access `perm` corresponds to.
let access =
if new.perm.grants(AccessKind::Write) { AccessKind::Write } else { AccessKind::Read };
// Now we figure out which item grants our parent (`derived_from`) this kind of access.
// We use that to determine where to put the new item.
let granting_idx = self.find_granting(access, derived_from)
.ok_or_else(|| err_sb_ub(format!(
"trying to reborrow for {:?}, but parent tag {:?} does not have an appropriate item in the borrow stack",
new.perm, derived_from,
)))?;
// Compute where to put the new item.
// Either way, we ensure that we insert the new item in a way such that between
// `derived_from` and the new one, there are only items *compatible with* `derived_from`.
let new_idx = if new.perm == Permission::SharedReadWrite {
assert!(
access == AccessKind::Write,
"this case only makes sense for stack-like accesses"
);
// SharedReadWrite can coexist with "existing loans", meaning they don't act like a write
// access. Instead of popping the stack, we insert the item at the place the stack would
// be popped to (i.e., we insert it above all the write-compatible items).
// This ensures F2b by adding the new item below any potentially existing `SharedReadOnly`.
self.find_first_write_incompatible(granting_idx)
} else {
// A "safe" reborrow for a pointer that actually expects some aliasing guarantees.
// Here, creating a reference actually counts as an access.
// This ensures F2b for `Unique`, by removing offending `SharedReadOnly`.
self.access(access, derived_from, global)?;
// We insert "as far up as possible": We know only compatible items are remaining
// on top of `derived_from`, and we want the new item at the top so that we
// get the strongest possible guarantees.
// This ensures U1 and F1.
self.borrows.len()
};
// Put the new item there. As an optimization, deduplicate if it is equal to one of its new neighbors.
if self.borrows[new_idx - 1] == new || self.borrows.get(new_idx) == Some(&new) {
// Optimization applies, done.
trace!("reborrow: avoiding adding redundant item {:?}", new);
} else {
trace!("reborrow: adding item {:?}", new);
self.borrows.insert(new_idx, new);
}
Ok(())
}
}
// # Stacked Borrows Core End
/// Map per-stack operations to higher-level per-location-range operations.
impl<'tcx> Stacks {
/// Creates new stack with initial tag.
fn new(size: Size, perm: Permission, tag: Tag, extra: MemoryExtra) -> Self {
let item = Item { perm, tag, protector: None };
let stack = Stack { borrows: vec![item] };
Stacks { stacks: RefCell::new(RangeMap::new(size, stack)), global: extra }
}
/// Call `f` on every stack in the range.
fn for_each(
&self,
ptr: Pointer<Tag>,
size: Size,
f: impl Fn(&mut Stack, &GlobalState) -> InterpResult<'tcx>,
) -> InterpResult<'tcx> {
let global = self.global.borrow();
let mut stacks = self.stacks.borrow_mut();
for stack in stacks.iter_mut(ptr.offset, size) {
f(stack, &*global)?;
}
Ok(())
}
}
/// Glue code to connect with Miri Machine Hooks
impl Stacks {
pub fn new_allocation(
id: AllocId,
size: Size,
extra: MemoryExtra,
kind: MemoryKind<MiriMemoryKind>,
) -> (Self, Tag) {
let (tag, perm) = match kind {
// New unique borrow. This tag is not accessible by the program,
// so it will only ever be used when using the local directly (i.e.,
// not through a pointer). That is, whenever we directly write to a local, this will pop
// everything else off the stack, invalidating all previous pointers,
// and in particular, *all* raw pointers.
MemoryKind::Stack => (Tag::Tagged(extra.borrow_mut().new_ptr()), Permission::Unique),
// `Global` memory can be referenced by global pointers from `tcx`.
// Thus we call `global_base_ptr` such that the global pointers get the same tag
// as what we use here.
// `ExternStatic` is used for extern statics, and thus must also be listed here.
// `Env` we list because we can get away with precise tracking there.
// The base pointer is not unique, so the base permission is `SharedReadWrite`.
MemoryKind::Machine(MiriMemoryKind::Global | MiriMemoryKind::ExternStatic | MiriMemoryKind::Tls | MiriMemoryKind::Env) =>
(extra.borrow_mut().global_base_ptr(id), Permission::SharedReadWrite),
// Everything else we handle entirely untagged for now.
