-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathrender_video.py
306 lines (258 loc) · 14 KB
/
render_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
import torch
import trimesh
import numpy as np
import skvideo.io
from munch import *
from PIL import Image
from tqdm import tqdm
from torch.nn import functional as F
from torch.utils import data
from torchvision import utils
from torchvision import transforms
from options import BaseOptions
from model import Generator
from utils import (
generate_camera_params, align_volume, extract_mesh_with_marching_cubes,
xyz2mesh, create_cameras, create_mesh_renderer, add_textures,
)
from pytorch3d.structures import Meshes
from pdb import set_trace as st
torch.random.manual_seed(1234)
def render_video(opt, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent):
g_ema.eval()
if not opt.no_surface_renderings or opt.project_noise:
surface_g_ema.eval()
images = torch.Tensor(0, 3, opt.size, opt.size)
num_frames = 250
# Generate video trajectory
trajectory = np.zeros((num_frames,3), dtype=np.float32)
# set camera trajectory
# sweep azimuth angles (4 seconds)
if opt.azim_video:
t = np.linspace(0, 1, num_frames)
elev = 0
fov = opt.camera.fov
if opt.camera.uniform:
azim = opt.camera.azim * np.cos(t * 2 * np.pi)
else:
azim = 1.5 * opt.camera.azim * np.cos(t * 2 * np.pi)
trajectory[:num_frames,0] = azim
trajectory[:num_frames,1] = elev
trajectory[:num_frames,2] = fov
# elipsoid sweep (4 seconds)
else:
t = np.linspace(0, 1, num_frames)
fov = opt.camera.fov #+ 1 * np.sin(t * 2 * np.pi)
if opt.camera.uniform:
elev = opt.camera.elev / 2 + opt.camera.elev / 2 * np.sin(t * 2 * np.pi)
azim = opt.camera.azim * np.cos(t * 2 * np.pi)
else:
elev = 1.5 * opt.camera.elev * np.sin(t * 2 * np.pi)
azim = 1.5 * opt.camera.azim * np.cos(t * 2 * np.pi)
trajectory[:num_frames,0] = azim
trajectory[:num_frames,1] = elev
trajectory[:num_frames,2] = fov
trajectory = torch.from_numpy(trajectory).to(device)
# generate input parameters for the camera trajectory
# sample_cam_poses, sample_focals, sample_near, sample_far = \
# generate_camera_params(trajectory, opt.renderer_output_size, device, dist_radius=opt.camera.dist_radius)
sample_cam_extrinsics, sample_focals, sample_near, sample_far, _ = \
generate_camera_params(opt.renderer_output_size, device, locations=trajectory[:,:2],
fov_ang=trajectory[:,2:], dist_radius=opt.camera.dist_radius)
# In case of noise projection, generate input parameters for the frontal position.
# The reference mesh for the noise projection is extracted from the frontal position.
# For more details see section C.1 in the supplementary material.
if opt.project_noise:
frontal_pose = torch.tensor([[0.0,0.0,opt.camera.fov]]).to(device)
# frontal_cam_pose, frontal_focals, frontal_near, frontal_far = \
# generate_camera_params(frontal_pose, opt.surf_extraction_output_size, device, dist_radius=opt.camera.dist_radius)
frontal_cam_pose, frontal_focals, frontal_near, frontal_far, _ = \
generate_camera_params(opt.surf_extraction_output_size, device, location=frontal_pose[:,:2],
fov_ang=frontal_pose[:,2:], dist_radius=opt.camera.dist_radius)
# create geometry renderer (renders the depth maps)
cameras = create_cameras(azim=np.rad2deg(trajectory[0,0].cpu().numpy()),
elev=np.rad2deg(trajectory[0,1].cpu().numpy()),
dist=1, device=device)
renderer = create_mesh_renderer(cameras, image_size=512, specular_color=((0,0,0),),
ambient_color=((0.1,.1,.1),), diffuse_color=((0.75,.75,.75),),
device=device)
suffix = '_azim' if opt.azim_video else '_elipsoid'
# generate videos
for i in range(opt.identities):
print('Processing identity {}/{}...'.format(i+1, opt.identities))
chunk = 1
sample_z = torch.randn(1, opt.style_dim, device=device).repeat(chunk,1)
video_filename = 'sample_video_{}{}.mp4'.format(i,suffix)
writer = skvideo.io.FFmpegWriter(os.path.join(opt.results_dst_dir, video_filename),
outputdict={'-pix_fmt': 'yuv420p', '-crf': '10'})
if not opt.no_surface_renderings:
depth_video_filename = 'sample_depth_video_{}{}.mp4'.format(i,suffix)
depth_writer = skvideo.io.FFmpegWriter(os.path.join(opt.results_dst_dir, depth_video_filename),
outputdict={'-pix_fmt': 'yuv420p', '-crf': '1'})
####################### Extract initial surface mesh from the frontal viewpoint #############
