-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathperceptron.py
215 lines (168 loc) · 6.1 KB
/
perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#-*-coding: utf8 -*-
# import matplotlib
# matplotlib.use('Tkagg')
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.animation import FuncAnimation
import copy
NEGATIVE = -1
POSITIVE = 1
def calculate_distance(line_vec, point):
'''
计算点point到线line_vec的距离,含符号表示在线的哪一侧
'''
# line_vec[w0, w1, b]
# point[x, y]
lv = np.array(line_vec)
pv = np.array(point + [1])
d = np.dot(lv, pv) / np.sqrt(np.sum(lv**2))
return d
def generate_dataset(line_vec, min_distance, point_count=5):
'''
在线line_vec的两侧各生成point_count个不同的点,每个点到线的距离绝对值不能小于min_distance
生成的数据集中是每个点的坐标,以及点与线的位置关系[x, y, POSITIVE/NEGATIVE]
'''
data_set = []
positive_count = 0
negative_count = 0
while positive_count < point_count or negative_count < point_count:
point = [np.random.rand() * 10, np.random.rand() * 10]
x_lst = [pt[0] for pt in data_set]
y_lst = [pt[1] for pt in data_set]
if point[0] in x_lst or point[1] in y_lst:
continue
dist = calculate_distance(line_vec, point)
abs_dist = abs(dist)
if abs_dist < min_distance:
continue
if dist > 0 and positive_count < point_count:
p = point + [POSITIVE]
positive_count += 1
data_set.append(p)
elif dist < 0 and negative_count < point_count:
p = point + [NEGATIVE]
negative_count += 1
data_set.append(p)
return data_set
# ============================================================
def sign(line_vec, pt):
'''
res=y(w.x + b), w和x为向量
检测line_vec是否将点pt正确分类
返回值<=0表示pt被误分
返回值>0表示pt被正确分类
'''
lv = np.array(line_vec)
ptv = np.array(pt[:2] + [1])
res = lv.dot(ptv) # w.x + b
res *= pt[2] # y*(w.x + b)
return res
def perceptron(data_set, line_hist):
'''
感知机:遍历数据集,每遇到一个误判的点,及时做出适当的调整;
直到找到一条线,将所有的点都正确地分隔在线的两边
'''
print 'default perceptron'
hw = [0, 0, 0]
while True:
incorrect = 0
for point in data_set:
s = sign(hw, point)
if s > 0:
continue
incorrect += 1
hw[0] += point[2] * point[0]
hw[1] += point[2] * point[1]
hw[2] += point[2]
line_hist.append(copy.deepcopy(hw))
if incorrect == 0:
break
return hw
def perceptron_illustrate(perceptron_type='default', min_distance=0.5, point_count=3):
original_line_vec = [2, 1, -12] # w0, w1, b
perceptron_line_hist = []
data_set = generate_dataset(original_line_vec, min_distance, point_count)
if perceptron_type == 'duality':
duality_perceptron(data_set, perceptron_line_hist)
else:
perceptron(data_set, perceptron_line_hist)
fig = plt.figure()
ax = plt.axes(xlim=(-1, 10), ylim=(-1, 10), title="Perceptron",
xlabel="X Axis", ylabel="Y Axis",)
ax.grid(True)
perceptron_line, = ax.plot([], [], 'g-')
def init():
# original point
ax.plot(0, 0, 'ro')
# negative points
nX = [p[0] for p in data_set if p[2] == NEGATIVE]
nY = [p[1] for p in data_set if p[2] == NEGATIVE]
ax.plot(nX, nY, 'rx')
# positive points
pX = [p[0] for p in data_set if p[2] == POSITIVE]
pY = [p[1] for p in data_set if p[2] == POSITIVE]
ax.plot(pX, pY, 'bo')
# original line
x = -10
y = -(x * original_line_vec[0] + original_line_vec[2]) / original_line_vec[1]
x_ = 60
y_ = -(x_ * original_line_vec[0] + original_line_vec[2]) / original_line_vec[1]
ax.plot([x, x_], [y, y_], 'r-')
perceptron_line.set_data([], [])
return perceptron_line,
def animate(i, last, lines):
line = lines[i]
x = -10
y = -(x * line[0] + line[2]) / line[1]
x_ = 60
y_ = -(x_ * line[0] + line[2]) / line[1]
perceptron_line.set_data([x, x_], [y, y_])
if i == last:
perceptron_line.set_color('g')
perceptron_line.set_linestyle('-')
else:
perceptron_line.set_color('b')
perceptron_line.set_linestyle('-.')
return perceptron_line,
anim = FuncAnimation(fig, animate, frames=len(perceptron_line_hist), init_func=init,
fargs=(len(perceptron_line_hist) - 1, perceptron_line_hist),
repeat=True, repeat_delay=3000, blit=True, interval=500)
anim.save('./illustrators/%s_perceptron.gif' % (perceptron_type,), dpi=80, writer='imagemagick')
plt.show()
# ==============================duality perceptron=============================
def cal_gramm(data_set):
g = np.empty((len(data_set), len(data_set)), np.float)
for i in range(len(data_set)):
for j in range(len(data_set)):
g[i][j] = np.dot(np.array(data_set[i][:-1]), np.array(data_set[j][:-1]))
return g
def duality_sign(a, b, g, y, idx):
res = np.dot(a * y, g[idx]) # w.x_i
res = (res + b) * y[idx] # y_i(w.x_i + b)
return res
def update_duality_perceptron(a, b, x, y, idx, line_hist):
a[idx] += 1
b += y[idx]
new_line = np.dot(a*y, x).tolist()
new_line.append(b)
line_hist.append(new_line)
return b
def duality_perceptron(data_set, line_hist):
print 'duality perceptron'
A = [0.0] * len(data_set)
B = 0.0
X = np.array([p[:-1] for p in data_set])
Y = np.array([p[-1] for p in data_set])
G = cal_gramm(data_set)
while True:
incorrect = 0
for i in range(len(data_set)):
s = duality_sign(A, B, G, Y, i)
if s > 0:
continue
incorrect += 1
B = update_duality_perceptron(A, B, X, Y, i, line_hist)
if incorrect == 0:
break
if __name__ == '__main__':
perceptron_illustrate('duality')