// FIXME: experiment with more precise tracking.
_ => (Tag::Untagged, Permission::SharedReadWrite),
};
(Stacks::new(size, perm, tag, extra), tag)
}
#[inline(always)]
pub fn memory_read<'tcx>(&self, ptr: Pointer<Tag>, size: Size) -> InterpResult<'tcx> {
trace!("read access with tag {:?}: {:?}, size {}", ptr.tag, ptr.erase_tag(), size.bytes());
self.for_each(ptr, size, |stack, global| {
stack.access(AccessKind::Read, ptr.tag, global)?;
Ok(())
})
}
#[inline(always)]
pub fn memory_written<'tcx>(&mut self, ptr: Pointer<Tag>, size: Size) -> InterpResult<'tcx> {
trace!("write access with tag {:?}: {:?}, size {}", ptr.tag, ptr.erase_tag(), size.bytes());
self.for_each(ptr, size, |stack, global| {
stack.access(AccessKind::Write, ptr.tag, global)?;
Ok(())
})
}
#[inline(always)]
pub fn memory_deallocated<'tcx>(
&mut self,
ptr: Pointer<Tag>,
size: Size,
) -> InterpResult<'tcx> {
trace!("deallocation with tag {:?}: {:?}, size {}", ptr.tag, ptr.erase_tag(), size.bytes());
self.for_each(ptr, size, |stack, global| stack.dealloc(ptr.tag, global))
}
}
/// Retagging/reborrowing. There is some policy in here, such as which permissions
/// to grant for which references, and when to add protectors.
impl<'mir, 'tcx: 'mir> EvalContextPrivExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
trait EvalContextPrivExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
fn reborrow(
&mut self,
place: MPlaceTy<'tcx, Tag>,
size: Size,
kind: RefKind,
new_tag: Tag,
protect: bool,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let protector = if protect { Some(this.frame().extra.call_id) } else { None };
let ptr = place.ptr.assert_ptr();
trace!(
"reborrow: {} reference {:?} derived from {:?} (pointee {}): {:?}, size {}",
kind,
new_tag,
ptr.tag,
place.layout.ty,
ptr.erase_tag(),
size.bytes()
);
// Get the allocation. It might not be mutable, so we cannot use `get_mut`.
let extra = &this.memory.get_raw(ptr.alloc_id)?.extra;
let stacked_borrows =
extra.stacked_borrows.as_ref().expect("we should have Stacked Borrows data");
// Update the stacks.
// Make sure that raw pointers and mutable shared references are reborrowed "weak":
// There could be existing unique pointers reborrowed from them that should remain valid!
let perm = match kind {
RefKind::Unique { two_phase: false } => Permission::Unique,
RefKind::Unique { two_phase: true } => Permission::SharedReadWrite,
RefKind::Raw { mutable: true } => Permission::SharedReadWrite,
RefKind::Shared | RefKind::Raw { mutable: false } => {
// Shared references and *const are a whole different kind of game, the
// permission is not uniform across the entire range!
// We need a frozen-sensitive reborrow.
return this.visit_freeze_sensitive(place, size, |cur_ptr, size, frozen| {
// We are only ever `SharedReadOnly` inside the frozen bits.
let perm = if frozen {
Permission::SharedReadOnly
} else {
Permission::SharedReadWrite
};
let item = Item { perm, tag: new_tag, protector };
stacked_borrows.for_each(cur_ptr, size, |stack, global| {
stack.grant(cur_ptr.tag, item, global)
})
});
}
};
let item = Item { perm, tag: new_tag, protector };
stacked_borrows.for_each(ptr, size, |stack, global| stack.grant(ptr.tag, item, global))
}
/// Retags an indidual pointer, returning the retagged version.
/// `mutbl` can be `None` to make this a raw pointer.
fn retag_reference(
&mut self,
val: ImmTy<'tcx, Tag>,
kind: RefKind,
protect: bool,
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
let this = self.eval_context_mut();
// We want a place for where the ptr *points to*, so we get one.
let place = this.ref_to_mplace(val)?;
let size = this
.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
.unwrap_or_else(|| place.layout.size);
// `reborrow` relies on getting a `Pointer` and everything being in-bounds,
// so let's ensure that. However, we do not care about alignment.
