-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathood_main.py
506 lines (444 loc) · 22.1 KB
/
ood_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
#!/usr/bin/env python
# coding: utf-8
from __future__ import absolute_import, division, print_function
import os
import pdb
import json
import math
import torch
import random
import logging
import argparse
import pickle
import numpy as np
import pandas as pd
import calculate_log as callog
from sklearn import svm
import sklearn
import warnings
warnings.filterwarnings('ignore')
from tqdm import tqdm
from simpletransformers.classification import ClassificationModel
from our_model import our_model
logging.basicConfig(level=logging.INFO)
transformers_logger = logging.getLogger("transformers")
transformers_logger.setLevel(logging.WARNING)
seed=42
def detect(all_test_deviations,all_ood_deviations, verbose=True, normalize=True):
average_results = {}
for i in range(1,11):
random.seed(i)
validation_indices = random.sample(range(len(all_test_deviations)),int(0.1*len(all_test_deviations)))
test_indices = sorted(list(set(range(len(all_test_deviations)))-set(validation_indices)))
validation = all_test_deviations[validation_indices]
test_deviations = all_test_deviations[test_indices]
t95 = validation.mean(axis=0)+10**-7
if not normalize:
t95 = np.ones_like(t95)
test_deviations = (test_deviations/t95[np.newaxis,:]).sum(axis=1)
ood_deviations = (all_ood_deviations/t95[np.newaxis,:]).sum(axis=1)
results = callog.compute_metric(-test_deviations,-ood_deviations)
for m in results:
average_results[m] = average_results.get(m,0)+results[m]
for m in average_results:
average_results[m] /= i
if verbose:
callog.print_results(average_results)
return average_results
def detection_performance(scores, Y, outf, tag='TMP'):
"""
Measure the detection performance
return: detection metrics
"""
os.makedirs(outf, exist_ok=True)
num_samples = scores.shape[0]
l1 = open('%s/confidence_%s_In.txt'%(outf, tag), 'w')
l2 = open('%s/confidence_%s_Out.txt'%(outf, tag), 'w')
y_pred = scores # regressor.predict_proba(X)[:, 1]
for i in range(num_samples):
if Y[i] == 0:
l1.write("{}\n".format(-y_pred[i]))
else:
l2.write("{}\n".format(-y_pred[i]))
l1.close()
l2.close()
results = callog.metric(outf, [tag])
return results
def load_sst_dataset():
train_df = load_extra_dataset("./dataset/sst/sst-train.txt", label=1)
test_df = load_extra_dataset("./dataset/sst/sst-test.txt", label=1)
ood_snli_df = load_extra_dataset("./dataset/sst/snli-dev.txt", drop_index=True, label=0)
ood_rte_df = load_extra_dataset("./dataset/sst/rte-dev.txt", drop_index=True, label=0)
ood_20ng_df = load_extra_dataset("./dataset/sst/20ng-test.txt", drop_index=True, label=0)
ood_multi30k_df = load_extra_dataset("./dataset/sst/multi30k-val.txt", drop_index=True, label=0)
ood_snli_df = ood_snli_df.sample(n=500, random_state=seed)
ood_rte_df = ood_rte_df.sample(n=500, random_state=seed)
ood_20ng_df = ood_20ng_df.sample(n=500, random_state=seed)
ood_multi30k_df = ood_multi30k_df.sample(n=500, random_state=seed)
ood_df = pd.concat([ood_snli_df, ood_rte_df, ood_20ng_df, ood_multi30k_df])
# ood_df = ood_df.sample(n=len(test_df), random_state=seed)
# pdb.set_trace()
return train_df, test_df, ood_df
def load_dataset(data_name, data_type='full'):
with open('./dataset/CLINIC150/data_full.json', 'r') as f:
data = json.load(f)
field = "_".join(data_name.split("_")[1:])
dataset = data[field]
data_df = pd.DataFrame(dataset, columns=['text', 'labels']) # labels are not used for training
return data_df
def load_extra_dataset(file_path="./dataset/SSTSentences.txt", drop_index=False, label=0):
df = pd.read_csv(file_path, sep='\t', header=0)
df['labels'] = label
df.rename(columns = {'sentence': 'text'}, inplace=True)
if drop_index:
