-
Notifications
You must be signed in to change notification settings - Fork 26
/
plot_SNR_vs_A.m
278 lines (209 loc) · 11.9 KB
/
plot_SNR_vs_A.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
function plot_SNR_vs_A(A, R, rv_idx_sequence, max_iterations, approx_maxstar, target_block_errors, target_BLER, EsN0_start, EsN0_delta, seed)
% PLOT_SNR_VS_A Plots Block Error Rate (BLER) versus Signal to Noise
% Ratio (SNR) for turbo codes.
% plot_BLER_vs_SNR(A, R, rv_idx_sequence, iterations, target_block_errors, target_BLER, EsN0_start, EsN0_delta, seed)
% generates the plots.
%
% A should be an integer row vector. Each element specifies the number of
% bits in each set of simulated information bit sequences, before CRC and
% other redundant bits are included.
%
% R should be a real row vector. Each element specifies a coding rate to
% simulate.
%
% rv_idx_sequence should be an integer row vector. Each element should be
% in the range 0 to 3. The length of the vector corresponds to the
% maximum number of retransmissions to attempt. Each element specifies
% the rv_idx to use for the corresponding retransmission.
%
% max_iterations specifies how many decoding iterations to perform. It
% should be a multiple of 0.5, which allows an odd number of half
% iterations to be performed.
%
% approx_maxstar should be a scalar logical. If it is true, then the
% Log-BCJR decoding process will be completed using the approximate
% maxstar operation. Otherwise, the exact maxstar operation will be used.
% The exact maxstar operation gives better error correction capability
% than the approximate maxstar operation, but it has higher complexity.
%
% target_block_errors should be an integer scalar. The simulation of each
% SNR for each coding rate will continue until this number of block
% errors have been observed. A value of 100 is sufficient to obtain
% smooth BLER plots for most values of A. Higher values will give
% smoother plots, at the cost of requiring longer simulations.
%
% target_BLER should be a real scalar, in the range (0, 1). The
% simulation of each coding rate will continue until the BLER plot
% reaches this value.
%
% EsN0_start should be a real row vector, having the same length as the
% vector of coding rates. Each value specifies the Es/N0 SNR to begin at
% for the simulation of the corresponding coding rate.
%
% EsN0_delta should be a real scalar, having a value greater than 0.
% The Es/N0 SNR is incremented by this amount whenever
% target_block_errors number of block errors has been observed for the
% previous SNR. This continues until the BLER reaches target_BLER.
%
% seed should be an integer scalar. This value is used to seed the random
% number generator, allowing identical results to be reproduced by using
% the same seed. When running parallel instances of this simulation,
% different seeds should be used for each instance, in order to collect
% different results that can be aggregated together.
%
% Copyright © 2018 Robert G. Maunder. This program is free software: you
% can redistribute it and/or modify it under the terms of the GNU General
% Public License as published by the Free Software Foundation, either
% version 3 of the License, or (at your option) any later version. This
% program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
% more details.
% Default values
if nargin == 0
A = [40,50];
R = [1/2,1/3];
rv_idx_sequence = [0];
max_iterations = 8;
approx_maxstar = true;
target_block_errors = 10;
target_BLER = 1e-1;
EsN0_start = -10;
EsN0_delta = 0.5;
seed = 0;
end
% Seed the random number generator
rng(seed);
global approx_star;
approx_star = approx_maxstar;
% Create a figure to plot the results.
figure
axes1 = axes;
title(['3GPP LTE Turbo code, iterations = ',num2str(max_iterations),', RVs = ',num2str(length(rv_idx_sequence)),', approx = ',num2str(approx_maxstar),', QPSK, AWGN, errors = ',num2str(target_block_errors)]);
ylabel('Required E_s/N_0 [dB]');
xlabel('A');
grid on
hold on
drawnow
for R_index = 1:length(R)
% Create the plot
plots(R_index) = plot(nan,'Parent',axes1);
set(plots(R_index),'XData',A);
legend(cellstr(num2str(R(1:R_index)', 'R=%0.2f')),'Location','eastoutside');
% Open a file to save the results into.