// We can see dangling ptrs in here e.g. after a Box's `Unique` was
// updated using "self.0 = ..." (can happen in Box::from_raw) so we cannot ICE; see miri#1050.
let place = this.mplace_access_checked(place, Some(Align::from_bytes(1).unwrap()))?;
// Nothing to do for ZSTs.
if size == Size::ZERO {
return Ok(val);
}
// Compute new borrow.
let new_tag = match kind {
// Give up tracking for raw pointers.
// FIXME: Experiment with more precise tracking. Blocked on `&raw`
// because `Rc::into_raw` currently creates intermediate references,
// breaking `Rc::from_raw`.
RefKind::Raw { .. } => Tag::Untagged,
// All other pointesr are properly tracked.
_ => Tag::Tagged(
this.memory.extra.stacked_borrows.as_ref().unwrap().borrow_mut().new_ptr(),
),
};
// Reborrow.
this.reborrow(place, size, kind, new_tag, protect)?;
let new_place = place.replace_tag(new_tag);
// Return new pointer.
Ok(ImmTy::from_immediate(new_place.to_ref(), val.layout))
}
}
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
fn retag(&mut self, kind: RetagKind, place: PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// Determine mutability and whether to add a protector.
// Cannot use `builtin_deref` because that reports *immutable* for `Box`,
// making it useless.
fn qualify(ty: ty::Ty<'_>, kind: RetagKind) -> Option<(RefKind, bool)> {
match ty.kind() {
// References are simple.
ty::Ref(_, _, Mutability::Mut) => Some((
RefKind::Unique { two_phase: kind == RetagKind::TwoPhase },
kind == RetagKind::FnEntry,
)),
ty::Ref(_, _, Mutability::Not) =>
Some((RefKind::Shared, kind == RetagKind::FnEntry)),
// Raw pointers need to be enabled.
ty::RawPtr(tym) if kind == RetagKind::Raw =>
Some((RefKind::Raw { mutable: tym.mutbl == Mutability::Mut }, false)),
// Boxes do not get a protector: protectors reflect that references outlive the call
// they were passed in to; that's just not the case for boxes.
ty::Adt(..) if ty.is_box() => Some((RefKind::Unique { two_phase: false }, false)),
_ => None,
}
}
// We only reborrow "bare" references/boxes.
// Not traversing into fields helps with <https://github.com/rust-lang/unsafe-code-guidelines/issues/125>,
// but might also cost us optimization and analyses. We will have to experiment more with this.
if let Some((mutbl, protector)) = qualify(place.layout.ty, kind) {
// Fast path.
let val = this.read_immediate(this.place_to_op(place)?)?;
let val = this.retag_reference(val, mutbl, protector)?;
this.write_immediate(*val, place)?;
}
Ok(())
}
/// After a stack frame got pushed, retag the return place so that we are sure
/// it does not alias with anything.
///
/// This is a HACK because there is nothing in MIR that would make the retag
/// explicit. Also see https://github.com/rust-lang/rust/issues/71117.
fn retag_return_place(&mut self) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let return_place = if let Some(return_place) = this.frame_mut().return_place {
return_place
} else {
// No return place, nothing to do.
return Ok(());
};
if return_place.layout.is_zst() {
// There may not be any memory here, nothing to do.
return Ok(());
}
// We need this to be in-memory to use tagged pointers.
let return_place = this.force_allocation(return_place)?;
// We have to turn the place into a pointer to use the existing code.
// (The pointer type does not matter, so we use a raw pointer.)
let ptr_layout = this.layout_of(this.tcx.mk_mut_ptr(return_place.layout.ty))?;
let val = ImmTy::from_immediate(return_place.to_ref(), ptr_layout);
// Reborrow it.
let val = this.retag_reference(val, RefKind::Unique { two_phase: false }, /*protector*/ true)?;
// And use reborrowed pointer for return place.
let return_place = this.ref_to_mplace(val)?;
this.frame_mut().return_place = Some(return_place.into());
Ok(())
}
}