df.drop(columns='index', inplace=True)
df.dropna(inplace=True)
return df
def frequency_OOD_detect(args):
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
data_type = args.data_type.strip() # args.data_type.strip()
if data_type == "sst":
print ("Work on different datasets")
train_df, test_df, ood_df = load_sst_dataset()
# pdb.set_trace()
else:
print ("Work on different intents")
ood_df = load_dataset('clinc150_oos_test', data_type=data_type)
train_df = load_dataset('clinc150_train', data_type=data_type)
test_df = load_dataset('clinc150_test', data_type=data_type)
v = TfidfVectorizer()
train_feats = v.fit_transform(train_df['text'])
test_feats = v.transform(test_df['text'])
ood_feats = v.transform(ood_df['text'])
svd = TruncatedSVD(100)
train_feats = svd.fit_transform(train_feats)
print ('train_feats', train_feats.shape)
test_feats = svd.transform(test_feats)
print ("test feats", test_feats.shape)
ood_feats = svd.transform(ood_feats)
print ('ood feats', ood_feats.shape)
candidate_list = [1e-9, 1e-7, 1e-5, 1e-3, 0.1, 0.5, 0.7, 0.9]
# candidate_list = [1e-9, 0.001, 0.1, 0.5, 0.9]
best_ours_AUC = 0.0
for k in ['linear']:
for nuu in tqdm(candidate_list):
c_lr = svm.OneClassSVM(nu=nuu, kernel=k, degree=2)
c_lr.fit(train_feats)
test_scores =c_lr.score_samples(test_feats)
ood_scores = c_lr.score_samples(ood_feats)
X_scores = np.concatenate((ood_scores, test_scores))
ood_labels = np.ones_like(ood_scores)
test_labels = np.zeros_like(test_scores)
Y_test = np.concatenate((ood_labels, test_labels))
raw_results = detection_performance(X_scores, Y_test, 'feats_logs', tag='XXX')
neg_resuls = detection_performance(-X_scores, Y_test, 'feats_logs', tag='XXX')
if sum(raw_results["XXX"].values()) < sum(neg_resuls["XXX"].values()):
raw_results = neg_resuls
results = raw_results['XXX']
# print ("results", results)
if results['AUROC'] > best_ours_AUC:
best_ours_AUC = results['AUROC']
best_ours_results = results
best_hypers = "{}-{}".format(k, nuu)
d = {"X_scores": X_scores, "Y_test": Y_test}
mtypes = ['AUROC', 'DTACC', 'AUIN', 'AUOUT']
for mtype in mtypes:
print(' {mtype:6s}'.format(mtype=mtype), end='')
print('\n{val:6.2f}'.format(val=100.*best_ours_results['AUROC']), end='')
print(' {val:6.2f}'.format(val=100.*best_ours_results['DTACC']), end='')
print(' {val:6.2f}'.format(val=100.*best_ours_results['AUIN']), end='')
print(' {val:6.2f}\n'.format(val=100.*best_ours_results['AUOUT']), end='')
print("best hyper %s"%(best_hypers))
print("saving best model results")
with open("./outputs/{}-{}.pkl".format(data_type, args.type), "wb") as f:
pickle.dump(d, f)
print('-------------------------------')
def single_layer_OOD_detect(args):
data_type = args.data_type.strip() # args.data_type.strip()
print("data type %s"%( data_type))
if args.load_path:
load_path = args.load_path
else:
load_path = 'bert-base-uncased' if args.model_class == 'bert' else 'roberta-base'
if args.model_class == 'bert' or args.model_class == 'roberta':
assert load_path is not None
model = our_model(
args.model_class,
load_path,
num_labels=2,
use_cuda=True,
cuda_device=int(args.gpu_id),
args={'num_train_epochs': 0,
'fp16':False,
'n_gpu':int(args.n_gpu),
'learning_rate': 4e-5,
'warmup_ratio': 0.10,
'train_batch_size': 32,
'eval_batch_size': 32,
#'evaluate_during_training': False,
#'evaluate_during_training_steps': 2000,
'do_lower_case': True,
'silent':True,
'reprocess_input_data': True,
'overwrite_output_dir': False,
'output_dir': '%s_outputs/'%(data_type),
'best_model_dir': "%s_outputs/best_model"%(data_type),
'cache_dir': "%s_cache_dir/"%(data_type)})
else:
raise NotImplementedError
if data_type == "sst":
print ("Work on different datasets")
train_df, test_df, ood_df = load_sst_dataset()
else:
print ("Work on different intents")
