
Creepture: Virtual Caterpillar-like Robot that Achieves
Locomotion Automatically through Evolutionary

Computation

Rob Murrer
University of Central Florida

c@robmurrer.com

ABSTRACT
This paper presents an Evolutionary Computation approach
to automatically realize locomotion with a modular virtual
caterpillar-like robot called Creepture. Without any prior
intelligence besides the number of modules available, a Ge-
netic Algorithm (GA) optimizes a network of Central Pat-
tern Generators that are connected to each joint in the
Creepture. This was accomplished through a simulation
layer in the fitness function of the GA. Successful locomo-
tion in a desired direction was realized for Creeptures with
up to 4 modules.

General Terms
Evolutionary Computation, Genetic Algorithm, Central Pat-
tern Generator

1. INTRODUCTION
Locomotion is an essential behavior of most organisms. How
the locomotive patterns are acquired for efficient movement
can be thought of intuitively as a trial-and-error feedback
loop. A child learning to crawl will attempt many times
and fail before they are able to move in a desired man-
ner. Because this process can be thought of as an opti-
mization, Evolutionary Computation (EC) and specifically
Genetic Algorithms (GAs) have been used to create auto-
matic locomotion [1] [2].

Through a network of Central Pattern Generators (CPGs),
a locomotive pattern is created. These CPGs create non-
linear oscillations that excite or inhibit muscle movement.
The network of CPGs work in concert to create complex
movement such as locomotion. The parameters of a CPG
network increase exponentially as the network increases. Be-
cause the number of parameters can be so large, creating
desired movements is increasing difficult as the number of
modules increase.

The EC approach using a GA to optimize the CPG network

Figure 1: M-Tran module and Central Pattern Gen-
erator [1]

was used to achieve semi-realistic caterpillar-like movement.
A simulation layer was created using the Box2D physics en-
gine and was used in the fitness function within the GA.
The segments of the Creepture are similar to the M-TRAN
modules created by Kimura et al [1]. These segments are
fused together and locomotion was realized on Creeptures
up to 4 segments.

2. THE CREEPTURE SYSTEM
A network of CPGs was created to drive the Creepture mod-
ules. Two CPGs are required per module. The modules were
modeled in the Box2D physics engine and connected to the
CPG network. Parameters of the CPG network were then
optimized by the GA according to the distance and energy
used as computed from Box2D simulation.

2.1 Central Pattern Generator
CPGs are non-traditional artificial neural networks. Each
CPG controls one joint motor within a Creepture segment.
There are four neurons within each CPG that operate in
pairs to control the extensor and flexor movements of the
joint. As can be seen in Figure 1, connections be either
excitatory or inhibitory.

CPGs placed in a network were connected with discrete
weights values: -1 inhibitory, 0 no connection, and 1 excita-
tory. There are also four state variables associated with the
values of the neurons in the CPG (u1i, v1i, u2i, v2i). These
neuron states can take on continuous values from -1.0 to 1.0.



The equations (1) and (2) are used to model a CPG network.

{
τ u̇1j = −u1j − w0y2i − βv1i + ue + s1i

τ ′v̇1i = −v1i + y1i

y1i = max(0, u1i), i = 0, ..., num− 1

(1)

{
τ u̇2j = −u2j − w0y1i − βv2i + ue + s2i

τ ′v̇2i = −v2i + y2i

y2i = max(0, u2i), i = 0, ..., num− 1

(2)

The subscripts of 1 and 2 represent the extensor and flexor
neuron pairs within the CPG, and the num represents the
number of joints present in the network. The variables s1
and s2 are the weighted connections to the rest of the net-
work and are defined in equations (3) and (4). The variable s
is normalized between -1.0 and 1.0 via the sigmoid function.

s1i = 2.0 ∗
{

1 + exp

(
−feed1i

num

)}−1

− 1.0

feed1i =
∑
j

weightiju1j

(3)

s2i = 2.0 ∗
{

1 + exp

(
−feed2i

num

)}−1

− 1.0

feed2i =
∑
j

weightiju2j

(4)

The CPG drives the Creepture module in the simulation
through controlling motor speed and direction. The speed
is calculated by equation (5). In electrical engineering par-
lance this could be thought of as voltage provided to the
joint motor. The only difference between this CPG model
and the one used in [2] is the absence of a feedback mech-
anism for the joint angle. This was eliminated because the
Creepture modules always start in the same orientation and
the variable was non-contributory.

Outputi = −m1y1i +m2y2i (5)

There are many constant parameters in the CPG that are
not optimized by the GA. These values were initially taken
from [1] and adjusted through experimentation to achieve
results suitable for the Creepture module (Table 1).

