diff --git a/cran-comments.md b/cran-comments.md
index a5436f72..30ccded0 100644
--- a/cran-comments.md
+++ b/cran-comments.md
@@ -1,3 +1,42 @@
+## Version 0.1.2
+
+I have run R CMD check and have also checked for memory leaks using R CMD check --use-valgrind aorsf_0.1.2.tar.gz.
+
+### Valgrind check results (abbreviated)
+
+==2062== LEAK SUMMARY:
+==2062== definitely lost: 0 bytes in 0 blocks
+==2062== indirectly lost: 0 bytes in 0 blocks
+==2062== possibly lost: 0 bytes in 0 blocks
+==2062== still reachable: 144,402,034 bytes in 45,757 blocks
+==2062== suppressed: 0 bytes in 0 blocks
+
+==2062== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
+
+### R CMD check results
+
+
+### R CMD check results
+
+Duration: 2m 56.3s
+
+0 errors ✔ | 0 warnings ✔ | 0 notes ✔
+
+R CMD check succeeded
+
+### Downstream dependencies
+
+I have also run R CMD check on downstream dependencies of `aorsf`:
+
+- collapse
+- data.table
+- lifecycle
+- R6
+- Rcpp
+- utils
+
+All packages passed.
+
## Version 0.1.1
Update, October 25: Thank you for helping me with this. I have tidied up threads and avoided usage of the `data.table` functions that were creating possible memory leaks. I have checked this submission locally with valgrind and on rhub, with both indicating 0 memory leaks. However, if this submission does not pass on your end, I would like to request an extension on the October 28th deadline.
diff --git a/man/orsf.Rd b/man/orsf.Rd
index 6014ea2b..3360c4bd 100644
--- a/man/orsf.Rd
+++ b/man/orsf.Rd
@@ -366,14 +366,6 @@ data that were not used to train it, i.e., testing data.
library(magrittr) # for \%>\%
}\if{html}{\out{}}
-\if{html}{\out{
}}\preformatted{##
-## Attaching package: 'magrittr'
-
-## The following objects are masked from 'package:testthat':
-##
-## equals, is_less_than, not
-}\if{html}{\out{
}}
-
\code{orsf()} is the entry-point of the \code{aorsf} package. It can be used to
fit classification, regression, and survival forests.
@@ -398,7 +390,7 @@ penguin_fit
## N predictors per node: 3
## Average leaves per tree: 5.4
## Min observations in leaf: 5
-## OOB stat value: 0.99
+## OOB stat value: 0.98
## OOB stat type: AUC-ROC
## Variable importance: anova
##
@@ -423,9 +415,9 @@ bill_fit
## N trees: 5
## N predictors total: 7
## N predictors per node: 3
-## Average leaves per tree: 45.2
+## Average leaves per tree: 49.4
## Min observations in leaf: 5
-## OOB stat value: 0.74
+## OOB stat value: 0.72
## OOB stat type: RSQ
## Variable importance: anova
##
@@ -454,10 +446,10 @@ pbc_fit
## N trees: 5
## N predictors total: 17
## N predictors per node: 5
-## Average leaves per tree: 21.4
+## Average leaves per tree: 21
## Min observations in leaf: 5
## Min events in leaf: 1
-## OOB stat value: 0.75
+## OOB stat value: 0.74
## OOB stat type: Harrell's C-index
## Variable importance: anova
##
@@ -504,7 +496,7 @@ take to fit the forest before you commit to it:
orsf_time_to_train()
}\if{html}{\out{}}
-\if{html}{\out{}}\preformatted{## Time difference of 2.142239 secs
+\if{html}{\out{
}}\preformatted{## Time difference of 2.185202 secs
}\if{html}{\out{
}}
\enumerate{
\item If fitting multiple forests, use the blueprint along with
@@ -575,12 +567,12 @@ brier_scores
\if{html}{\out{
}}\preformatted{## # A tibble: 6 x 4
## .metric .estimator .eval_time .estimate
##
-## 1 brier_survival standard 500 0.0541
-## 2 brier_survival standard 1000 0.0963
-## 3 brier_survival standard 1500 0.0878
-## 4 brier_survival standard 2000 0.0970
-## 5 brier_survival standard 2500 0.143
-## 6 brier_survival standard 3000 0.198
+## 1 brier_survival standard 500 0.0569
+## 2 brier_survival standard 1000 0.0884
+## 3 brier_survival standard 1500 0.0888
+## 4 brier_survival standard 2000 0.0682
+## 5 brier_survival standard 2500 0.128
+## 6 brier_survival standard 3000 0.189
}\if{html}{\out{
}}
\if{html}{\out{
}}\preformatted{roc_scores <- test_pred \%>\%
@@ -592,12 +584,12 @@ roc_scores
\if{html}{\out{
}}\preformatted{## # A tibble: 6 x 4
## .metric .estimator .eval_time .estimate
##
-## 1 roc_auc_survival standard 500 0.959
-## 2 roc_auc_survival standard 1000 0.913
-## 3 roc_auc_survival standard 1500 0.955
-## 4 roc_auc_survival standard 2000 0.941
-## 5 roc_auc_survival standard 2500 0.912
-## 6 roc_auc_survival standard 3000 0.907
+## 1 roc_auc_survival standard 500 0.931
+## 2 roc_auc_survival standard 1000 0.927
+## 3 roc_auc_survival standard 1500 0.945
+## 4 roc_auc_survival standard 2000 0.972
+## 5 roc_auc_survival standard 2500 0.910
+## 6 roc_auc_survival standard 3000 0.877
}\if{html}{\out{
}}
}
}