filename = ['results/SNR_vs_A_',num2str(target_BLER),'_',num2str(R(R_index)),'_',num2str(max_iterations),'_',num2str(target_block_errors),'_',num2str(seed)];
fid = fopen([filename,'.txt'],'w');
if fid == -1
error('Could not open %s.txt',filename);
end
EsN0s = nan(1,length(A));
% Consider each information block length in turn
for A_index = 1:length(A)
% Skip any encoded block lengths that generate errors
try
G = round(A(A_index)/R(R_index));
hEnc = turbo_encoding_chain('A',A(A_index),'G',G,'Q_m',2);
hDec = turbo_decoding_chain('A',A(A_index),'G',G,'Q_m',2,'I_HARQ',1,'iterations',max_iterations);
found_start = false;
% Initialise the BLER and SNR
BLER=1;
prev_BLER = nan;
EsN0 = EsN0_start-EsN0_delta;
% Loop over the SNRs
while BLER > target_BLER
prev_EsN0 = EsN0;
EsN0 = EsN0 + EsN0_delta;
% Convert from SNR (in dB) to noise power spectral density
N0 = 1/(10^(EsN0/10));
% Start new counters
block_error_count = 0;
block_count = 0;
keep_going = true;
% Continue the simulation until enough block errors have been simulated
while keep_going && block_error_count < target_block_errors
a = round(rand(1,A(A_index)));
a_hat = [];
rv_idx_index = 1;
reset(hDec); % Reset the incremental redundancy buffer
while isempty(a_hat) && rv_idx_index <= length(rv_idx_sequence)
hEnc.rv_idx = rv_idx_sequence(rv_idx_index);
hDec.rv_idx = rv_idx_sequence(rv_idx_index);
f = hEnc(a);
% QPSK modulation
f2 = [f,zeros(1,mod(-length(f),2))];
tx = sqrt(1/2)*(2*f2(1:2:end)-1)+1i*sqrt(1/2)*(2*f2(2:2:end)-1);
% Simulate transmission
rx = tx + sqrt(N0/2)*(randn(size(tx))+1i*randn(size(tx)));
% QPSK demodulation
f2_tilde = zeros(size(f2));
f2_tilde(1:2:end) = -4*sqrt(1/2)*real(rx)/N0;
f2_tilde(2:2:end) = -4*sqrt(1/2)*imag(rx)/N0;
f_tilde = f2_tilde(1:length(f));
[a_hat, iterations_performed] = hDec(f_tilde);
rv_idx_index = rv_idx_index + 1;
end
if found_start == false && ~isequal(a,a_hat)
keep_going = false;
block_error_count = 1;
block_count = 1;
else
found_start = true;
% Determine if we have a block error
if ~isequal(a, a_hat)
block_error_count = block_error_count+1;
end
% Accumulate the number of blocks that have been simulated
% so far
block_count = block_count+1;
% % Determine if we have a block error
% if ~isequal(a,a_hat)
% block_error_counts(:,end) = block_error_counts(:,end) + 1;
% else
% block_error_counts(max_iterations < max(iterations_performed),end) = block_error_counts(max_iterations < max(iterations_performed),end) + 1;
% end
%
% % Accumulate the number of blocks that have been simulated
% % so far
% block_counts(end) = block_counts(end) + 1;
% % Calculate the BLER and save it in the file
% BLER = block_error_counts(end,end)/block_counts(end);
%
% % Plot the BLER vs SNR results
% for max_iterations_index = 1:length(max_iterations)
% set(plots(max_iterations_index),'XData',EsN0s);
% set(plots(max_iterations_index),'YData',block_error_counts(max_iterations_index,:)./block_counts);
% end
% drawnow
end
end
prev_BLER = BLER;
BLER = block_error_count/block_count;
% if BLER < 1
% fprintf(fid, '%f',EsN0);
% for max_iterations_index = 1:length(max_iterations)
% fprintf(fid,'\t%e',block_error_counts(max_iterations_index,end)/block_counts(end));
% end
% fprintf(fid,'\n');
% end
end
% Use interpolation to determine the SNR where the BLER equals the target
EsN0s(A_index) = interp1(log10([prev_BLER, BLER]),[prev_EsN0,EsN0],log10(target_BLER));
% Plot the SNR vs A results
set(plots(R_index),'YData',EsN0s);
xlim auto;
xl = xlim;
xlim([floor(xl(1)), ceil(xl(2))]);
drawnow;
fprintf(fid,'%d\t%f\n',A(A_index),EsN0s(A_index));
catch ME
if strcmp(ME.identifier, 'turbo_3gpp_matlab:UnsupportedParameters')
warning('turbo_3gpp_matlab:UnsupportedParameters','The requested combination of parameters is not supported. %s', getReport(ME, 'basic', 'hyperlinks', 'on' ));
continue
else
rethrow(ME);
end
end
end
% Close the file
fclose(fid);
end