# For more details see section C.1 in the supplementary material.
if opt.project_noise:
with torch.no_grad():
frontal_surface_out = surface_g_ema([sample_z],
frontal_cam_pose,
frontal_focals,
frontal_near,
frontal_far,
truncation=opt.truncation_ratio,
truncation_latent=surface_mean_latent,
return_sdf=True)
frontal_sdf = frontal_surface_out[2].cpu()
print('Extracting Identity {} Frontal view Marching Cubes for consistent video rendering'.format(i))
frostum_aligned_frontal_sdf = align_volume(frontal_sdf)
del frontal_sdf
try:
frontal_marching_cubes_mesh = extract_mesh_with_marching_cubes(frostum_aligned_frontal_sdf)
except ValueError:
frontal_marching_cubes_mesh = None
if frontal_marching_cubes_mesh != None:
frontal_marching_cubes_mesh_filename = os.path.join(opt.results_dst_dir,'sample_{}_frontal_marching_cubes_mesh{}.obj'.format(i,suffix))
with open(frontal_marching_cubes_mesh_filename, 'w') as f:
frontal_marching_cubes_mesh.export(f,file_type='obj')
del frontal_surface_out
torch.cuda.empty_cache()
#############################################################################################
for j in tqdm(range(0, num_frames, chunk)):
with torch.no_grad():
out = g_ema([sample_z],
sample_cam_extrinsics[j:j+chunk],
sample_focals[j:j+chunk],
sample_near[j:j+chunk],
sample_far[j:j+chunk],
truncation=opt.truncation_ratio,
truncation_latent=mean_latent,
randomize_noise=False,
project_noise=opt.project_noise,
mesh_path=frontal_marching_cubes_mesh_filename if opt.project_noise else None)
rgb = out[0].cpu()
# this is done to fit to RTX2080 RAM size (11GB)
del out
torch.cuda.empty_cache()
# Convert RGB from [-1, 1] to [0,255]
rgb = 127.5 * (rgb.clamp(-1,1).permute(0,2,3,1).cpu().numpy() + 1)
# Add RGB, frame to video
for k in range(chunk):
writer.writeFrame(rgb[k])
########## Extract surface ##########
if not opt.no_surface_renderings:
scale = surface_g_ema.renderer.out_im_res / g_ema.renderer.out_im_res
surface_sample_focals = sample_focals * scale
surface_out = surface_g_ema([sample_z],
sample_cam_extrinsics[j:j+chunk],
surface_sample_focals[j:j+chunk],
sample_near[j:j+chunk],
sample_far[j:j+chunk],
truncation=opt.truncation_ratio,
truncation_latent=surface_mean_latent,
return_xyz=True)
xyz = surface_out[2].cpu()
# this is done to fit to RTX2080 RAM size (11GB)
del surface_out
torch.cuda.empty_cache()
# Render mesh for video
depth_mesh = xyz2mesh(xyz)
mesh = Meshes(
verts=[torch.from_numpy(np.asarray(depth_mesh.vertices)).to(torch.float32).to(device)],
faces = [torch.from_numpy(np.asarray(depth_mesh.faces)).to(torch.float32).to(device)],
textures=None,
verts_normals=[torch.from_numpy(np.copy(np.asarray(depth_mesh.vertex_normals))).to(torch.float32).to(device)],
)
mesh = add_textures(mesh)
cameras = create_cameras(azim=np.rad2deg(trajectory[j,0].cpu().numpy()),
elev=np.rad2deg(trajectory[j,1].cpu().numpy()),
fov=2*trajectory[j,2].cpu().numpy(),
dist=1, device=device)
renderer = create_mesh_renderer(cameras, image_size=512,
light_location=((0.0,1.0,5.0),), specular_color=((0.2,0.2,0.2),),
ambient_color=((0.1,0.1,0.1),), diffuse_color=((0.65,.65,.65),),
device=device)
mesh_image = 255 * renderer(mesh).cpu().numpy()
mesh_image = mesh_image[...,:3]
# Add depth frame to video
for k in range(chunk):
depth_writer.writeFrame(mesh_image[k])
# Close video writers
writer.close()
if not opt.no_surface_renderings:
depth_writer.close()