ood_df = load_dataset('clinc150_oos_test', data_type=data_type)
train_df = load_dataset('clinc150_train', data_type=data_type)
test_df = load_dataset('clinc150_test', data_type=data_type)
for layer in [-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12]:
# for layer in ['all-max', 'all-mean']:
for use_cls in [False, True]:
print ("--------- we are using {} layer and {} to represent sequence --------".format(layer, "[CLS]" if use_cls else "AVG"))
ood_feats = model.get_one_layer_feature(ood_df['text'].values.tolist(), use_layer=layer, use_cls=use_cls) # n_sample x 768
train_feats = model.get_one_layer_feature(train_df['text'].values.tolist(), use_layer=layer, use_cls=use_cls)
test_feats = model.get_one_layer_feature(test_df['text'].values.tolist(), use_layer=layer, use_cls=use_cls)
candidate_list = [1e-9, 1e-7, 1e-3, 0.01, 0.1] # add 0.5 and 0.7 for slower training
best_ours_AUC = 0.0
for k in ['linear']:
for nuu in tqdm(candidate_list):
c_lr = svm.OneClassSVM(nu=nuu, kernel=k, degree=2)
c_lr.fit(train_feats)
test_scores = c_lr.score_samples(test_feats)
ood_scores = c_lr.score_samples(ood_feats)
X_scores = np.concatenate((ood_scores, test_scores))
ood_labels = np.ones_like(ood_scores)
test_labels = np.zeros_like(test_scores)
Y_test = np.concatenate((ood_labels, test_labels))
raw_results = detection_performance(X_scores, Y_test, 'feats_logs', tag='XXX')
neg_resuls = detection_performance(-X_scores, Y_test, 'feats_logs', tag='XXX')
if sum(raw_results["XXX"].values()) < sum(neg_resuls["XXX"].values()):
raw_results = neg_resuls
results = raw_results['XXX']
if results['AUROC'] > best_ours_AUC:
best_ours_AUC = results['AUROC']
best_ours_results = results
best_hypers = "{}-{}".format(k, nuu)
d = {"X_scores": X_scores, "Y_test": Y_test, "Features": np.concatenate((test_scores, ood_scores))}
mtypes = ['AUROC', 'DTACC', 'AUIN', 'AUOUT']
for mtype in mtypes:
print(' {mtype:6s}'.format(mtype=mtype), end='')
print('\n{val:6.2f}'.format(val=100.*best_ours_results['AUROC']), end='')
print(' {val:6.2f}'.format(val=100.*best_ours_results['DTACC']), end='')
print(' {val:6.2f}'.format(val=100.*best_ours_results['AUIN']), end='')
print(' {val:6.2f}\n'.format(val=100.*best_ours_results['AUOUT']), end='')
print("best hyper %s"%(best_hypers))
print('-------------------------------')
# print("saving best model results")
# with open("./outputs/{}-{}-{}-{}.pkl".format(data_type, args.method, args.model_class, layer), "wb") as f:
# pickle.dump(d, f)
def MDF_OOD_detect(args, distance="mahalanobis"):
data_type = args.data_type.strip()
print("data type %s"%( data_type))
if args.load_path:
load_path = args.load_path
else:
load_path = 'bert-base-uncased' if args.model_class == 'bert' else 'roberta-base'
if args.model_class == 'bert' or args.model_class == 'roberta':
assert load_path is not None
model = our_model(
args.model_class,
load_path,
num_labels=2,
use_cuda=True,
cuda_device=int(args.gpu_id),
args={'num_train_epochs': 0,
'fp16':False,
'n_gpu':int(args.n_gpu),
'learning_rate': 4e-5,
'warmup_ratio': 0.10,
'train_batch_size': 16,
'eval_batch_size': 16,
#'evaluate_during_training': False,
#'evaluate_during_training_steps': 2000,
'do_lower_case': True,
'silent':True,
'reprocess_input_data': True,
'overwrite_output_dir': False,
'output_dir': '%s_outputs/'%(data_type),
'best_model_dir': "%s_outputs/best_model"%(data_type),
'cache_dir': "%s_cache_dir/"%(data_type)})
else:
raise NotImplementedError
if data_type == "sst":
print ("Work on different datasets")
train_df, test_df, ood_df = load_sst_dataset()
else:
print ("Work on different intents")
ood_df = load_dataset('clinc150_oos_test', data_type=data_type)
train_df = load_dataset('clinc150_train', data_type=data_type)
test_df = load_dataset('clinc150_test', data_type=data_type)
print ("train", len(train_df), "test", len(test_df), "ood", len(ood_df))
for use_cls in [False, True]:
if use_cls:
print ("---------- Use [CLS] token to represent sequence ----------")
else:
print ("---------- Use AVG embebeddings to represent sequence ----------")
mean_list, precision_list = model.sample_X_estimator(train_df['text'].values.tolist(), use_cls)
if distance == "l2": # baseline of EDF
test_mah_vanlia = model.get_alternative_distance_score(test_df['text'].values.tolist(), mean_list, use_cls)[:, 1:]
ood_mah_vanlia = model.get_alternative_distance_score(ood_df['text'].values.tolist(), mean_list, use_cls)[:, 1:]
train_mah_vanlia = model.get_alternative_distance_score(train_df['text'].values.tolist(), mean_list, use_cls)[:, 1:]
else: # MDF
test_mah_vanlia = model.get_unsup_Mah_score(test_df['text'].values.tolist(), mean_list, precision_list, use_cls)[:, 1:]
ood_mah_vanlia = model.get_unsup_Mah_score(ood_df['text'].values.tolist(), mean_list, precision_list, use_cls)[:, 1:]
train_mah_vanlia = model.get_unsup_Mah_score(train_df['text'].values.tolist(), mean_list, precision_list, use_cls)[:, 1:]
ood_labels = np.ones(shape=(ood_mah_vanlia.shape[0], ))
test_labels = np.zeros(shape=(test_mah_vanlia.shape[0], ))
test_mah_scores = test_mah_vanlia
ood_mah_scores = ood_mah_vanlia
train_mah_scores = train_mah_vanlia
candidate_list = [1e-9, 1e-7, 1e-5, 1e-3, 0.01, 0.1, 0.2, 0.5]
# candidate_list = [1e-9, 1e-7, 1e-5, 1e-3, 0.01, 0.1, 0.5, 0.7, 0.9]
np.random.shuffle(test_mah_scores)
np.random.shuffle(ood_mah_scores)
best_ours_results = None
best_ours_AUROC = 0.0
# for k in ['poly', 'linear']:
for k in ['linear']:
for nuu in candidate_list:
print ("running ---:", "kernel:", k, "nuu:", nuu)
c_lr = svm.OneClassSVM(nu=nuu, kernel=k, degree=2)
c_lr.fit(train_mah_scores)
test_scores = c_lr.score_samples(test_mah_scores)
ood_scores = c_lr.score_samples(ood_mah_scores)
X_scores = np.concatenate((ood_scores, test_scores))
Y_test = np.concatenate((ood_labels, test_labels))
results = detection_performance(X_scores, Y_test, 'mah_logs', tag='TMP')
neg_resuls = detection_performance(-X_scores, Y_test, 'feats_logs', tag='TMP')
if sum(results["TMP"].values()) < sum(neg_resuls["TMP"].values()):
results = neg_resuls
if results['TMP']['AUROC'] > best_ours_AUROC:
best_ours_AUROC = results['TMP']['AUROC']
best_ours_results = results
best_hypers = '{}-{}'.format(k, nuu)
# save data for plotting
d = {"X_scores": X_scores, "Y_test": Y_test, "Features": np.concatenate((test_mah_scores, ood_mah_scores))}
mtypes = ['AUROC', 'DTACC', 'AUIN', 'AUOUT']
for mtype in mtypes:
print(' {mtype:6s}'.format(mtype=mtype), end='')
print('\n{val:6.2f}'.format(val=100.*best_ours_results['TMP']['AUROC']), end='')
print(' {val:6.2f}'.format(val=100.*best_ours_results['TMP']['DTACC']), end='')
print(' {val:6.2f}'.format(val=100.*best_ours_results['TMP']['AUIN']), end='')
print(' {val:6.2f}\n'.format(val=100.*best_ours_results['TMP']['AUOUT']), end='')
print("best hyper %s"%(best_hypers))
print ("saving data for plotting")
with open("./outputs/{}_{}_{}.pkl".format(data_type, args.model_class, load_path.split("/")[-1]), "wb") as f:
pickle.dump(d, f)
print('-------------------------------')
def MSP_OOD_detect(args):
data_type = args.data_type.strip()
print("data type %s"%( data_type))
if args.load_path:
load_path = args.load_path
else:
load_path = 'bert-base-uncased' if args.model_class == 'bert' else 'roberta-base'
if args.model_class == 'bert' or args.model_class == 'roberta':
assert load_path is not None
model = ClassificationModel(
args.model_class,
load_path,
num_labels=2,
use_cuda=True,
cuda_device=int(args.gpu_id),
args={'num_train_epochs': 0,
'fp16':False,
'n_gpu':int(args.n_gpu),
'learning_rate': 4e-5,
