-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathmacros.rs
299 lines (267 loc) · 9.89 KB
/
macros.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
//! Macros shared throughout the compiler-builtins implementation
/// The "main macro" used for defining intrinsics.
///
/// The compiler-builtins library is super platform-specific with tons of crazy
/// little tweaks for various platforms. As a result it *could* involve a lot of
/// #[cfg] and macro soup, but the intention is that this macro alleviates a lot
/// of that complexity. Ideally this macro has all the weird ABI things
/// platforms need and elsewhere in this library it just looks like normal Rust
/// code.
///
/// This macro is structured to be invoked with a bunch of functions that looks
/// like:
///
/// intrinsics! {
/// pub extern "C" fn foo(a: i32) -> u32 {
/// // ...
/// }
///
/// #[nonstandard_attribute]
/// pub extern "C" fn bar(a: i32) -> u32 {
/// // ...
/// }
/// }
///
/// Each function is defined in a manner that looks like a normal Rust function.
/// The macro then accepts a few nonstandard attributes that can decorate
/// various functions. Each of the attributes is documented below with what it
/// can do, and each of them slightly tweaks how further expansion happens.
///
/// A quick overview of attributes supported right now are:
///
/// * `maybe_use_optimized_c_shim` - indicates that the Rust implementation is
/// ignored if an optimized C version was compiled.
/// * `aapcs_on_arm` - forces the ABI of the function to be `"aapcs"` on ARM and
/// the specified ABI everywhere else.
/// * `unadjusted_on_win64` - like `aapcs_on_arm` this switches to the
/// `"unadjusted"` abi on Win64 and the specified abi elsewhere.
/// * `win64_128bit_abi_hack` - this attribute is used for 128-bit integer
/// intrinsics where the ABI is slightly tweaked on Windows platforms, but
/// it's a normal ABI elsewhere for returning a 128 bit integer.
/// * `arm_aeabi_alias` - handles the "aliasing" of various intrinsics on ARM
/// their otherwise typical names to other prefixed ones.
///
macro_rules! intrinsics {
() => ();
// Right now there's a bunch of architecture-optimized intrinsics in the
// stock compiler-rt implementation. Not all of these have been ported over
// to Rust yet so when the `c` feature of this crate is enabled we fall back
// to the architecture-specific versions which should be more optimized. The
// purpose of this macro is to easily allow specifying this.
//
// The `#[maybe_use_optimized_c_shim]` attribute indicates that this
// intrinsic may have an optimized C version. In these situations the build
// script, if the C code is enabled and compiled, will emit a cfg directive
// to get passed to rustc for our compilation. If that cfg is set we skip
// the Rust implementation, but if the attribute is not enabled then we
// compile in the Rust implementation.
(
#[maybe_use_optimized_c_shim]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg($name = "optimized-c")]
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
extern $abi {
fn $name($($argname: $ty),*) -> $ret;
}
unsafe {
$name($($argname),*)
}
}
#[cfg(not($name = "optimized-c"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
intrinsics!($($rest)*);
);
// We recognize the `#[aapcs_on_arm]` attribute here and generate the
// same intrinsic but force it to have the `"aapcs"` calling convention on
// ARM and `"C"` elsewhere.
(
#[aapcs_on_arm]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(target_arch = "arm")]
intrinsics! {
$(#[$($attr)*])*
pub extern "aapcs" fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
#[cfg(not(target_arch = "arm"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Like aapcs above we recognize an attribute for the "unadjusted" abi on
// win64 for some methods.
(
#[unadjusted_on_win64]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(all(windows, target_pointer_width = "64"))]
intrinsics! {
$(#[$($attr)*])*
pub extern "unadjusted" fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
#[cfg(not(all(windows, target_pointer_width = "64")))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Some intrinsics on win64 which return a 128-bit integer have an.. unusual
// calling convention. That's managed here with this "abi hack" which alters
// the generated symbol's ABI.
//
// This will still define a function in this crate with the given name and
// signature, but the actual symbol for the intrinsic may have a slightly
// different ABI on win64.
(
#[win64_128bit_abi_hack]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(all(windows, target_arch = "x86_64"))]
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
#[cfg(all(windows, target_arch = "x86_64"))]
pub mod $name {
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
pub extern $abi fn $name( $($argname: $ty),* )
-> ::macros::win64_128bit_abi_hack::U64x2
{
let e: $ret = super::$name($($argname),*);
::macros::win64_128bit_abi_hack::U64x2::from(e)
}
}
#[cfg(not(all(windows, target_arch = "x86_64")))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
intrinsics!($($rest)*);
);
// A bunch of intrinsics on ARM are aliased in the standard compiler-rt
// build under `__aeabi_*` aliases, and LLVM will call these instead of the
// original function. The aliasing here is used to generate these symbols in
// the object file.
(
#[arm_aeabi_alias = $alias:ident]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(target_arch = "arm")]
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
#[cfg(target_arch = "arm")]
pub mod $name {
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
super::$name($($argname),*)
}
}
#[cfg(target_arch = "arm")]
pub mod $alias {
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
pub extern "aapcs" fn $alias( $($argname: $ty),* ) -> $ret {
super::$name($($argname),*)
}
}
#[cfg(not(target_arch = "arm"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
}
intrinsics!($($rest)*);
);
// This is the final catch-all rule. At this point we generate an
// intrinsic with a conditional `#[no_mangle]` directive to avoid
// interfering with duplicate symbols and whatnot during testing.
//
// The implementation is placed in a separate module, to take advantage
// of the fact that rustc partitions functions into code generation
// units based on module they are defined in. As a result we will have
// a separate object file for each intrinsic. For further details see
// corresponding PR in rustc https://github.com/rust-lang/rust/pull/70846
//
// After the intrinsic is defined we just continue with the rest of the
// input we were given.
(
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty {
$($body:tt)*
}
$($rest:tt)*
) => (
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
$($body)*
}
pub mod $name {
$(#[$($attr)*])*
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
pub extern $abi fn $name( $($argname: $ty),* ) -> $ret {
super::$name($($argname),*)
}
}
intrinsics!($($rest)*);
);
}
// Hack for LLVM expectations for ABI on windows. This is used by the
// `#[win64_128bit_abi_hack]` attribute recognized above
#[cfg(all(windows, target_pointer_width = "64"))]
pub mod win64_128bit_abi_hack {
#[repr(simd)]
pub struct U64x2(u64, u64);
impl From<i128> for U64x2 {
fn from(i: i128) -> U64x2 {
use int::DInt;
let j = i as u128;
U64x2(j.lo(), j.hi())
}
}
impl From<u128> for U64x2 {
fn from(i: u128) -> U64x2 {
use int::DInt;
U64x2(i.lo(), i.hi())
}
}
}