if __name__ == "__main__":
device = "cuda"
opt = BaseOptions().parse()
opt.model.is_test = True
opt.model.style_dim = 256
opt.model.freeze_renderer = False
opt.inference.size = opt.model.size
opt.inference.camera = opt.camera
opt.inference.renderer_output_size = opt.model.renderer_spatial_output_dim
opt.inference.style_dim = opt.model.style_dim
opt.inference.project_noise = opt.model.project_noise
opt.rendering.perturb = 0
opt.rendering.force_background = True
opt.rendering.static_viewdirs = True
opt.rendering.return_sdf = True
opt.rendering.N_samples = 64
# find checkpoint directory
# check if there's a fully trained model
checkpoints_dir = 'full_models'
checkpoint_path = os.path.join(checkpoints_dir, opt.experiment.expname + '.pt')
if os.path.isfile(checkpoint_path):
# define results directory name
result_model_dir = 'final_model'
else:
checkpoints_dir = os.path.join('checkpoint', opt.experiment.expname, 'full_pipeline')
checkpoint_path = os.path.join(checkpoints_dir,
'models_{}.pt'.format(opt.experiment.ckpt.zfill(7)))
# define results directory name
result_model_dir = 'iter_{}'.format(opt.experiment.ckpt.zfill(7))
results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname)
opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir, 'videos')
if opt.model.project_noise:
opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'with_noise_projection')
os.makedirs(opt.inference.results_dst_dir, exist_ok=True)
# load saved model
checkpoint = torch.load(checkpoint_path)
# load image generation model
g_ema = Generator(opt.model, opt.rendering).to(device)
# temp fix because of wrong noise sizes
pretrained_weights_dict = checkpoint["g_ema"]
model_dict = g_ema.state_dict()
for k, v in pretrained_weights_dict.items():
if v.size() == model_dict[k].size():
model_dict[k] = v
g_ema.load_state_dict(model_dict)
# load a the volume renderee to a second that extracts surfaces at 128x128x128
if not opt.inference.no_surface_renderings or opt.model.project_noise:
opt['surf_extraction'] = Munch()
opt.surf_extraction.rendering = opt.rendering
opt.surf_extraction.model = opt.model.copy()
opt.surf_extraction.model.renderer_spatial_output_dim = 128
opt.surf_extraction.rendering.N_samples = opt.surf_extraction.model.renderer_spatial_output_dim
opt.surf_extraction.rendering.return_xyz = True
opt.surf_extraction.rendering.return_sdf = True
opt.inference.surf_extraction_output_size = opt.surf_extraction.model.renderer_spatial_output_dim
surface_g_ema = Generator(opt.surf_extraction.model, opt.surf_extraction.rendering, full_pipeline=False).to(device)
# Load weights to surface extractor
surface_extractor_dict = surface_g_ema.state_dict()
for k, v in pretrained_weights_dict.items():
if k in surface_extractor_dict.keys() and v.size() == surface_extractor_dict[k].size():
surface_extractor_dict[k] = v
surface_g_ema.load_state_dict(surface_extractor_dict)
else:
surface_g_ema = None
# get the mean latent vector for g_ema
if opt.inference.truncation_ratio < 1:
with torch.no_grad():
mean_latent = g_ema.mean_latent(opt.inference.truncation_mean, device)
else:
mean_latent = None
# get the mean latent vector for surface_g_ema
if not opt.inference.no_surface_renderings or opt.model.project_noise:
surface_mean_latent = mean_latent[0]
else:
surface_mean_latent = None
render_video(opt.inference, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent)