-
Notifications
You must be signed in to change notification settings - Fork 72
/
parse_darknet_yolo2.py
executable file
·136 lines (121 loc) · 6.19 KB
/
parse_darknet_yolo2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
Copyright (C) 2017, 申瑞珉 (Ruimin Shen)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import re
import time
import shutil
import argparse
import configparser
import operator
import itertools
import struct
import numpy as np
import pandas as pd
import tensorflow as tf
import model.yolo2.inference as inference
import utils
def transpose_weights(weights, num_anchors):
ksize1, ksize2, channels_in, _ = weights.shape
weights = weights.reshape([ksize1, ksize2, channels_in, num_anchors, -1])
coords = weights[:, :, :, :, 0:4]
iou = np.expand_dims(weights[:, :, :, :, 4], -1)
classes = weights[:, :, :, :, 5:]
return np.concatenate([iou, coords, classes], -1).reshape([ksize1, ksize2, channels_in, -1])
def transpose_biases(biases, num_anchors):
biases = biases.reshape([num_anchors, -1])
coords = biases[:, 0:4]
iou = np.expand_dims(biases[:, 4], -1)
classes = biases[:, 5:]
return np.concatenate([iou, coords, classes], -1).reshape([-1])
def transpose(sess, layer, num_anchors):
v = next(filter(lambda v: v.op.name.endswith('weights'), layer))
sess.run(v.assign(transpose_weights(sess.run(v), num_anchors)))
v = next(filter(lambda v: v.op.name.endswith('biases'), layer))
sess.run(v.assign(transpose_biases(sess.run(v), num_anchors)))
def main():
model = config.get('config', 'model')
cachedir = utils.get_cachedir(config)
with open(os.path.join(cachedir, 'names'), 'r') as f:
names = [line.strip() for line in f]
width, height = np.array(utils.get_downsampling(config)) * 13
anchors = pd.read_csv(os.path.expanduser(os.path.expandvars(config.get(model, 'anchors'))), sep='\t').values
func = getattr(inference, config.get(model, 'inference'))
with tf.Session() as sess:
image = tf.placeholder(tf.float32, [1, height, width, 3], name='image')
func(image, len(names), len(anchors))
tf.contrib.framework.get_or_create_global_step()
tf.global_variables_initializer().run()
prog = re.compile(r'[_\w\d]+\/conv(\d*)\/(weights|biases|(BatchNorm\/(gamma|beta|moving_mean|moving_variance)))$')
variables = [(prog.match(v.op.name).group(1), v) for v in tf.global_variables() if prog.match(v.op.name)]
variables = sorted([[int(k) if k else -1, [v for _, v in g]] for k, g in itertools.groupby(variables, operator.itemgetter(0))], key=operator.itemgetter(0))
assert variables[0][0] == -1
variables[0][0] = len(variables) - 1
variables.insert(len(variables), variables.pop(0))
with tf.name_scope('assign'):
with open(os.path.expanduser(os.path.expandvars(args.file)), 'rb') as f:
major, minor, revision, seen = struct.unpack('4i', f.read(16))
tf.logging.info('major=%d, minor=%d, revision=%d, seen=%d' % (major, minor, revision, seen))
for i, layer in variables:
tf.logging.info('processing layer %d' % i)
total = 0
for suffix in ['biases', 'beta', 'gamma', 'moving_mean', 'moving_variance', 'weights']:
try:
v = next(filter(lambda v: v.op.name.endswith(suffix), layer))
except StopIteration:
continue
shape = v.get_shape().as_list()
cnt = np.multiply.reduce(shape)
total += cnt
tf.logging.info('%s: %s=%d' % (v.op.name, str(shape), cnt))
p = struct.unpack('%df' % cnt, f.read(4 * cnt))
if suffix == 'weights':
ksize1, ksize2, channels_in, channels_out = shape
p = np.reshape(p, [channels_out, channels_in, ksize1, ksize2]) # Darknet format
p = np.transpose(p, [2, 3, 1, 0]) # TensorFlow format (ksize1, ksize2, channels_in, channels_out)
sess.run(v.assign(p))
tf.logging.info('%d parameters assigned' % total)
remaining = os.fstat(f.fileno()).st_size - f.tell()
transpose(sess, layer, len(anchors))
saver = tf.train.Saver()
logdir = utils.get_logdir(config)
if args.delete:
tf.logging.warn('delete logging directory: ' + logdir)
shutil.rmtree(logdir, ignore_errors=True)
os.makedirs(logdir, exist_ok=True)
model_path = os.path.join(logdir, 'model.ckpt')
tf.logging.info('save model into ' + model_path)
saver.save(sess, model_path)
if args.summary:
path = os.path.join(logdir, args.logname)
summary_writer = tf.summary.FileWriter(path)
summary_writer.add_graph(sess.graph)
tf.logging.info('tensorboard --logdir ' + logdir)
if remaining > 0:
tf.logging.warn('%d bytes remaining' % remaining)
def make_args():
parser = argparse.ArgumentParser()
parser.add_argument('file', help='Darknet .weights file')
parser.add_argument('-c', '--config', nargs='+', default=['config.ini'], help='config file')
parser.add_argument('-d', '--delete', action='store_true', help='delete logdir')
parser.add_argument('-s', '--summary', action='store_true')
parser.add_argument('--logname', default=time.strftime('%Y-%m-%d_%H-%M-%S'), help='the name of TensorBoard log')
parser.add_argument('--level', default='info', help='logging level')
return parser.parse_args()
if __name__ == '__main__':
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
if args.level:
tf.logging.set_verbosity(args.level.upper())
main()