-
Notifications
You must be signed in to change notification settings - Fork 728
/
cartpole_a3c.py
223 lines (171 loc) · 7.66 KB
/
cartpole_a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import threading
import numpy as np
import tensorflow as tf
import pylab
import time
import gym
from keras.layers import Dense, Input
from keras.models import Model
from keras.optimizers import Adam
from keras import backend as K
# global variables for threading
episode = 0
scores = []
EPISODES = 2000
# This is A3C(Asynchronous Advantage Actor Critic) agent(global) for the Cartpole
# In this example, we use A3C algorithm
class A3CAgent:
def __init__(self, state_size, action_size, env_name):
# get size of state and action
self.state_size = state_size
self.action_size = action_size
# get gym environment name
self.env_name = env_name
# these are hyper parameters for the A3C
self.actor_lr = 0.001
self.critic_lr = 0.001
self.discount_factor = .99
self.hidden1, self.hidden2 = 24, 24
self.threads = 8
# create model for actor and critic network
self.actor, self.critic = self.build_model()
# method for training actor and critic network
self.optimizer = [self.actor_optimizer(), self.critic_optimizer()]
self.sess = tf.InteractiveSession()
K.set_session(self.sess)
self.sess.run(tf.global_variables_initializer())
# approximate policy and value using Neural Network
# actor -> state is input and probability of each action is output of network
# critic -> state is input and value of state is output of network
# actor and critic network share first hidden layer
def build_model(self):
state = Input(batch_shape=(None, self.state_size))
shared = Dense(self.hidden1, input_dim=self.state_size, activation='relu', kernel_initializer='glorot_uniform')(state)
actor_hidden = Dense(self.hidden2, activation='relu', kernel_initializer='glorot_uniform')(shared)
action_prob = Dense(self.action_size, activation='softmax', kernel_initializer='glorot_uniform')(actor_hidden)
value_hidden = Dense(self.hidden2, activation='relu', kernel_initializer='he_uniform')(shared)
state_value = Dense(1, activation='linear', kernel_initializer='he_uniform')(value_hidden)
actor = Model(inputs=state, outputs=action_prob)
critic = Model(inputs=state, outputs=state_value)
actor._make_predict_function()
critic._make_predict_function()
actor.summary()
critic.summary()
return actor, critic
# make loss function for Policy Gradient
# [log(action probability) * advantages] will be input for the back prop
# we add entropy of action probability to loss
def actor_optimizer(self):
action = K.placeholder(shape=(None, self.action_size))
advantages = K.placeholder(shape=(None, ))
policy = self.actor.output
good_prob = K.sum(action * policy, axis=1)
eligibility = K.log(good_prob + 1e-10) * K.stop_gradient(advantages)
loss = -K.sum(eligibility)
entropy = K.sum(policy * K.log(policy + 1e-10), axis=1)
actor_loss = loss + 0.01*entropy
optimizer = Adam(lr=self.actor_lr)
updates = optimizer.get_updates(self.actor.trainable_weights, [], actor_loss)
train = K.function([self.actor.input, action, advantages], [], updates=updates)
return train
# make loss function for Value approximation
def critic_optimizer(self):
discounted_reward = K.placeholder(shape=(None, ))
value = self.critic.output
loss = K.mean(K.square(discounted_reward - value))
optimizer = Adam(lr=self.critic_lr)
updates = optimizer.get_updates(self.critic.trainable_weights, [], loss)
train = K.function([self.critic.input, discounted_reward], [], updates=updates)
return train
# make agents(local) and start training
def train(self):
# self.load_model('./save_model/cartpole_a3c.h5')
agents = [Agent(i, self.actor, self.critic, self.optimizer, self.env_name, self.discount_factor,
self.action_size, self.state_size) for i in range(self.threads)]
for agent in agents:
agent.start()
while True:
time.sleep(20)
plot = scores[:]
pylab.plot(range(len(plot)), plot, 'b')
pylab.savefig("./save_graph/cartpole_a3c.png")
self.save_model('./save_model/cartpole_a3c.h5')
def save_model(self, name):
self.actor.save_weights(name + "_actor.h5")
self.critic.save_weights(name + "_critic.h5")
def load_model(self, name):
self.actor.load_weights(name + "_actor.h5")
self.critic.load_weights(name + "_critic.h5")
# This is Agent(local) class for threading
class Agent(threading.Thread):
def __init__(self, index, actor, critic, optimizer, env_name, discount_factor, action_size, state_size):
threading.Thread.__init__(self)
self.states = []
self.rewards = []
self.actions = []
self.index = index
self.actor = actor
self.critic = critic
self.optimizer = optimizer
self.env_name = env_name
self.discount_factor = discount_factor
self.action_size = action_size
self.state_size = state_size
# Thread interactive with environment
def run(self):
global episode
env = gym.make(self.env_name)
while episode < EPISODES:
state = env.reset()
score = 0
while True:
action = self.get_action(state)
next_state, reward, done, _ = env.step(action)
score += reward
self.memory(state, action, reward)
state = next_state
if done:
episode += 1
print("episode: ", episode, "/ score : ", score)
scores.append(score)
self.train_episode(score != 500)
break
# In Policy Gradient, Q function is not available.
# Instead agent uses sample returns for evaluating policy
def discount_rewards(self, rewards, done=True):
discounted_rewards = np.zeros_like(rewards)
running_add = 0
if not done:
running_add = self.critic.predict(np.reshape(self.states[-1], (1, self.state_size)))[0]
for t in reversed(range(0, len(rewards))):
running_add = running_add * self.discount_factor + rewards[t]
discounted_rewards[t] = running_add
return discounted_rewards
# save <s, a ,r> of each step
# this is used for calculating discounted rewards
def memory(self, state, action, reward):
self.states.append(state)
act = np.zeros(self.action_size)
act[action] = 1
self.actions.append(act)
self.rewards.append(reward)
# update policy network and value network every episode
def train_episode(self, done):
discounted_rewards = self.discount_rewards(self.rewards, done)
values = self.critic.predict(np.array(self.states))
values = np.reshape(values, len(values))
advantages = discounted_rewards - values
self.optimizer[0]([self.states, self.actions, advantages])
self.optimizer[1]([self.states, discounted_rewards])
self.states, self.actions, self.rewards = [], [], []
def get_action(self, state):
policy = self.actor.predict(np.reshape(state, [1, self.state_size]))[0]
return np.random.choice(self.action_size, 1, p=policy)[0]
if __name__ == "__main__":
env_name = 'CartPole-v1'
env = gym.make(env_name)
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
env.close()
global_agent = A3CAgent(state_size, action_size, env_name)
global_agent.train()