2.2 Creepture Module
Each module or segment of the Creepture can be seen in
Figure 2. The segment was modeled after M-TRAN mod-
ule [1]. Segments are composed of two circles and a thin
rectangle. The two circles are pinned to the bar through
two Revolute joints in the Box2D world. These joint have

Table 1: CPG Constant Parameters
Parameter Value
τ 0.6
τ ‘ 0.6
β 5.5
w0 2.0
ue 1.0
m1,m2 700.0

Figure 2: Creepture Segment, Box2D measure-
ments: R:2.0, B:4.0, J:1.0. Max Joint Angle: ±
90.0deg

motors attached to them and are driven individually by a
CPG.

The number of modules of the Creepture can be varied be-
fore the start of a GA run. Each module is fused together
with the previous module creating a chain (Figure 3).

2.3 Genetic Algorithm
A GA was created for optimization of variable parameters
within the network of CPGs: weights between CPGs and
initial neuron states (u1(0), v1(0), u2(0), v2(0)). These pa-
rameters were optimized to create the most efficient form of
locomotion in a single direction (right).

2.3.1 Fitness
At each generation the members of the population went
through a simulation within the physics engine. This was
done by approximating each CPGs state through equations
(1) and (2) using the Euler method. The output of each
CPG was then connected through equation (5) to a joint
motor within the simulation; this was done at each tick or
step in the simulation. Each member of the population was
simulated for 20 seconds.

Table 2: Genetic Algorithm Parameters
Parameter Value
pop size 100
max gene 150
elites 30
xover rate 0.7
mut rate 0.05



Figure 3: 5 Segment Creepture in Action

fitness = distance − γ
energy

num
(6)

The fitness of an individual is then calculated using (6)
where distance in the ”correct” direction is assessed. The
energy expended in the simulation is then divided by the
number of modules and multiplied by constant γ of value
0.01. This is then subtracted from the distance in order to
encourage efficient locomotion.

2.3.2 Selection and Mutation
Elites in the population are not mutated and remain un-
changed during a single generation. They are used in a
random crossover with the rest of the population and an
N-Point crossover occurs in accordance to the xover rate in
Table 2.

After the crossover stage of the GA, mutation occurs to the
members who were affected. The mut rate dictates the prob-
ability in which a gene will be mutated. For the discrete
values of the weights between the CPGs in the network, a
random value was chosen (-1, 0, 1). The initial values of the
neurons in the CPGs are continuous so they were mutated
based on a range of ±0.01 making sure the values never ex-
ceeded the bounds of -1.0 to 1.0.

2.4 Procedure for testing
To evaluate the effectiveness of the Creepture system and
to determine the upper limit on the number of modules, the
following procedure was used.

1. Set segment count starting at 2

2. Run GA with this number of segments 3 times.

3. Average the distances of the best individual from each
run at 20s, 40s, 60s (Table 3)

4. Increase module count by 1 until 5 modules are tested.

5. Goto Step 2.

3. RESULTS
Locomotion was realized for all Creeptures containing up to
5 segments. As the segment count was increased the distance
of movement after 40s declined. By limiting the number of
segments a Creepture had a more stable locomotion pattern
over time.

4. DISCUSSION
Increasing the number of segments in a Creepture had a
negative impact on the performance of the locomotion long

Table 3: Average Distance Traveled for 2-5 Seg-
ments

Segments 20s 40s 60s
2 58 122 185
3 53 110 138
4 37 71 119
5 37 58 61

term. The complexity of the movement and the number of
variables to be optimized may be too large for a max_gene

of 150. The fitness function also may be a culprit of the
decline in distance after 20s.

In order to keep runtime down on the GA, fitness calcula-
tions are limited to a 20s execution time in the simulation.
Even though this is not a real-time value, increasing this
value by 2x will effectively double the run time of the GA. A
multi-threaded approach may need to be employed to gen-
erate sufficient locomotion patterns for Creeptures having
greater than 4 segments.

The success of locomotion for extended periods remains un-
solved by these experiments and requires more study to cre-
ate long-term stable locomotion patterns. Given the Creep-
ture has no feed back mechanism indicating when a segment
is on or off the ground appears to be a problem for long-term
locomotion and offers an area for future study. The CPG
network initially generates a successful pattern at first but
the pace of the Creepture causes a premature stalling of the
movement. This has been witnessed in [2] and these feed-
back mechanisms may be integrated into the CPGs of future
Creeptures.

5. REFERENCES
[1] Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S.,
Tomita, K. and Kokaji, S. 2005. Automatic locomotion de-
sign and experiments for a modular robotic system. Mecha-
tronics, IEEE/ASME Transactions on. 10, 3 (June 2005),
314–325.

[2] Kimura, H., Sakurama, K. and Akiyama, S. 1998. Dy-
namic walking and running of the quadruped using neu-
ral oscillator. Intelligent robots and systems, 1998. pro-
ceedings., 1998 iEEE/rSJ international conference on (Oct
1998), 50–57 vol.1.