'warmup_ratio': 0.10,
'train_batch_size': 16,
'eval_batch_size': 16,
#'evaluate_during_training': False,
#'evaluate_during_training_steps': 2000,
'do_lower_case': True,
'silent':True,
'reprocess_input_data': True,
'overwrite_output_dir': False,
'output_dir': '%s_outputs/'%(data_type),
'best_model_dir': "%s_outputs/best_model"%(data_type),
'cache_dir': "%s_cache_dir/"%(data_type)})
else:
raise NotImplementedError
if data_type == "sst":
print ("Work on different datasets")
train_df, test_df, ood_df = load_sst_dataset()
else:
print ("Work on different intents")
ood_df = load_dataset('clinc150_oos_test', data_type=data_type)
train_df = load_dataset('clinc150_train', data_type=data_type)
test_df = load_dataset('clinc150_test', data_type=data_type)
test_preds, test_outputs = model.predict(test_df['text'].values.tolist())
ood_preds, ood_outputs = model.predict(ood_df['text'].values.tolist())
T_list = [1, 2, 3, 4, 5, 10, 20, 100, 1000, 10000, 100000] # sweep the best temepurature
best_MSP_AUC = - np.inf
from scipy.special import softmax
for temperature in T_list:
test_soft_scores = softmax(test_outputs / float(temperature), axis=1)
ood_soft_scores = softmax(ood_outputs / float(temperature), axis=1)
test_max_scores = np.max(test_soft_scores, axis=1)
ood_max_scores = np.max(ood_soft_scores, axis=1)
out_lables = np.ones_like(ood_max_scores)
in_labels = np.zeros_like(test_max_scores)
all_labels = np.concatenate([out_lables, in_labels])
all_scores = np.concatenate([-ood_max_scores, -test_max_scores])
# neg results is used to solve a problem detection_performance
results = detection_performance(all_scores, all_labels, 'baseline_logs', tag='msp')
neg_results = detection_performance(-all_scores, all_labels, 'baseline_logs', tag='msp')
if sum(results["msp"].values()) < sum(neg_results["msp"].values()):
results = neg_results
all_scores = - all_scores
if temperature == 1:
baseline_results = results
if results['msp']['AUROC'] > best_MSP_AUC:
best_MSP_AUC = results['msp']['AUROC']
best_MSP_results = results
best_MSP_hypers = temperature
d = {"X_scores": all_scores, "Y_test": all_labels}
mtypes = ['AUROC', 'DTACC', 'AUIN', 'AUOUT']
print("Best ODIN T= %s"%(best_MSP_hypers))
for mtype in mtypes:
print(' {mtype:6s}'.format(mtype=mtype), end='')
print('\n{val:6.2f}'.format(val=100.*best_MSP_results['msp']['AUROC']), end='')
print(' {val:6.2f}'.format(val=100.*best_MSP_results['msp']['DTACC']), end='')
print(' {val:6.2f}'.format(val=100.*best_MSP_results['msp']['AUIN']), end='')
print(' {val:6.2f}\n'.format(val=100.*best_MSP_results['msp']['AUOUT']), end='')
print('saving results for MSP')
with open("./outputs/MSP_{}_{}.pkl".format(data_type, args.model_class), "wb") as f_:
pickle.dump(d, f_)
def main(args):
method = args.method
# set seed
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.cuda.set_device(args.gpu_id)
if method == 'MDF':
MDF_OOD_detect(args) # our method
elif method == 'single_layer_bert': # check performance of a single layer of BERT
single_layer_OOD_detect(args)
elif method == "MSP":
MSP_OOD_detect(args)
elif method == "tf-idf":
frequency_OOD_detect(args)
else:
raise NotImplementedError
if __name__ == '__main__':
parser = argparse.ArgumentParser("Bert Model OOD Detection")
parser.add_argument('--method', default='MDF', choices=['MDF', 'single_layer_bert', 'tf-idf', 'MSP'])
parser.add_argument('--model_class', default='bert', choices=['bert', 'roberta'])
parser.add_argument('--gpu_id', default=0, type=int)
parser.add_argument('--n_rep', default=1, type=int)
parser.add_argument('--n_gpu', default=1, type=int)
parser.add_argument('--load_path', default=None, type=str)
parser.add_argument('--data_type', default='clinic', choices = ['clinic', 'sst'])
args = parser.parse_args()
main(args)