-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathScrewTheoryIkProblem.hpp
226 lines (180 loc) · 6.82 KB
/
ScrewTheoryIkProblem.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// -*- mode:C++; tab-width:4; c-basic-offset:4; indent-tabs-mode:nil -*-
#ifndef __SCREW_THEORY_IK_PROBLEM_HPP__
#define __SCREW_THEORY_IK_PROBLEM_HPP__
#include <utility>
#include <vector>
#include <kdl/frames.hpp>
#include <kdl/jntarray.hpp>
#include "ProductOfExponentials.hpp"
namespace roboticslab
{
/**
* @ingroup ScrewTheoryLib
*
* @brief Interface shared by all IK subproblems found in Screw Theory applied
* to Robotics.
*
* Derived classes are considered to be immutable.
*/
class ScrewTheoryIkSubproblem
{
public:
//! Maps a joint id to a screw magnitude
typedef std::pair<int, double> JointIdToSolution;
//! At least one joint-id+value pair per solution
typedef std::vector<JointIdToSolution> JointIdsToSolutions;
//! Collection of local IK solutions
typedef std::vector<JointIdsToSolutions> Solutions;
//! Destructor
virtual ~ScrewTheoryIkSubproblem() {}
/**
* @brief Finds a closed geometric solution for this IK subproblem
*
* Given the product of exponentials (POE) formula
* @f$ \prod_i e\,^{\hat{\xi}_i\,{\theta_i}} \cdot H_{ST}(0) = H_{ST}(\theta) @f$ ,
* , invariant and known terms are rearranged to the right side (\p rhs) as follows:
*
* @f[
* \prod_{i=j}^{j+k} e\,^{\hat{\xi}_i\,{\theta_i}} =
* \left [ \prod_{i=1}^{j-1} e\,^{\hat{\xi}_i\,{\theta_i}} \right ]^{-1} \cdot
* H_{ST}(\theta) \cdot \left [ H_{ST}(0) \right ]^{-1} \cdot
* \left [ \prod_{i=j+k+1}^{N} e\,^{\hat{\xi}_i\,{\theta_i}} \right ]^{-1}
* @f]
*
* where @f$ j = \{1, 2, ..., N\}, k = \{1, 2, ..., N-1\}, 1 <= j+k <= N @f$ .
*
* Given @f$ N @f$ terms in the POE formula, @f$ j @f$ of which are unknowns, any
* characteristic point @f$ p @f$ postmultiplying this expression could be rewritten
* as @f$ p' @f$ per:
*
* @f[
* \prod_{i=1}^j e\,^{\hat{\xi}_i\,{\theta_i}} \cdot \prod_{i=j+1}^N e\,^{\hat{\xi}_i\,{\theta_i}} \cdot p =
* \prod_{i=1}^j e\,^{\hat{\xi}_i\,{\theta_i}} \cdot p'
* @f]
*
* where \p pointTransform is the transformation matrix that produces @f$ p' @f$
* from @f$ p @f$ .
*
* @param rhs Right-hand side of the POE formula prior to being applied to the
* right-hand side of this subproblem.
* @param pointTransform Transformation frame applied to the first (and perhaps
* only) characteristic point of this subproblem.
* @param solutions Output vector of local solutions.
*
* @return True if all solutions are reachable, false otherwise.
*/
virtual bool solve(const KDL::Frame & rhs, const KDL::Frame & pointTransform, Solutions & solutions) const = 0;
//! Number of local IK solutions
virtual int solutions() const = 0;
};
/**
* @ingroup ScrewTheoryLib
*
* @brief Proxy IK problem solver class that iterates over a sequence of subproblems
*
* This class is immutable. Instantiation is allowed by means of a static builder method.
*
* @see ScrewTheoryIkProblemBuilder
*/
class ScrewTheoryIkProblem
{
public:
//! Ordered sequence of IK subproblems needed to solve a IK problem
typedef std::vector<const ScrewTheoryIkSubproblem *> Steps;
//! Collection of global IK solutions
typedef std::vector<KDL::JntArray> Solutions;
//! Destructor
~ScrewTheoryIkProblem();
/**
* @brief Find all available solutions
*
* @param H_S_T Target pose in cartesian space.
* @param solutions Output vector of solutions stored as joint arrays.
*
* @return True if all solutions are reachable, false otherwise.
*/
bool solve(const KDL::Frame & H_S_T, Solutions & solutions);
//! Number of global IK solutions
int solutions() const
{ return soln; }
/**
* @brief Creates an IK solver instance given a sequence of known subproblems
*
* @param poe A product of exponentials (POE) formula.
* @param steps Collection of subproblems that solve this particular IK problem.
* @param reversed True if the POE has been reversed (in order to find a valid solution).
*
* @return An instance of an IK problem solver.
*/
static ScrewTheoryIkProblem * create(const PoeExpression & poe, const Steps & steps, bool reversed = false);
private:
enum poe_term
{
EXP_KNOWN,
EXP_COMPUTED,
EXP_UNKNOWN
};
typedef std::vector<KDL::Frame> Frames;
typedef std::vector<poe_term> PoeTerms;
// disable instantiation, force users to call builder class
ScrewTheoryIkProblem(const PoeExpression & poe, const Steps & steps, bool reversed);
// disable these too, avoid issues related to dynamic alloc
ScrewTheoryIkProblem(const ScrewTheoryIkProblem &);
ScrewTheoryIkProblem & operator=(const ScrewTheoryIkProblem &);
void recalculateFrames(const Solutions & solutions, Frames & frames, PoeTerms & poeTerms);
bool recalculateFrames(const Solutions & solutions, Frames & frames, PoeTerms & poeTerms, bool backwards);
KDL::Frame transformPoint(const KDL::JntArray & jointValues, const PoeTerms & poeTerms);
const PoeExpression poe;
// we own these, resources freed in destructor
const Steps steps;
const bool reversed;
const int soln;
};
/**
* @ingroup ScrewTheoryLib
*
* @brief Automated IK solution finder
*
* This class helps to automate the process for configuring a valid IK problem given
* its geometric data only. It is intended to take care of the generation and
* configuration of known subproblems, whereas particular joint-space solutions are
* meant to be computed on runtime by \ref ScrewTheoryIkProblem.
*/
class ScrewTheoryIkProblemBuilder
{
public:
//! Helper structure that holds the state of a POE term
struct PoeTerm
{
PoeTerm() : known(false), simplified(false) {}
bool known, simplified;
};
/**
* @brief Constructor
*
* @param poe Product of exponentials (POE) formula.
*/
ScrewTheoryIkProblemBuilder(const PoeExpression & poe);
/**
* @brief Finds a valid sequence of geometric subproblems that solve a global IK problem
*
* @return An instance of an IK problem solver if valid, NULL otherwise.
*/
ScrewTheoryIkProblem * build();
private:
static std::vector<KDL::Vector> searchPoints(const PoeExpression & poe);
ScrewTheoryIkProblem::Steps searchSolutions();
void refreshSimplificationState();
void simplify(int depth);
void simplifyWithPadenKahanOne(const KDL::Vector & point);
void simplifyWithPadenKahanThree(const KDL::Vector & point);
void simplifyWithPardosOne();
ScrewTheoryIkSubproblem * trySolve(int depth);
PoeExpression poe;
std::vector<KDL::Vector> points;
std::vector<KDL::Vector> testPoints;
std::vector<PoeTerm> poeTerms;
static const int MAX_SIMPLIFICATION_DEPTH = 2;
};
} // namespace roboticslab
#endif // __SCREW_THEORY_IK_PROBLEM_HPP__