-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_loader.py
162 lines (140 loc) · 5.19 KB
/
dataset_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
from skimage.io import imread
from skimage.transform import resize
from skimage.color import rgb2grey
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
class CKPlus:
DATA_ROOT = '/data/cvg/luca/CK+/cohn-kanade-images/'
LABEL_ROOT = '/data/cvg/luca/CK+/Emotion/'
PREPROCESSED_ROOT = '/data/cvg/luca/CK+/preprocessed/'
# Labels used in CK+ dataset
EMOTIONS = {
0: 'Neutral',
1: 'Anger',
2: 'Contempt',
3: 'Disgust',
4: 'Fear',
5: 'Happiness',
6: 'Sadness',
7: 'Surprise'
}
# Mapping from CK+ labels to our labels
LABEL_TRANS = {
0: 0,
1: 6,
2: 7,
3: 5,
4: 4,
5: 1,
6: 2,
7: 3
}
def _get_identifiers(self):
"""
Returns a list of file names that correspond to images having a label.
"""
labels = []
for _, _, f in os.walk(self.LABEL_ROOT):
for file in f:
labels.append(f[0][:-12])
return labels
def _convert_to_one_hot(self, label):
vec = np.zeros(8)
vec[label] = 1
return vec
def _extract_label(self, path):
with open(path, 'r') as img:
return self._convert_to_one_hot(int(img.readline().strip()[0]))
def _convert_labels(self, labels):
for i in range(labels.shape[0]):
lb = np.where(labels == 1)[0][0]
labels[i] = self._convert_to_one_hot(self.LABEL_TRANS[lb])
return labels
def load_sample(self, identifier, dims=None):
"""
Loads a sample consisting of an image and the corresponding labels
Params:
- identifier: an identifier string for a certain image,
e.g. 'S005_001_000000111'
- dims: dimension that the preprocessed image should
have of the form (height, width)
Returns:
image, label: numpy arrays containing the image of the form
(dims[0], dims[1], 1) and the label of the form
(8,)
"""
path = identifier.replace('_', '/')[:-8]
img = imread('{}{}{}.png'.format(self.DATA_ROOT, path, identifier))
if len(img.shape) == 2:
img = np.expand_dims(img, axis=-1)
else:
img = np.expand_dims(rgb2grey(img), axis=-1)
if not dims is None:
img = resize(img, dims)
label = self._extract_label('{}{}{}_emotion.txt'.format(self.LABEL_ROOT, path, identifier))
return img, label
def load_all(self, dims=None):
data = np.array([]).reshape(0, dims[0], dims[1], 1)
labels = np.array([]).reshape(0, 8)
for id in self._get_identifiers():
img, lb = self.load_sample(id, (dims[0], dims[1]))
data = np.vstack([data, np.array([img])])
labels = np.vstack([labels, np.array([lb])])
return data, self._convert_labels(labels)
class FER2013:
DATA_CSV = '/data/cvg/luca/FER2013/fer2013.csv'
PREPROCESSED_ROOT = '/data/cvg/luca/FER2013/preprocessed/'
WIDTH = 48
HEIGHT = 48
EMOTIONS = {
0: 'Anger',
1: 'Disgust',
2: 'Fear',
3: 'Happiness',
4: 'Sad',
5: 'Surprise',
6: 'Neutral'
}
LABEL_TRANS = {
0: 6,
1: 3,
2: 4,
3: 5,
4: 2,
5: 1,
6: 0
}
def __init__(self, populate=False):
self.X_train = self.Y_train = self.X_val = self.Y_val = self.X_test = self.Y_test = None
if populate:
data, labels = self.load_all()
self.generate_sets(data, labels)
def generate_sets(self, data, labels):
self.X_train, self.X_test, self.Y_train, self.Y_test = train_test_split(data, labels, test_size=0.1,
random_state=42)
self.X_train, self.X_val, self.Y_train, self.Y_val = train_test_split(self.X_train, self.Y_train, test_size=0.1,
random_state=41)
return (self.X_train, self.Y_train), (self.X_val, self.Y_val), (self.X_test, self.Y_test)
def load_all(self):
data = pd.read_csv(self.DATA_CSV)
pixels = data['pixels'].tolist()
faces = []
for pixel_sequence in pixels:
face = [int(pixel) for pixel in pixel_sequence.split(' ')]
face = np.asarray(face).reshape(self.WIDTH, self.HEIGHT, 1)
face = face / 255.0
faces.append(face.astype('float32'))
faces = np.asarray(faces)
labels = pd.get_dummies(data['emotion']).as_matrix()
return faces, labels
def get_train_data(self):
assert self.X_train is not None and self.Y_train is not None
return self.X_train, self.Y_train
def get_validation_data(self):
assert self.X_val is not None and self.Y_val is not None
return self.X_val, self.Y_val
def get_test_data(self):
assert self.X_test is not None and self.Y_test is not None
return self.X_test, self.Y_test